Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Application)
Abstract
:1. Introduction
2. State of Research
2.1. Simulation of Representative Grid Structures and Scaling of Their Results
2.1.1. Selection of Representative Grids to Be Simulated
2.1.2. Number of Representative Grids to Be Simulated
2.2. Large-Scale Grid Simulation of Numerous Real-Life Grid Models
2.3. Applied Approaches to Modeling Grid Customers’ Load
2.4. Remaining Gap in the Current State of Research
3. Open Research Questions and Structure of This Work
- (1)
- What is the potential error when simulating only a few individually selected LV grids and scaling their results to quantify grid reinforcement costs in a large area?
- (2)
- How many grids (in %) must be simulated to reach a certain degree of accuracy?
- (3)
- How to apply grid customers’ coincidence factors to quantify grid reinforcement measures accurately (consistent or grid-specific; single or multiple; based on which grid element)?
- (4)
- What is the trade-off between the acquired simulation accuracy and required computing time?
- (5)
- How to quantify future grid reinforcement costs allowing both high accuracy and adequate computing time in the most optimal way?
4. Materials and Methods
4.1. Automated Large-Scale Grid Simulation Tool: Quantification of Grid Extension Needs
4.1.1. Import and Processing of Original Grid Data
- Power lines and transformers: Maximum current, internal impedance (R’, L’, C’), and connected nodes
- Grid nodes: Type of node (Slack, PQ, or PV), nominal voltage as well as type (e.g., household, PVMs, EVs, and HPs), number, and installed power of connected grid customers
4.1.2. Spatial Allocation of Future Grid Customers
4.1.3. Determination of Grid Loads
4.1.4. Load Flow Simulation
4.1.5. Determination and Aggregation of Grid Reinforcement Needs
- Thermal overload of the transformer(s) at the MV/LV substation: The developed tool initially examines whether the parallel installation of an additional transformer with the same nominal power as the existing one(s) is sufficient to prevent thermal overload. If not or the maximum number of parallel transformers is already reached (Table 3), existing transformers at the MV/LV substation are exchanged with new ones, providing sufficient nominal power.
- Thermal overload of individual lines: If individual grid lines are overloaded, additional lines are installed parallel until the maximum power can be transmitted or the maximum number of parallel lines (Table 3) is reached. Therefore, the cable type NAYY 4 × 150 mm2 (cf. [7,20]) with a maximum current of 245 A is installed by default.
- Voltage violations: If one or more nodes show inadmissible voltages, the affected feeder is divided into two feeders at 2/3 of the total length from the MV/LV substation (cf. [20]).
4.2. Grid Data Applied in This Study
4.3. Scenario Applied in This Study
4.4. Varying the Applied Method to Quantify Grid Reinforcement Measures
4.5. Varying the Approach to Applying Coincidence Factors
- The coincidence factor’s variation in the analyzed grids (consistent or grid-specific)
- The number of various coincidence factors applied per grid (single or multiple)
- The grid element on the basis of which the coincidence factors are determined (the MV/LV substation or each feeder’s main line)
5. Results
5.1. Comparing Different Quantification Methods
5.2. Comparing Different Approaches to Applying Coincidence Factors
5.2.1. Required Grid Reinforcement Measures
5.2.2. Required Grid Reinforcement Costs
5.2.3. Computing Time
6. Discussion and Outlook
6.1. What Is the Potential Error When Simulating Only a Few Individually Selected LV Grids and Scaling Their Results to Quantify Grid Reinforcement Costs in a Large Area?
6.2. How Many Grids (in %) Must Be Simulated to Assure a Certain Degree of Accuracy?
6.3. Impact of the Analyzed Grid’s Variance
6.4. What Is the Trade-Off between the Acquired Simulation Accuracy and Required Computing Time?
6.5. How to Quantify Future Grid Reinforcement Costs Allowing Both High Accuracy and Adequate Computing Time in the Most Optimal Way?
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Austrian Federal Government. Government Program 2020–2024: Out of a Sense of Responsibility for Austria. Available online: https://www.bmoeds.gv.at/Ministerium/Regierungsprogramm.html (accessed on 31 January 2020).
- European Parliament; Council. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; EUR-Lex: Luxembourg, 2010. [Google Scholar]
- Mulenga, E.; Bollen, M.H.; Etherden, N. A review of hosting capacity quantification methods for photovoltaics in low-voltage distribution grids. Int. J. Electr. Power Energy Syst. 2020, 115, 105445. [Google Scholar] [CrossRef]
- Büchner, J.; Katzfey, J.; Flörcken, O.; Moser, A.; Schuster, H.; Dierkes, S.; van Leeuwen, T.; Verheggen, L.; Uslar, M.; van Amelsvoort, M. Moderne Verteilnetze fuer Deutschland. Verteilernetzstudie. 2014. Available online: www.bmwi.de/Redaktion/DE/Publikationen/Studien/verteilernetzstudie.html (accessed on 18 August 2021).
- Gupta, R.; Pena-Bello, A.; Streicher, K.N.; Roduner, C.; Farhat, Y.; Thöni, D.; Patel, M.K.; Parra, D. Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating. Appl. Energy 2021, 287, 116504. [Google Scholar] [CrossRef]
- Agora Verkehrswende; Agora Energiewende. Regulatory Assistance Project (RAP). Verteilnetzausbau für die Energiewende–Elektromobilität im Fokus. 2019. Available online: https://www.agora-verkehrswende.de/veroeffentlichungen/studie-verteilnetzausbau-fuer-die-energiewende (accessed on 12 February 2021).
- Thormann, B.; Kienberger, T. Evaluation of Grid Capacities for Integrating Future E-Mobility and Heat Pumps into Low-Voltage Grids. Energies 2020, 13, 5083. [Google Scholar] [CrossRef]
- Salah, F.; Ilg, J.P.; Flath, C.M.; Basse, H.; van Dinther, C. Impact of electric vehicles on distribution substations: A Swiss case study. Appl. Energy 2015, 137, 88–96. [Google Scholar] [CrossRef]
- Association of Austrian Electricity Companies. Netzberechnungen Österreich-Einfluss der Entwicklungen von Elektromobilität und Photovoltaik auf das Österreichische Stromnetz. Available online: www.oesterreichsenergie.at/die-welt-des-stroms/stromnetze/studie-netzberechnungen-oesterreich.html (accessed on 5 January 2021).
- Horowitz Kelsey, A.W.; Ding, F.; Mather, B.; Palmintier, B. The Cost of Distribution System Upgrades to Accommodate Increasing Penetrations of Distributed Photovoltaic Systems on Real Feeders in the United States. Available online: www.nrel.gov/docs/fy18osti/70710.pdf (accessed on 3 November 2021).
- Li, G.; Zhang, X.-P. Modeling of Plug-in Hybrid Electric Vehicle Charging Demand in Probabilistic Power Flow Calculations. IEEE Trans. Smart Grid 2012, 3, 492–499. [Google Scholar] [CrossRef]
- Grainger, J.J.; Stevenson, W.D. Power System Analysis; McGraw-Hill: New York, NY, USA, 1994; ISBN 0-07-113338-0. [Google Scholar]
- Werth, T. Netzberechnung mit Erzeugungsprofilen; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2016; ISBN 978-3-658-12727-5. [Google Scholar]
- Eberl, T.; Hufendiek, K.; Wiest, P.; Rudion, K. Integrale Modellierung von Verteilnetzen und Verteilter Erzeugung. 2014. Available online: www.ieh.uni-stuttgart.de/forschung/forschungsprojekte/integrale-modellierung-von-verteilnetzen-und-verteilter-erzeugung (accessed on 1 April 2021).
- Navarro-Espinosa, A.; Mancarella, P. Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks. Appl. Energy 2014, 127, 249–266. [Google Scholar] [CrossRef]
- Torres, S.; Durán, I.; Marulanda, A.; Pavas, A.; Quirós-Tortós, J. Electric vehicles and power quality in low voltage networks: Real data analysis and modeling. Appl. Energy 2022, 305, 117718. [Google Scholar] [CrossRef]
- Tie, C.H.; Gan, C.K.; Ibrahim, K.A. The impact of electric vehicle charging on a residential low voltage distribution network in Malaysia. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) Conference, Kuala Lumpur, Malaysia, 20–23 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 272–277. [Google Scholar]
- Vu, T. A Stochastic Methodology to Determine Reinforcement Cost of Power Distribution Grid for Integrating Increasing Share of Renewable Energies and Electric Vehicles; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Agricola, A.; Höflich, B.; Richard, P.; Völker, J.; Rehtanz, C.; Greve, M.; Gwisdorf, B.; Kays, J.; Noll, T.; Schwippe, J.; et al. Dena-Verteilnetzstudie. Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030. Energiesysteme und Energiedienstleistungen: Berlin, Germany. 2012. Available online: https://www.dena.de/themen-projekte/projekte/energiesysteme/dena-verteilnetzstudie/ (accessed on 1 April 2021).
- Matrose, C.; Helmschrott, T.; Godde, M.; Szczechowicz, E.; Schnettler, A. Impact of different electric vehicle charging strategies onto required distribution grid reinforcement. In Proceedings of the 2012 IEEE Transportation Electrification Conference and Expo. (ITEC), Dearborn, MI, USA, 18–20 June 2012; Staff, I., Ed.; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- Pudjianto, D.; Djapic, P.; Dragovic, J.; Strbac, G. Grid Integration Cost of Photovoltaic Power Generation. Available online: https://helapco.gr/pdf/PV_PARITY_D44_Grid_integration_cost_of_ (accessed on 14 January 2022).
- Hartvigsson, E.; Odenberger, M.; Chen, P.; Nyholm, E. Estimating national and local low-voltage grid capacity for residential solar photovoltaic in Sweden, UK and Germany. Renew. Energy 2021, 171, 915–926. [Google Scholar] [CrossRef]
- Durusut, E.; Slater, S.; Strbac, G.; Pudjianto, D.; Djapic, P.; Aunedi, M. Infrastructure in a Low-Carbon Energy System to 2030. Transmission and Distribution: Final Report; Imperial College London: London, UK, 2014. [Google Scholar]
- Flinn, J.; Webber, C.; Tong, N.; Cox, R. Customer Distributed Energy Resources Grid Integration Study: Residential Zero Net Energy Building Integration Cost Analysis; California Public Utilities Commission: San Francisco, CA, USA, 2017. [Google Scholar]
- Lemmens, J.; Macharis, B.; Gys, R.; Vonken, D. Data-Driven Asset Management with the NGIN Analytics Platform: Assessing EV and PV Impact on the Flemish LV Grid; CIRED: Liège, Belgium, 2019. [Google Scholar]
- Rothrock, L.; Narayanan, S. Human-in-the-Loop Simulations; Springer London: London, UK, 2011; ISBN 978-0-85729-882-9. [Google Scholar]
- Willis, H.L. Power Distribution Planning Reference Book, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0824748751. [Google Scholar]
- Resch, M.; Bühler, J.; Klausen, M.; Sumper, A. Impact of operation strategies of large scale battery systems on distribution grid planning in Germany. Renew. Sustain. Energy Rev. 2017, 74, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Bielecki, S. Estimation of maximum loads of residential electricity users. E3S Web Conf. 2019, 137, 1006. [Google Scholar] [CrossRef]
- Wahl, M.; Hein, L.; Moser, A. Fast Power Flow Calculation Method for Grid Expansion Planning. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ‘19 ECCE Europe), Genova, Italy, 3–5 September 2019; pp. 1–7. [Google Scholar]
- Scheidler, A.; Braun, M.; Kraiczy, M. Automated Grid Planning for Distribution Grids with Increasing PV Penetration. In Proceedings of the 6th Solar Integration Workshop, Vienna, Austria, 14–15 November 2016. [Google Scholar]
- Ulffers, J.; Scheidler, A.; Töbermann, J.-C.; Braun, M. Grid Integration Studies for eMobility Scenarios with Comparison of Probabilistic Charging Models to Simultaneity Factors. In Proceedings of the 2nd E-Mobility Power System Integration Symposium, Delft, The Netherlands, 10 October 2018. [Google Scholar]
- NEPLAN AG. NEPLAN.; Küsnacht, Switzerland. Available online: https://www.neplan.ch/?lang=de (accessed on 5 February 2022).
- DIgSILENT GmbH. PowerFactory. Gomaringen, Germany. Available online: https://www.digsilent.de/de/powerfactory.html (accessed on 3 February 2022).
- Fox, B.; Morrow, J.D.; Akmal, M.; Littler, T. Impact of heat pump load on distribution networks. IET Gener. Transm. Distrib. 2014, 8, 2065–2073. [Google Scholar] [CrossRef] [Green Version]
- Protopapadaki, C.; Saelens, D. Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties. Appl. Energy 2017, 192, 268–281. [Google Scholar] [CrossRef]
- Widén, J.; Wäckelgård, E.; Paatero, J.; Lund, P. Impacts of distributed photovoltaics on network voltages: Stochastic simulations of three Swedish low-voltage distribution grids. Electr. Power Syst. Res. 2010, 80, 1562–1571. [Google Scholar] [CrossRef] [Green Version]
- Pflugradt, N. Online Load Profile Generator. Available online: https://www.loadprofilegenerator.de (accessed on 8 December 2021).
- Heffernan, W.; Watson, N.R.; Buehler, R.; Watson, J.D. Harmonic performance of heat-pumps. J. Eng. 2013, 2013, 31–44. [Google Scholar] [CrossRef]
- Kusch, W.; Stadler, I.; Bhandari, R. Heat pumps in low voltage distribution grids by energy storage. In Proceedings of the 2015 International Energy and Sustainability Conference (IESC), Farmingdale, NY, USA, 12–13 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- UNE. Voltage Characteristics of Electricity Supplied by Public Electricity Networks; EN 50160; Beuth: Berlin, Germany, 2011. [Google Scholar]
- Laribi, O.; Rudion, K. Optimized Planning of Distribution Grids Considering Grid Expansion, Battery Systems and Dynamic Curtailment. Energies 2021, 14, 5242. [Google Scholar] [CrossRef]
- Scheffler, J. Verteilnetze auf dem Weg zum Flächenkraftwerk; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Cloteaux, B. Limits in Modeling Power Grid Topology. In Proceedings of the 2013 IEEE 2nd Network Science Workshop (NSW), West Point, NY, USA, 29 April–1May 2013. [Google Scholar] [CrossRef]
- Levi, V.; Strbac, G.; Allan, R. Assessment of performance-driven investment strategies of distribution systems using reference networks. IEE Proc. Gener. Transm. Distrib. 2005, 152, 1. [Google Scholar] [CrossRef]
- Traupmann, A.; Kienberger, T. Test Grids for the Integration of RES—A Contribution for the European Context. Energies 2020, 13, 5431. [Google Scholar] [CrossRef]
- Postigo Marcos, F.; Mateo Domingo, C.; Gómez San Román, T.; Palmintier, B.; Hodge, B.-M.; Krishnan, V.; de Cuadra García, F.; Mather, B. A Review of Power Distribution Test Feeders in the United States and the Need for Synthetic Representative Networks. Energies 2017, 10, 1896. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, J. Bestimmung der Maximal Zulässigen Netzanschlussleistung Photovoltaischen Energiewandlungsanlagen in Wohnsiedlungsgebieten. Ph.D. Thesis, Technischen Universität Chemnitz, Düsseldorf, Germany, 2004. [Google Scholar]
- Pagani, G.A.; Aiello, M. Towards Decentralization: A Topological Investigation of the Medium and Low Voltage Grids. IEEE Trans. Smart Grid 2011, 2, 538–547. [Google Scholar] [CrossRef]
- Strunz, K.; Fletcher, R.H.; Campbell, R.; Gao, F. Developing benchmark models for low-voltage distribution feeders. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–3. [Google Scholar] [CrossRef]
- Umweltbundesamt GmbH. Elektromobilität in Österreich: Szenario 2020 und 2050. REP-0257. 2010. Available online: https://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0257.pdf (accessed on 18 July 2021).
- Fechner, H. Ermittlung des Flächenpotentials für den Photovoltaik-Ausbau in Österreich: Welche Flächenkategorien sind für die Erschließung von Besonderer Bedeutung, um das Ökostromziel Realisieren zu Können, Vienna. 2020. Available online: https://oesterreichsenergie.at/downloads/publikationsdatenbank/detailseite/photovoltaik-ausbau-in-oesterreich (accessed on 25 December 2021).
- Fraunhofer IWES/IBP. Wärmewende 2030: Schlüsseltechnologien zur Erreichung der Mittel- und Langfristigen Klimaschutzziele im Gebäudesektor. Available online: https://www.agora-energiewende.de/fileadmin/Projekte/2016/Sektoruebergreifende_EW/Waermewende-2030_WEB.pdf (accessed on 30 July 2021).
- European Commision. Degree of Urbanisation (DEGURBA)-Local Administrative Units. Available online: https://ec.europa.eu/eurostat/ramon/miscellaneous/index.cfm?TargetUrl=DSP_DEGURBA (accessed on 26 June 2020).
- Kadam, S. Defintion and Validation of Reference Feeders for Low-Voltage Networks. Ph.D. Thesis, Technical University Wien, Vienna, Austria. Available online: https://repositum.tuwien.at/handle/20.500.12708/7709 (accessed on 18 August 2021).
- Shao, S.; Pipattanasomporn, M.; Rahman, S. Demand Response as a Load Shaping Tool in an Intelligent Grid with Electric Vehicles. IEEE Trans. Smart Grid 2011, 2, 624–631. [Google Scholar] [CrossRef]
- Faddel, S.; Mohammed, O.A. Automated Distributed Electric Vehicle Controller for Residential Demand Side Management. IEEE Trans. Ind. Appl. 2019, 55, 16–25. [Google Scholar] [CrossRef]
- Brinkel, N.; Schram, W.L.; AlSkaif, T.A.; Lampropoulos, I.; van Sark, W. Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits. Appl. Energy 2020, 276, 115285. [Google Scholar] [CrossRef]
- Richardson, P.; Flynn, D.; Keane, A. Local Versus Centralized Charging Strategies for Electric Vehicles in Low Voltage Distribution Systems. IEEE Trans. Smart Grid 2012, 3, 1020–1028. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Trans. Power Syst. 2010, 25, 371–380. [Google Scholar] [CrossRef] [Green Version]
- García-Villalobos, J.; Zamora, I.; Knezović, K.; Marinelli, M. Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks. Appl. Energy 2016, 180, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Geth, F.; Leemput, N.; van Roy, J.; Buscher, J.; Ponnette, R.; Driesen, J. Voltage droop charging of electric vehicles in a residential distribution feeder. In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe 2012), International Conference and Exhibition, Berlin, Germany, 14–17 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Ireshika, M.A.S.T.; Lliuyacc-Blas, R.; Kepplinger, P. Voltage-Based Droop Control of Electric Vehicles in Distribution Grids under Different Charging Power Levels. Energies 2021, 14, 3905. [Google Scholar] [CrossRef]
- Al-Awami, A.T.; Sortomme, E.; Asim Akhtar, G.M.; Faddel, S. A Voltage-Based Controller for an Electric-Vehicle Charger. IEEE Trans. Veh. Technol. 2016, 65, 4185–4196. [Google Scholar] [CrossRef]
- Zecchino, A.; Marinelli, M. Analytical assessment of voltage support via reactive power from new electric vehicles supply equipment in radial distribution grids with voltage-dependent loads. Int. J. Electr. Power Energy Syst. 2018, 97, 17–27. [Google Scholar] [CrossRef]
- Knezović, K.; Marinelli, M. Phase-wise enhanced voltage support from electric vehicles in a Danish low-voltage distribution grid. Electr. Power Syst. Res. 2016, 140, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Thormann, B.; Braunstein, R.; Wisiak, J.; Strempfl, F.; Kienberger, T. Evaluation of grid relieving measures for integrating electric vehicles in a suburban low-voltage grid. In CIRED Conference Proceedings 2019; CIRED: Liège, Belgium, 2019. [Google Scholar]
- UK Power Networks. Network Impacts of Supply-Following Demand Response: Report A6. Available online: https://innovation.ukpowernetworks.co.uk (accessed on 8 February 2022).
- Aigner, M.; Schmautzer, E.; Friedl, B.; Bliem, M.; Haber, A. Synergetic effects for DSOs and customers caused by the integration of renewables into the distribution network-Influences on business and national economics. In CIRED Conference Proceedings 2015; CIRED: Liège, Belgium, 2015. [Google Scholar]
- Turton, H.; Moura, F. Vehicle-to-grid systems for sustainable development: An integrated energy analysis. Technol. Forecast. Soc. Chang. 2008, 75, 1091–1108. [Google Scholar] [CrossRef]
Method to Quantify Total Grid Reinforcement Costs | Studies |
---|---|
Simulation of representative grid structures and scaling of their results: | [5,7,10,19,20,21,22,23,24,25] |
- synthetic grids modeled based on real-life grid data | [5,19,22,23,24] |
- real-life grids selected from the area of investigation | [7,10,20,21,25] |
- classification of grids into representative classes | [5,7,19,20] |
Large-scale grid simulation of numerous real-life grid models | [6,10,26] |
Applied Approach to Modeling Grid Customers’ Load | Studies |
---|---|
No specification | [24] |
Time series-based simulation | [22] |
Monte-Carlo simulation | [5,19,21] |
Deterministic grid simulations using coincidence factors: | [6,7,10,20,23,25,26] |
- single, consistent coincidence factor | [20,25] |
- single, grid-specific coincidence factor | [6,23,26] |
- double, grid-specific coincidence factors | [7,10] |
Parameter | Applied Values |
---|---|
Max. number of parallel transformers (-) | 2 |
Max. number of parallel lines (-) | 4 |
Nominal power of additional transformers (MVA) | 0.1, 0.25, 0.4, 0.63, 0.8, 1.0, 1.25 |
Material and installation costs of additional transformers (k€) | 7.0, 17.3, 27.7, 29.6, 35.6, 38.0, 41.4 |
Specific construction costs of additional grid lines (€/km) | 65,000 |
Specific material costs of additional grid lines (€/km) | 10,000 |
Quantification Method | Selection of Representative Grids to Be Simulated | No. of Simulated Grids | |
---|---|---|---|
1 | Scaling of grid regions | Based on the grid planner’s expertise (one per region) | 3 |
2 | Scaling of arbitrarily selected grids | Randomly for 1000 iterations | Varied between 1–7114 |
3 | Scaling of statistically selected grids | Based on statistical data | Varied between 1–7114 |
4 | Simulation of all grids | - | 7114 |
CF-Variation in the Analyzed Grids | No. of Various CFs Applied per Grid | Grid Element as Basis of CF-Determination | Simulated Feeder Levels | |
---|---|---|---|---|
1 | Consistent | Single | MV/LV substation | Feeder level 1 |
2 | Grid-specific | Single | MV/LV substation | Feeder level 1 |
3 | Grid-specific | Double | MV/LV substation and each feeder’s main line | Feeder level 1 and 2 |
4 | Grid-specific | Multiple | Each grid element | All feeder levels |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thormann, B.; Kienberger, T. Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Application). Energies 2022, 15, 1383. https://doi.org/10.3390/en15041383
Thormann B, Kienberger T. Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Application). Energies. 2022; 15(4):1383. https://doi.org/10.3390/en15041383
Chicago/Turabian StyleThormann, Bernd, and Thomas Kienberger. 2022. "Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Application)" Energies 15, no. 4: 1383. https://doi.org/10.3390/en15041383
APA StyleThormann, B., & Kienberger, T. (2022). Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Application). Energies, 15(4), 1383. https://doi.org/10.3390/en15041383