Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions
Abstract
:1. Introduction
- (1)
- Performance analysis of the 50 MW CSP plant is performed in the nominal and part-load conditions;
- (2)
- Effect of power output on the operating performance of the power block is investigated considering the variation of power output caused by the variation of DNI;
- (3)
- Effect of variation of DNI on the operating performance of the solar field is considered in the design-point condition;
- (4)
- Effect of outlet temperature of the heat transfer fluid (HTF) on the operating parameters of the solar field is examined in the design-point condition;
- (5)
- The aperture area of the solar field is optimized using a solar multiple considering the minimum LCOE;
- (6)
- Effect of daily DNI on the operating performance of the solar field and CSP plant system is considered under four different reference days.
2. Methods and Methodology
2.1. Model of Solar Field Subsystem
2.1.1. Parabolic Trough Collector
2.1.2. Oil-Water/Steam Heat-Exchanger
2.1.3. Heat Transfer Fluid
2.2. Model of TES Subsystem
2.3. Model of Power Block Subsystem
2.3.1. Model of the Steam Turbine
2.3.2. Model of the Electric Generator
2.3.3. Model of Motor
2.3.4. Model of Pump
2.3.5. Model of Heat Exchangers
2.4. Performance Characteristics of the CSP Plant
2.5. Model Validation
3. Results and Discussions
3.1. Solar Resource Assessment of the Selected Location
3.2. Numerical Simulation of the 50 MW CSP Plant in the Design Point Conditions
3.3. Numerical Simulation of the 50 MW CSP Plant in the Part-Load Condition
3.4. Optimization for Aperture Area of the Solar Field
3.5. Effect of Variation of DNI on the Operating Performance of the Solar Field in the Design Point Conditions
3.6. Operating Performance of the 50 MW CSP Plant under Four Reference Days
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CSP | Concentrating solar power |
DC | Direct cost |
DII | Direct incident irradiation |
DNI | Direct normal irradiance |
EG | Electric generator |
ET-150 | Eurotrough-150 collector |
HT | Hot tank |
HTF | Heat transfer fluid |
HPH | High-pressure heater |
IAM | Incident angle modifier |
IEA | International Energy Agency |
IPSEpro | Integrated process simulation environment |
LCOE | Levelized cost of electricity |
LFC | Linear Fresnel collectors |
LPH | Low-pressure heater |
O&M | Operation and maintenance |
PB | Power block |
PD | Parabolic dish |
PTC | Parabolic trough collector |
PV | Photovoltaic |
SAM | System advisor model |
SF | Solar field |
SG | Steam generator |
SM | Solar multiple |
SPT | Solar power tower |
ST | Steam turbine |
RH | Reheater |
References
- IPCC. Climate Change 2014: Mitigation of Climate Change. Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- International Energy Agency. Technology Roadmap: Concentrating Solar Power; International Energy Agency: Paris, France, 2010; Volume 5. [Google Scholar]
- Răboacă, M.S.; Badea, G.; Enache, A.; Filote, C.; Răsoi, G.; Rata, M.; Lavric, A.; Felseghi, R.-A. Concentrating Solar Power Technologies. Energies 2019, 12, 1048. [Google Scholar] [CrossRef] [Green Version]
- Sciuto, G.L.; Capizzi, G.; Caramagna, A.; Famoso, F.; Lanzafame, R.; Wozniak, M. Failure classification in high concentration photovoltaic system (HCPV) by using probabilistic neural networks. Int. J. Appl. Eng. Res. 2017, 12, 16039–16046. [Google Scholar]
- Awan, A.B.; Khan, M.; Zubair, M.; Bellos, E. Commercial parabolic trough CSP plants: Research trends and technological advancements. Sol. Energy 2020, 211, 1422–1458. [Google Scholar] [CrossRef]
- Sciuto, G.L.; Cammarata, G.; Capizzi, G.; Coco, S.; Petrone, G. Design optimization of solar chimney power plant by finite elements based numerical model and cascade neural networks. In Proceedings of the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 22–24 June 2016; pp. 1016–1022. [Google Scholar] [CrossRef]
- Caicedo, P.; Wood, D.; Johansen, C. Radial Turbine Design for Solar Chimney Power Plants. Energies 2021, 14, 674. [Google Scholar] [CrossRef]
- Shagdar, E.; Shuai, Y.; Lougou, B.G.; Jagvanjav, T.-O.; Wang, F.; Tan, H. Comparative Performance Assessment of 300 MW Solar-Coal Hybrid Power Generation System Under Different Integration Mechanisms. Energy Technol. 2021, 9, 1–15. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Katsaprakakis, D.A. Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration. Energies 2021, 14, 6229. [Google Scholar] [CrossRef]
- Shagdar, E.; Lougou, B.G.; Shuai, Y.; Ganbold, E.; Chinonso, O.P.; Tan, H. Process analysis of solar steam reforming of methane for producing low-carbon hydrogen. RSC Adv. 2020, 10, 12582–12597. [Google Scholar] [CrossRef]
- Dessie, Y.G.; Lougou, B.G.; Hong, Q.; Heping, T.; Qi, H.; Baohai, G.; Arafat, I.M. Thermal Performance Analysis of a Solar Reactor Designed for Syngas Production. Energies 2020, 13, 3405. [Google Scholar] [CrossRef]
- Lougou, B.G.; Shuai, Y.; Chaffa, G.; Ahouannou, C.; Pan, R.; Zhang, H.; Tan, H. Analysis of Two-Step Solar Thermochemical Looping Reforming of Fe3O4 Redox Cycles for Synthesis Gas Production. Energy Technol. 2019, 7, 1800588. [Google Scholar] [CrossRef]
- Fuqiang, W.; Ziming, C.; Jianyu, T.; Yuan, Y.; Yong, S.; Linhua, L. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1314–1328. [Google Scholar] [CrossRef]
- Shagdar, E.; Shuai, Y.; Lougou, B.G.; Ganbold, E.; Chinonso, O.P.; Tan, H. Analysis of heat flow diagram of small-scale power generation system: Innovative approaches for improving techno-economic and ecological indices. Sci. China Technol. Sci. 2020, 63, 2256–2274. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Wang, L.; Zhang, Z.; Wei, J. Comprehensive Review of Line-Focus Concentrating Solar Thermal Technologies: Parabolic Trough Collector (PTC) vs Linear Fresnel Reflector (LFR). J. Therm. Sci. 2020, 29, 1097–1124. [Google Scholar] [CrossRef]
- Reddy, V.S.; Kaushik, S.; Tyagi, S. Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP). Energy 2012, 39, 258–273. [Google Scholar] [CrossRef]
- Desai, N.B.; Bandyopadhyay, S. Optimization of concentrating solar thermal power plant based on parabolic trough collector. J. Clean. Prod. 2015, 89, 262–271. [Google Scholar] [CrossRef]
- Yuanjing, W.; Cheng, Z.; Yanping, Z.; Xiaohong, H. Performance analysis of an improved 30 MW parabolic trough solar thermal power plant. Energy 2020, 213, 118862. [Google Scholar] [CrossRef]
- Sultan, A.J.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Pourkashanian, M. Techno-economic competitiveness of 50 MW concentrating solar power plants for electricity generation under Kuwait climatic conditions. Renew. Sustain. Energy Rev. 2020, 134, 110342. [Google Scholar] [CrossRef]
- Wang, A.; Han, X.; Liu, M.; Yan, J.; Liu, J. Thermodynamic and economic analyses of a parabolic trough concentrating solar power plant under off-design conditions. Appl. Therm. Eng. 2019, 156, 340–350. [Google Scholar] [CrossRef]
- Praveen, R.P.; Awan, A.B.; Zubair, M.; Baseer, M.A. Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region. Energies 2018, 11, 741. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.; Alghamdi, A.; Sansom, C.; Hart, P.; Encinas-Oropesa, A. A Through-Life Cost Analysis Model to Support Investment Decision-Making in Concentrated Solar Power Projects. Energies 2020, 13, 1553. [Google Scholar] [CrossRef] [Green Version]
- Boukelia, T.E.; Arslan, O.; Mecibah, M. Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach. Renew. Energy 2017, 105, 324–333. [Google Scholar] [CrossRef]
- Ikhlef, K.; Larbi, S. Techno-economic optimization for implantation of parabolic trough power plant: Case study of Algeria. J. Renew. Sustain. Energy 2020, 12, 063704. [Google Scholar] [CrossRef]
- Teleszewski, T.; Żukowski, M.; Krawczyk, D.; Rodero, A. Analysis of the Applicability of the Parabolic Trough Solar Thermal Power Plants in the Locations with a Temperate Climate. Energies 2021, 14, 3003. [Google Scholar] [CrossRef]
- Aqachmar, Z.; Allouhi, A.; Jamil, A.; Gagouch, B.; Kousksou, T. Parabolic trough solar thermal power plant Noor I in Morocco. Energy 2019, 178, 572–584. [Google Scholar] [CrossRef]
- Mohamed, M.H.; El-Sayed, A.Z.; Megalla, K.F.; Elattar, H.F. Modeling and performance study of a parabolic trough solar power plant using molten salt storage tank in Egypt: Effects of plant site location. Energy Syst. 2019, 10, 1043–1070. [Google Scholar] [CrossRef]
- Mokheimer, E.M.; Dabwan, Y.N.D.; Habib, M.A.; Said, S.A.; Al-Sulaiman, F.A. Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia. Energy Convers. Manag. 2014, 86, 622–633. [Google Scholar] [CrossRef]
- Wang, J.; Bi, X. Performance Simulation Comparison for Parabolic Trough Solar Collectors in China. Int. J. Photoenergy 2016, 2016, 9260943. [Google Scholar] [CrossRef]
- González-Portillo, L.F.; Muñoz-Antón, J.; Martínez-Val, J.M. An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants. Appl. Energy 2017, 185, 531–546. [Google Scholar] [CrossRef]
- Topel, M.; Laumert, B. Improving concentrating solar power plant performance by increasing steam turbine flexibility at start-up. Sol. Energy 2018, 165, 10–18. [Google Scholar] [CrossRef]
- Schenk, H.; Dersch, J.; Hirsch, T.; Polklas, T. Transient Simulation of the Power Block in a Parabolic Trough Power Plant. In Proceedings of the 11th International Modelica Conference, Versailles, France, 21–23 September 2015; Volume 118, pp. 605–614. [Google Scholar]
- Gonzalez, A.G.; Cabal, J.V.A.; Berrocal, M.A.V.; Menéndez, R.P.; Fernández, A.R. Simulation of a CSP Solar Steam Generator, Using Machine Learning. Energies 2021, 14, 3613. [Google Scholar] [CrossRef]
- Salazar, G.A.; Fraidenraich, N.; de Oliveira, C.A.A.; de Castro Vilela, O.; Hongn, M.; Gordon, J.M. Analytic modeling of parabolic trough solar thermal power plants. Energy 2017, 138, 1148–1156. [Google Scholar] [CrossRef]
- Ezeanya, E.K.; Massiha, G.H.; Simon, W.E.; Raush, J.R.; Chambers, T.L. System advisor model (SAM) simulation modelling of a concentrating solar thermal power plant with comparison to actual performance data. Cogent Eng. 2018, 5, 1–26. [Google Scholar] [CrossRef]
- Krishna, Y.; Faizal, M.; Saidur, R.; Manihalla, P.P.; Karinka, S. Performance analysis of Parabolic Trough Collector using TRNSYS®—A case study in Indian coastal region. J. Phys. Conf. Ser. 2021, 1921, 012063. [Google Scholar] [CrossRef]
- Montañés, R.M.; Windahl, J.; Pålsson, J.; Thern, M. Dynamic Modeling of a Parabolic Trough Solar Thermal Power Plant with Thermal Storage Using Modelica. Heat Transf. Eng. 2018, 39, 277–292. [Google Scholar] [CrossRef]
- SimTech Simulation Technology. Operation Manual of Concentrating Solar Power Library; Simtech: Graz, Austria, 2016. [Google Scholar]
- Zaversky, F.; Bergmann, S.; Sanz, W. Detailed Modeling of Parabolic Trough Collectors for the Part Load Simulation of Solar Thermal Power Plants. In Proceedings of the ASME Turbo Expo 2012, Kopenhagen, Denmark, 13–15 June 2012; pp. 1–13. [Google Scholar]
- Perz, E. A Computer Method for Thermal Power Cycle Calculation. In Proceedings of the Gas Turbine and Aeroengine Congress and Exposition, Brussels, Belgium, 11–14 June 1990. [Google Scholar] [CrossRef] [Green Version]
- Shuai, Y.; Shagdar, E.; Lougou, B.G.; Mustafa, A.; Doljinsuren, B.; Han, D.; Tan, H. Performance analysis of 200 MW solar coal hybrid power generation system for transitioning to a low carbon energy future. Appl. Therm. Eng. 2021, 183, 116140. [Google Scholar] [CrossRef]
- Odeh, S.; Morrison, G.; Behnia, M. Modelling of parabolic trough direct steam generation solar collectors. Sol. Energy 1998, 62, 395–406. [Google Scholar] [CrossRef]
- Geyer, M.; Lüpfert, E.; Osuna, R.; Esteban, A.; Schiel, W.; Schweitzer, A.; Zarza, E.; Nava, P.; Langenkamp, J.; Mandelberg, E. Eurotrough-Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation. In Proceedings of the 11th International Symposium on Concentrating Solar Power and Chemical Energy Technologies, Zurich, Switzerland, 4–6 September 2002; pp. 1–7. [Google Scholar]
- Krishna, Y.; Faizal, M.; Saidur, R.; Ng, K.C.; Aslfattahi, N. State-of-the-art heat transfer fluids for parabolic trough collector. Int. J. Heat Mass Transf. 2020, 152, 119541. [Google Scholar] [CrossRef]
- Li, C.; Yang, Z.; Zhai, R.; Yang, Y.; Patchigolla, K.; Oakey, J.E. Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage. Energy 2018, 163, 956–968. [Google Scholar] [CrossRef]
- Shagdar, E.; Lougou, B.G.; Shuai, Y.; Anees, J.; Damdinsuren, C.; Tan, H. Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions. Appl. Energy 2020, 264, 114744. [Google Scholar] [CrossRef]
- Montes, M.J.; Abánades, A.; Martínez-Val, J.M.; Valdés, M. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol. Energy 2009, 83, 2165–2176. [Google Scholar] [CrossRef] [Green Version]
- Munz, B.; Hays, J. Concentrating Solar Trough Modeling: Calculating Efficiency. Tech Briefs 2009, 135, 1–4. [Google Scholar]
- Kurup, P.; Turchi, C.S. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM); NREL/TP-6A20-65228; National Renewable Energy Laboratory: Golden, CO, USA, 2015. [Google Scholar]
- The World Bank. Direct Normal Irradiation Map of Mongolia. Available online: https://solargis.com/maps-and-gis-data/download/mongolia (accessed on 17 July 2021).
- Crawley, D.; Lawrie, L. Development of Global Typical Meteorological Years (TMYx) 2019. Available online: http://climate.onebuilding.org/WMO_Region_2_Asia/MNG_Mongolia/index.html (accessed on 17 June 2021).
- Aalborg CSP. Aalborg CSP Steam Generators; Technical Report; Aalborg CSP: Aalborg, Denmark, 2011; Available online: https://www.aalborgcsp.com/fileadmin/user_upload/beUid/1/1-Downloadable_materials/1-Brochures/2011_09_01__Brochure_SGS_technical.pdf.
- Llamas, J.M.; Bullejos, D.; de Adana, M.R. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants. Energies 2017, 10, 1123. [Google Scholar] [CrossRef] [Green Version]
- Shagdar, E.; Shuai, Y.; Lougou, B.G.; Mustafa, A.; Choidorj, D.; Tan, H. New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis. Energy 2021, 238, 122005. [Google Scholar] [CrossRef]
- Chen, H.; Xue, K.; Wu, Y.; Xu, G.; Jin, X.; Liu, W. Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system. Energy 2021, 214, 119023. [Google Scholar] [CrossRef]
Parameters | Units | Values |
---|---|---|
Name of collector | − | ET-150 |
Collector length | m | 150 |
Aperture width of parabolic trough | m | 5.77 |
Focal length | m | 1.71 |
The inner diameter of the absorber pipe | m | 0.059 |
The roughness of the inner wall of the absorber pipe | m | 0.0001 |
Distance between collector rows | m | 17.31 |
Optical efficiency | % | 75.0 |
Mirror reflectivity | % | 94.0 |
Parameters | Units | Values |
---|---|---|
Direct cost (DC) | ||
Solar field cost | $/m2 | 170 |
HTF cost | $/m2 | 70 |
Power block cost | $/kW | 800 |
Balance of plant cost | $/kW | 110 |
TES cost | $/kWth | 70 |
Contingency | % of DC | 10 |
Indirect cost (O and M cost) | ||
Engineering, construction, and project management | % of DC | 15 |
Engineer, procure, construct | % of DC | 3.5 |
Project, land, management | % of DC | 1.5 |
Debt interest rate | % | 6 |
A lifetime of power plant | year | 30 |
Parameters | Units | Montes’s Model | Our Model | Error, % |
---|---|---|---|---|
DNI | W/m2 | 850 | 850 | 0.00 |
Location (longitude and latitude) | ° | 2.21° W, 37.05° N | 2.21° W, 37.05° N | 0.00 |
Altitude | m | 366 | 366 | 0.00 |
Ambient temperature | °C | 25 | 25 | 0.00 |
Collector type | − | ET-150 | ET-150 | − |
Number of loops | − | 80 | 80 | 0.00 |
Solar multiple | − | 1.03 | 1.03 | 0.00 |
Solar thermal power | MW | 150.3 | 146.1 | 2.80 |
Power output | MW | 51.5 | 51.71 | 0.41 |
Main steam temperature | °C | 370 | 370 | 0.00 |
Main steam pressure | bar | 90 | 90 | 0.00 |
Reheated steam temperature | °C | 370 | 370 | 0.00 |
Exhausted steam pressure | bar | 0.08 | 0.08 | 0.00 |
Mass flow rate of main steam | t/h | 228.31 | 226.56 | 0.76 |
Thermal efficiency of the PB | % | 38.20 | 37.26 | 2.40 |
Heat input of a steam generator | MW | 121.10 | 121.51 | 0.33 |
Heat input of a reheater | MW | 21.56 | 21.12 | 2.00 |
Parameters | Units | Values |
---|---|---|
Power block characteristics | ||
Power output (gross) | kW | 50,000 |
Pressure of main steam | bar | 100 |
Temperature of main steam | °C | 370 |
Pressure of exhausted steam | bar | 0.08 |
Temperature of reheated steam | °C | 370 |
Pressure of reheated steam | bar | 16.5 |
Mass flow rate of main steam | t/h | 211.1 |
Mass flow rate of reheated steam | t/h | 169.5 |
Mass flow rate of exhausted steam | t/h | 169.5 |
Temperature of feedwater | °C | 235 |
Transferred heat into cooling fluid | kW | 140,160 |
Thermal efficiency of PB | % | 35.72 |
Specific steam consumption of PB | kg/kWh | 4.22 |
Specific heat consumption of PB | kJ/kWh | 10,080 |
Solar field characteristics | ||
Type of PTC | − | Eurotrough-150 |
Design point value of DNI | kW/m2 | 0.80 |
Number of loops | − | 80 |
Aperture area of the SF | m2 | 261,600 |
DNI on aperture area | kW | 209,280 |
Heat gain of collector from DII | kW | 151,744 |
Optical and thermal heat loss of SF | kW | 68,230 |
Transferred heat into HTF | kW | 141,050 |
Temperature of HTF at the outlet to the SF | °C | 395 |
Temperature of HTF at the inlet to the SF | °C | 280 |
Mass flow rate of HTF | t/h | 1866 |
Thermal efficiency of the SF | % | 67.4 |
Overall solar-to-electric efficiency of CSP plant | % | 22.03 |
Solar Multiple | Number of Loops | Aperture Area of SF, m2 | Solar Thermal Power Received from SF, MW | Thermal Power Required in PB, MW |
---|---|---|---|---|
0.750 | 60 | 196,200 | 105.78 | 140.16 |
0.875 | 70 | 228,900 | 123.42 | 140.16 |
1.000 | 80 | 261,600 | 141.05 | 140.16 |
1.125 | 90 | 294,300 | 158.68 | 140.16 |
1.250 | 100 | 327,000 | 176.31 | 140.16 |
1.500 | 120 | 392,400 | 211.57 | 140.16 |
1.750 | 140 | 457,800 | 246.84 | 140.16 |
2.000 | 160 | 523,200 | 282.10 | 140.16 |
2.250 | 180 | 588,600 | 317.36 | 140.16 |
2.500 | 200 | 654,000 | 352.62 | 140.16 |
Parameters | Units | Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DNI | kW/m2 | 1.00 | 0.90 | 0.80 | 0.70 | 0.60 | 0.50 | 0.40 | 0.30 | 0.20 |
DII | kW/m2 | 0.725 | 0.653 | 0.580 | 0.508 | 0.435 | 0.363 | 0.290 | 0.218 | 0.145 |
Aperture area of SF | m2 | 523,200 | 523,200 | 523,200 | 523,200 | 523,200 | 523,200 | 523,200 | 523,200 | 523,200 |
Thermal efficiency of SF | % | 68.4 | 68.0 | 67.4 | 66.7 | 65.7 | 64.3 | 62.3 | 58.9 | 52.0 |
DNI on aperture area of SF | kW | 523,200 | 470,880 | 418,560 | 366,240 | 313,920 | 261,600 | 209,280 | 156,960 | 104,640 |
Heat gain of collector from DII | kW | 379,358 | 341,422 | 303,486 | 265,550 | 227,615 | 189,679 | 151,743 | 113,807 | 75,872 |
Heat loss of collector | kW | 165,218 | 150,835 | 136,452 | 122,070 | 107,690 | 93,311 | 78,937 | 64,570 | 50,230 |
Heat absorbed in the SF by the HTF | kW | 357,982 | 320,045 | 282,108 | 244,170 | 206,230 | 168,289 | 130,343 | 92,390 | 54,410 |
Mass flow rate of HTF | t/h | 1315.1 | 1175 | 1036 | 896.3 | 756.8 | 617.5 | 478.1 | 338.8 | 199.4 |
Outlet temperature of HTF | °C | 393 | 393 | 393 | 393 | 393 | 393 | 393 | 393 | 393 |
Inlet temperature of HTF | °C | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shagdar, E.; Lougou, B.G.; Sereeter, B.; Shuai, Y.; Mustafa, A.; Ganbold, E.; Han, D. Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions. Energies 2022, 15, 1367. https://doi.org/10.3390/en15041367
Shagdar E, Lougou BG, Sereeter B, Shuai Y, Mustafa A, Ganbold E, Han D. Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions. Energies. 2022; 15(4):1367. https://doi.org/10.3390/en15041367
Chicago/Turabian StyleShagdar, Enkhbayar, Bachirou Guene Lougou, Batmunkh Sereeter, Yong Shuai, Azeem Mustafa, Enkhjin Ganbold, and Dongmei Han. 2022. "Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions" Energies 15, no. 4: 1367. https://doi.org/10.3390/en15041367
APA StyleShagdar, E., Lougou, B. G., Sereeter, B., Shuai, Y., Mustafa, A., Ganbold, E., & Han, D. (2022). Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions. Energies, 15(4), 1367. https://doi.org/10.3390/en15041367