The Influence of Frequency Containment Reserve on the Operational Data and the State of Health of the Hybrid Stationary Large-Scale Storage System
Abstract
:1. Introduction
2. Materials and Methods
2.1. M5BAT
2.1.1. Structure
2.1.2. Technology
2.1.3. Commercial Application
2.1.4. Energy Management System (EMS)
2.2. SOH
2.3. Database
3. Results and Discussion
3.1. Availability
Number of Available Battery Units
3.2. SOC
3.2.1. LSS
3.2.2. Batteries
3.3. Voltage
3.4. C-Rate
3.5. Remaining Energy Capacity
3.5.1. BMS
3.5.2. Capacity Test
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LSS | Large-scale storage systems |
FCR | Frequency containment reserve |
BMS | Battery management system |
BSC | Battery system controller |
EMS | Energy management system |
PLC | Programmable logic controller |
OCSM | Lead-acid batteries with liquid electrolyte |
OPzV | Sealed lead-acid batteries with gelled electrolyte |
LMO | Li-ion manganese oxide |
NMC | Nickel-cobalt-manganese |
LFP | Lithium-ion iron phosphate |
LTO | Lithium-ion titanate oxide |
SOH | State of health |
SOC | State of charge |
SOE | State of energy |
EOL | End of life |
C-rate | Charge and discharge rate |
References
- European Commission, Klima- und Energiepolitischer Rahmen bis 2030. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_de (accessed on 12 February 2022).
- Figgener, J.; Stenzel, P.; Kairies, K.-P.; Linßen, J.; Haberschusz, D.; Wessels, O.; Angenendt, G.; Robinius, M.; Stolten, D.; Sauer, D.U. The development of stationary battery storage systems in Germany—A market review. J. Energy Storage 2020, 29, 101153. [Google Scholar] [CrossRef]
- Figgener, J.; Stenzel, P.; Kairies, K.-P.; Linßen, J.; Haberschusz, D.; Wessels, O.; Angenendt, G.; Robinius, M.; Stolten, D.; Sauer, D.U. The development of stationary battery storage systems in Germany—status 2020. J. Energy Storage 2021, 33, 101982. [Google Scholar] [CrossRef]
- Englberger, S.; Jossen, A.; Hesse, H. Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications. Cell Rep. Phys. Sci. 2020, 1, 100238. [Google Scholar] [CrossRef]
- Muenderlein, J.; Ipers, G.; Steinhoff, M.; Zurmuehlen, S.; Sauer, D.U. Optimization of a hybrid storage system and evaluation of operation strategies. Int. J. Electr. Power Energy Syst. 2020, 119, 105887. [Google Scholar] [CrossRef]
- Filippa, A.; Hashemi, S.; Træholt, C. Economic Evaluation of Frequency Reserve Provision using Battery Energy Storage. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 2–4 November 2019; pp. 160–165. [Google Scholar]
- Angenendt, G.; Zurmühlen, S.; Figgener, J.; Kairies, K.P.; Sauer, D.U. Providing frequency control reserve with photovoltaic battery energy storage systems and power-to-heat coupling. Energy 2020, 194, 116923. [Google Scholar] [CrossRef]
- Steber, D.B. Integration of Decentralized Battery Energy Storage Systems into the German Electrical Power System. Ph.D. Thesis, University of Erlangen–Nürnberg, Nürnberg, Germany, 2018. [Google Scholar]
- Figgener, J.; Tepe, B.; Rücker, F.; Schoeneberger, I.; Hecht, C.; Jossen, A.; Sauer, D.U. The Influence of Frequency Containment Reserve Flexibilization on the Economics of Electric Vehicle Fleet Operation. arXiv 2021, arXiv:2107.03489. [Google Scholar]
- Janota, L.; Králík, T.; Knápek, J. Second Life Batteries Used in Energy Storage for Frequency Containment Reserve Service. Energies 2020, 13, 6396. [Google Scholar] [CrossRef]
- Elliott, M.; Swan, L.G.; Dubarry, M.; Baure, G. Degradation of electric vehicle lithium-ion batteries in electricity grid services. J. Energy Storage 2020, 32, 101873. [Google Scholar] [CrossRef]
- Podias, A.; Pfrang, A.; Di Persio, F.; Kriston, A.; Bobba, S.; Mathieux, F.; Messagie, M.; Boon-Brett, L. Sustainability Assessment of Second Use Applications of Automotive Batteries: Ageing of Li-Ion Battery Cells in Automotive and Grid-Scale Applications. World Electr. Veh. J. 2018, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Benato, R.; Dambone Sessa, S.; Musio, M.; Palone, F.; Polito, R.M. Italian Experience on Electrical Storage Ageing for Primary Frequency Regulation. Energies 2018, 11, 2087. [Google Scholar] [CrossRef] [Green Version]
- Bila, M.; Opathella, C.; Venkatesh, B. Grid connected performance of a household lithium-ion battery energy storage system. J. Energy Storage 2016, 6, 178–185. [Google Scholar] [CrossRef]
- Koller, M.; Borsche, T.; Ulbig, A.; Andersson, G. Review of grid applications with the Zurich 1MW battery energy storage system. Electr. Power Syst. Res. 2015, 120, 128–135. [Google Scholar] [CrossRef]
- Schiavo, L.L.; Benini, M. In Proceedings of the 2018 AEIT International Annual Conference (AEIT), Bari, Italy, 3–5 October 2018. IEEE: Piscataway, NJ, USA, 2018. Available online: http://ieeexplore.ieee.org/servlet/opac?punumber=8556143 (accessed on 12 February 2022).
- Swierczynski, M.; Stroe, D.I.; Stan, A.I.; Teodorescu, R.; Laerke, R.; Kjaer, P.C. Field tests experience from 1.6MW/400kWh Li-ion battery energy storage system providing primary frequency regulation service. In Proceedings of the IEEE PES ISGT Europe 2013, Lyngby, Denmark, 6–9 October 2013; pp. 1–5. [Google Scholar]
- Dubarry, M.; Tun, M.; Baure, G.; Matsuura, M.; Rocheleau, R.E. Battery Durability and Reliability under Electric Utility Grid Operations: Analysis of On-Site Reference Tests. Electronics 2021, 10, 1593. [Google Scholar] [CrossRef]
- Consiglio, L.; Di Lembo, G.; Noce, C.; Eckert, P.; Rasic, A.; Schuette, A. Performances of the first electric storage system of ENEL distribuzione. In Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, Sweden, 10–13 June 2013; p. 781. [Google Scholar]
- Karoui, F.; Ha, D.L.; Delaplagne, T.; Bouaaziz, M.F.; Eudier, V.; Lévy, M. Diagnosis and prognosis of complex energy storage systems: Tools development and feedback on four installed systems. Energy Procedia 2018, 155, 61–76. [Google Scholar] [CrossRef]
- Thien, T.; Schweer, D.; vom Stein, D.; Moser, A.; Sauer, D.U. Real-world operating strategy and sensitivity analysis of frequency containment reserve provision with battery energy storage systems in the german market. J. Energy Storage 2017, 13, 143–163. [Google Scholar] [CrossRef]
- Muenderlein, J.; Steinhoff, M.; Axelsen, H.; Sauer, D.U. Planning, building, efficiency measurement and determination of forecast data of a grid-scale hybrid 5 MW / 5 MWh battery storage system. In Proceedings of the 2017 IEEE International Telecommunications Energy Conference (INTELEC), Broadbeach, QLD, Australia, 22–26 October 2017; pp. 314–320. [Google Scholar]
- Institute for Power Generation and Storage Systems (RWTH Aachen). Modularer multi-Megawatt multi-Technologie Mittelspannungs-batteriespeicher (M5BAT): Abschlussbericht, Datenblätter sowie weiteres Aktenarchiv; Aachen University: Aachen, Germany, 2018. [Google Scholar]
- SMA Solar Technology AG. Betriebsanleitung—SUNNY CENTRAL STORAGE 500 / 630/720/760/800/850/900/1000. Available online: https://files.sma.de/downloads/SCS500-1000-DDE1610-V21web.pdf (accessed on 12 February 2022).
- J. Schneider Elektrotechnik GmbH. Data Sheet, “HSGX 1260F-1605T06001 Dreiphasen—Hochspannungstransformator”; J. Schneider Elektrotechnik GmbH: Offenburg, Germany, February 2016. [Google Scholar]
- Ecker, M.; Nieto, N.; Käbitz, S.; Schmalstieg, J.; Blanke, H.; Warnecke, A.; Sauer, D.U. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries. J. Power Sources 2014, 248, 839–851. [Google Scholar] [CrossRef]
- regelleistung.net: Internetplattform zur Vergabe von Regelleistung. Available online: https://www.regelleistung.net/ (accessed on 12 February 2022).
- Schmalstieg, J.; Käbitz, S.; Ecker, M.; Sauer, D.U. “From accelerated aging tests to a lifetime prediction model: Analyzing lithium-ion batteries. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–12. [Google Scholar]
- Sabet, P.S.; Warnecke, A.J.; Meier, F.; Witzenhausen, H.; Martinez-Laserna, E.; Sauer, D.U. Non-invasive yet separate investigation of anode/cathode degradation of lithium-ion batteries (nickel–cobalt–manganese vs. graphite) due to accelerated aging. J. Power Sources 2020, 449, 227369. [Google Scholar] [CrossRef]
- Sauer, D.U. Optimierung des Einsatzes von Blei-Säure-Akkumulatoren in Photovoltaik-Hybrid-Systemen unter spezieller Berücksichtigung der Batteriealterung. Ph.D. Thesis, Universität Ulm, Ulm, Germany, 2009. [Google Scholar]
- Fleer, J.; Zurmühlen, S.; Badeda, J.; Stenzel, P.; Hake, J.-F.; Sauer, D.U. Model-based Economic Assessment of Stationary Battery Systems Providing Primary Control Reserve. Energy Procedia 2016, 99, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Fleer, J.; Zurmühlen, S.; Meyer, J.; Badeda, J.; Stenzel, P.; Hake, J.F.; Sauer, D.U. Price development and bidding strategies for battery energy storage systems on the primary control reserve market. Energy Procedia 2017, 135, 143–157. [Google Scholar] [CrossRef]
Source | FCR | Other Applications | Technology | Hybrid | P (kW) | E (kWh) |
---|---|---|---|---|---|---|
Koller et al. [15] | Yes | peak shaving, islanded operation | Lithium | No | 1000 | 580 |
Lo Schiavo et al. [16] | Yes | Automatic Frequency Restoration Reserve, Reduction of curtailed wind energy | Lithium based | Yes | 5280 | 4640 |
Yes | NaNiCl2 | 2200 | 6150 | |||
Yes | Lithium based | Yes | 3900 | 3740 | ||
Yes | NaNiCl2 | 1200 | 4150 | |||
Swierczynski et al. [17] | Yes | Wind smoothing | LFP | Yes | 400 | 100 |
Yes | LTO | 1200 | 300 | |||
Dubarry et al. [18] | Yes | Wind smoothing | LTO | No | 1000 | 250 |
Eckert et al. [19] | No | Voltage regulation, black start, islanding operation | LMO | No | 1000 | 500 |
Karoui et al. [20] | No | Self-consumption maximisation, Peak Shaving | Lithium | No | 946 | 1196 |
No | Lithium | No | 4400 | 4308 | ||
No | NaNiCl2 | No | 4995 | 6336 | ||
No | NaNiCl2 | No | 100 | 188 | ||
Thien, Muenderlein et al. [21,22] | Yes | / | LMO, LFP, LTO, Lead-Acid | Yes | 5912 | 6455 |
Battery Unit | Technology | Acronym | Wiring | DC | AC | ||
---|---|---|---|---|---|---|---|
Capacity in Ah 1 | Energy in kWh 1 | Energy in kWh 2 | Power in kW 2 | ||||
1 | OCSM | Pb1 | 300s1p | 1776 | 1066 | 1030 | 617 |
2 | OCSM | Pb2 | 300s1p | 1776 | 1066 | 1030 | 617 |
3 | OPzV | Pb3 | 308s2p | 1368 | 843 | 814 | 617 |
4 | OPzV | Pb4 | 306s1p | 1209 | 740 | 715 | 512 |
5 | LMO/NMC | LMO1 | 192s16p | 1088 | 774 | 748 | 617 |
6 | LMO/NMC | LMO2 | 192s16p | 1088 | 774 | 748 | 617 |
7 | LMO/NMC | LMO3 | 192s16p | 1088 | 774 | 748 | 617 |
8 | LMO/NMC | LMO4 | 192s16p | 1088 | 774 | 748 | 617 |
9 | LFP | LFP | 240s10p | 933 | 738 | 713 | 617 |
10 | LTO | LTO | 312s32p | 320 | 230 | 222 | 617 |
Battery Unit | Operating Limits in V | Cut-Off Limits in V | Nominal Voltage in V | ||
---|---|---|---|---|---|
Pb1 | 1.7 | 2.4 | 1.4 | 3 | 2 |
Pb2 | 1.7 | 2.4 | 1.4 | 3 | 2 |
Pb3 | 1.7 | 2.4 | 1.4 | 2.9 | 2 |
Pb4 | 1.7 | 2.35 | 1.4 | 2.9 | 2 |
LMO1 | 3 | 4.1 | 2.7 | 4.12 | 3.7 |
LMO2 | 3 | 4.1 | 2.7 | 4.12 | 3.7 |
LMO3 | 3 | 4.1 | 2.7 | 4.12 | 3.7 |
LMO4 | 3 | 4.1 | 2.7 | 4.12 | 3.7 |
LFP | 2.8 | 3.45 | 2.5 | 3.65 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacqué, K.; Koltermann, L.; Figgener, J.; Zurmühlen, S.; Sauer, D.U. The Influence of Frequency Containment Reserve on the Operational Data and the State of Health of the Hybrid Stationary Large-Scale Storage System. Energies 2022, 15, 1342. https://doi.org/10.3390/en15041342
Jacqué K, Koltermann L, Figgener J, Zurmühlen S, Sauer DU. The Influence of Frequency Containment Reserve on the Operational Data and the State of Health of the Hybrid Stationary Large-Scale Storage System. Energies. 2022; 15(4):1342. https://doi.org/10.3390/en15041342
Chicago/Turabian StyleJacqué, Kevin, Lucas Koltermann, Jan Figgener, Sebastian Zurmühlen, and Dirk Uwe Sauer. 2022. "The Influence of Frequency Containment Reserve on the Operational Data and the State of Health of the Hybrid Stationary Large-Scale Storage System" Energies 15, no. 4: 1342. https://doi.org/10.3390/en15041342
APA StyleJacqué, K., Koltermann, L., Figgener, J., Zurmühlen, S., & Sauer, D. U. (2022). The Influence of Frequency Containment Reserve on the Operational Data and the State of Health of the Hybrid Stationary Large-Scale Storage System. Energies, 15(4), 1342. https://doi.org/10.3390/en15041342