Use of CO2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses
Abstract
:1. Introduction
- To develop biomass-to-liquids (BtL) routes for the production of biodiesel and dimethyl ether (DME) from black liquor gasification;
- To study hybrid biochemical and thermochemical conversion routes.
2. Materials and Methods
2.1. Feedstocks
2.2. Gasifying Agents and Bed Material
2.3. Gasifying Agents and Bed Material
2.3.1. Producer Gas Composition
2.3.2. Water, Solids and Tar Analysis
2.3.3. Composition of Solid Particles in Producer Gas
3. Experimental Installation
3.1. Method and Operating Conditions of the Pressurized CFB Reactor
- Maximum temperature of the bed: 850 °C.
- Gasification pressure: 1 and 5 barg.
- Reactor input capacity: 130–140 kWt (1 barg), 360–400 kWt (5 barg).
- In bed gas velocity above 0.75 m/s, which corresponds to a fluidization velocity above 6 m/s in the riser.
- The ratio of water input (steam + moisture from fuel) related to carbon in the fuel (H2O/C) close to 1.
3.2. FB Gasification Efficiency Indices
4. Results and Discussion
4.1. PDU-Scale Gasification
- Small and large amounts of agglomerates observed in bed material recovered after the bark and lignin gasification runs, respectively;
- Fragmentation of fuel particles and a large amount of produced fines from gasification of bark and lignin leading to conversion losses;
- Increase in the intensity of agglomeration of the bed resulting from increasing streams of feedstocks leading to unstable gasification runs at higher pressures;
- Quick and uncontrollable defluidization and sintering of the bed upon changes of system pressure;
- Separation of size fractions of bed material inducing lower homogeneity of the temperature profile registered in-bed while finally leading to defluidization in the bubbling section.
4.1.1. Softwood Pellets
4.1.2. Bark
4.1.3. Lignin
4.1.4. 85/15. Blend of Bark and Wheat Straw
4.2. Application of the Producer Gas from CO2 Gasification in Synthesis
5. Conclusions
- Lower total yields of producer gas;
- Increased yields of light hydrocarbons (methane–pentane);
- Higher yields of light GC-detectable tars, gravimetric tars, and particulate matter;
- A shift in the composition of tars from light aliphatic compounds towards heavier, aromatic compounds;
- A slight decrease in CGE while maintaining the HGE at similar levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
List of Abbreviation and Subscripts:
Symbols: | |
λ | air-fuel equivalence ratio (AFER) |
conversion [kg∙h−1/(kg∙h−1)] | |
mass stream [kg∙h−1] | |
mole stream [mol∙h−1] | |
Cp | specific heat capacity [kJ/kg T] |
dP | differential pressure, here ref. to the fluidized bed [Pa] |
R | ash agglomeration index [-] |
Q | heat [kJ∙mol−1] |
U | fluidization velocity [m∙s−1] |
X | mass fraction [-] |
Indices: | |
ar | as received |
d | dry state |
daf | dry-ash-free fuel |
db | dry basis |
g | gauge |
in | inlet |
ga | gasifying agent |
mf | minimum fluidization |
r. out | reactor outlet |
pg | producer gas |
Abbreviations: | |
APR | aqueous phase reforming |
bio-SNG | bio-synthetic natural gas |
BtL | biomass-to-liquids |
BtX | biomass-to-X (X stands for all commodities such as power, heat, liquid and gaseous fuels, chemicals) |
BFB | bubbling fluidized bed |
CCE | carbon conversion efficiency [%] |
CFB | circulating fluidized bed |
CGE | cold gas efficiency [%] |
Characteristic ash sintering temperatures [°C]: | |
IDT | initial deformation temperature |
ST | softening temperature |
HT | hemispherical temperature |
FT | flow temperature |
DME | dimethyl ether |
DFB | dual-fluidized bed |
FB | fluidized bed |
FT | Fischer–Tropsch |
GC | gas chromatography |
GHG | greenhouse gas |
H2O/C | Water/Carbon ratio |
HGE | hot gas efficiency |
HHV | higher heating value [J∙g−1] or [MJ∙(Nm3)−1] |
PDU | process development unit |
SCADA | supervisory control and data acquisition |
SWP | softwood pellet |
U/Umf | fluidization number, the ratio of actual fluidization velocity to min. fluidization velocity [m∙s−1/(m∙s−1)] |
References
- Thunman, H.; Seemann, M. The GoBiGas Plant. In Substitute Natural Gas from Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 455–474. ISBN 978-0-12-815554-7. [Google Scholar]
- Biollaz, S.; Schildhauer, T.; Held, J.; Seiser, R. Production of Biomethane/Synthetic Natural Gas (SNG) from Dry Biomass–A Technology Review 2016. In Proceedings of the EUBCE 2016, Amseterdam, The Netherlands, 6–9 June 2016. [Google Scholar]
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Wolf Maciel, M.R. Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Fermoso, J.; Stevanov, C.; Moghtaderi, B.; Arias, B.; Pevida, C.; Plaza, M.G.; Rubiera, F.; Pis, J.J. High-Pressure Gasification Reactivity of Biomass Chars Produced at Different Temperatures. J. Anal. Appl. Pyrolysis 2009, 85, 287–293. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, J.; Wang, G.; Zuo, H.; Zhang, P.; Shao, J. Gasification Behaviors and Kinetic Study on Biomass Chars in CO2 Condition. Chem. Eng. Res. Des. 2016, 107, 34–42. [Google Scholar] [CrossRef]
- Valin, S.; Ravel, S.; Guillaudeau, J.; Thiery, S. Comprehensive Study of the Influence of Total Pressure on Products Yields in Fluidized Bed Gasification of Wood Sawdust. Fuel Process. Technol. 2010, 91, 1222–1228. [Google Scholar] [CrossRef]
- Soreanu, G.; Tomaszewicz, M.; Fernandez-Lopez, M.; Valverde, J.L.; Zuwała, J.; Sanchez-Silva, L. CO2 gasification Process Performance for Energetic Valorization of Microalgae. Energy 2017, 119, 37–43. [Google Scholar] [CrossRef]
- Xiang, Y.; Cai, L.; Guan, Y.; Liu, W.; He, T.; Li, J. Study on the Biomass-Based Integrated Gasification Combined Cycle with Negative CO2 Emissions under Different Temperatures and Pressures. Energy 2019, 179, 571–580. [Google Scholar] [CrossRef]
- Tuomi, S.; Kaisalo, N.; Simell, P.; Kurkela, E. Effect of Pressure on Tar Decomposition Activity of Different Bed Materials in Biomass Gasification Conditions. Fuel 2015, 158, 293–305. [Google Scholar] [CrossRef]
- Kurkela, E.; Staåhlberg, P. Air Gasification of Peat, Wood and Brown Coal in a Pressurized Fluidized-Bed Reactor. II. Formation of Nitrogen Compounds. Fuel Process. Technol. 1992, 31, 23–32. [Google Scholar] [CrossRef]
- Wang, W.; Padban, N.; Ye, Z.; Olofsson, G.; Andersson, A.; Bjerle, I. Catalytic Hot Gas Cleaning of Fuel Gas from an Air-Blown Pressurized Fluidized-Bed Gasifier. Ind. Eng. Chem. Res. 2000, 39, 4075–4081. [Google Scholar] [CrossRef]
- Wu, C.; Yin, X.; Ma, L.; Zhou, Z.; Chen, H. Operational Characteristics of a 1.2-MW Biomass Gasification and Power Generation Plant. Biotechnol. Adv. 2009, 27, 588–592. [Google Scholar] [CrossRef]
- Kurkela, E.; Kurkela, M.; Hiltunen, I. The Effects of Wood Particle Size and Different Process Variables on the Performance of Steam-Oxygen Blown Circulating Fluidized-Bed Gasifier. Environ. Prog. Sustain. Energy 2014, 33, 681–687. [Google Scholar] [CrossRef]
- Anton, L.; Gunnasrsson, I.; Tengberg, F. The GoBiGas Project Demonstration of the Production of Biomethane from Biomass via Gasification. Göteborg Energi 2018, 10, 13–15. [Google Scholar]
- Hofbauer, H.; Rauch, R.; Ripfel-Nitsche, K. Report on Gas Cleaning for Synthesis Applications; TU Wien: Vienna, Austria, 2007. [Google Scholar]
- Li, J.; Li, F.; Liu, W.; Liu, Z.; Zhan, H.; Zhang, Y.; Hao, Z.; Cheng, Z.; Huang, J.; Fang, Y. Influence of Pressure on Fluidized Bed Gasifier: Specific Coal Throughput and Particle Behavior. Fuel 2018, 220, 80–88. [Google Scholar] [CrossRef]
- Bui, H.-H.; Wang, L.; Tran, K.-Q.; Skreiberg, Ø.; Luengnaruemitchai, A. CO2 Gasification of Charcoals in the Context of Metallurgical Application. Energy Procedia 2017, 105, 316–321. [Google Scholar] [CrossRef]
- Mauerhofer, A.M.; Müller, S.; Benedikt, F.; Fuchs, J.; Bartik, A.; Hammerschmid, M.; Hofbauer, H. Dual Fluidized Bed Biomass Gasification: Temperature Variation Using Pure CO2 as Gasification Agent. In Proceedings of the ICPS19—International Conference on Polygeneration Strategies, Vienna, Austria, 18–20 November 2019. [Google Scholar]
- Valin, S.; Bedel, L.; Guillaudeau, J.; Thiery, S.; Ravel, S. CO2 as a Substitute of Steam or Inert Transport Gas in a Fluidised Bed for Biomass Gasification. Fuel 2016, 177, 288–295. [Google Scholar] [CrossRef]
- Mayerhofer, M.; Mitsakis, P.; Meng, X.; de Jong, W.; Spliethoff, H.; Gaderer, M. Influence of Pressure, Temperature and Steam on Tar and Gas in Allothermal Fluidized Bed Gasification. Fuel 2012, 99, 204–209. [Google Scholar] [CrossRef]
- Jeremiáš, M.; Pohořelý, M.; Svoboda, K.; Manovic, V.; Anthony, E.J.; Skoblia, S.; Beňo, Z.; Šyc, M. Gasification of Biomass with CO2 and H2O Mixtures in a Catalytic Fluidised Bed. Fuel 2017, 210, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Thow, Z.; Wang, C.-H. Biomass Gasification with CO2 in a Fluidized Bed. Powder Technol. 2016, 296, 87–101. [Google Scholar] [CrossRef]
- Jeremiáš, M.; Pohořelý, M.; Svoboda, K.; Skoblia, S.; Beňo, Z.; Šyc, M. CO2 Gasification of Biomass: The Effect of Lime Concentration in a Fluidised Bed. Appl. Energy 2018, 217, 361–368. [Google Scholar] [CrossRef]
- Mauerhofer, A.M.; Müller, S.; Benedikt, F.; Fuchs, J.; Bartik, A.; Hofbauer, H. CO2 Gasification of Biogenic Fuels in a Dual Fluidized Bed Reactor System. Biomass Convers. Biorefinery 2021, 11, 1101–1116. [Google Scholar] [CrossRef] [Green Version]
- Mauerhofer, A.M.; Fuchs, J.; Müller, S.; Benedikt, F.; Schmid, J.C.; Hofbauer, H. CO2 Gasification in a Dual Fluidized Bed Reactor System: Impact on the Product Gas Composition. Fuel 2019, 253, 1605–1616. [Google Scholar] [CrossRef]
- Balland, M.; Froment, K.; Ratel, G.; Valin, S.; Roussely, J.; Michel, R.; Poirier, J.; Kara, Y.; Galnares, A. Biomass Ash Fluidised-Bed Agglomeration: Hydrodynamic Investigations. Waste Biomass Valorization 2017, 8, 2823–2841. [Google Scholar] [CrossRef]
- Szul, M.; Głód, K.; Iluk, T. Influence of Pressure and CO2 in Fluidized Bed Gasification of Waste Biomasses. Biomass Convers. Biorefinery 2021, 11, 69–81. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, T.; An, Y.; Zhang, W.; Dong, Y. Influence of Water Leaching on Alkali-Induced Slagging Properties of Biomass Straw. J. Fuel Chem. Technol. 2021, 49, 1839–1849. [Google Scholar] [CrossRef]
- Siddiqi, M.H.; Liu, X.; Hussain, M.A.; Qureshi, T.; Tabish, A.N.; Lateef, H.U.; Zeb, H.; Farooq, M.; Nawaz, S.; Nawaz, S. Evaluation of Physiochemical, Thermal and Kinetic Properties of Wheat Straw by Demineralising with Leaching Reagents for Energy Applications. Energy 2022, 238, 122013. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, S.; Wu, S.; Wu, Y.; Gao, J. Ash Fusion Characteristics and Gasification Activity during Biomasses Co-Gasification Process. Renew. Energy 2020, 147, 1584–1594. [Google Scholar] [CrossRef]
- Li, F.; Zhao, C.; Li, J.; Li, Y.; Zhao, H.; Fan, H.; Xu, M.; Wang, Z.; Huang, J.; Fang, Y. Investigation on Ash Fusion Behavior Modification of Wheat Straw by Sludge Addition. J. Energy Inst. 2021, 98, 1–10. [Google Scholar] [CrossRef]
- Defoort, F.; Campargue, M.; Ratel, G.; Miller, H.; Dupont, C. Physicochemical Approach to Blend Biomass. Energy Fuels 2019, 33, 5820–5828. [Google Scholar] [CrossRef]
- Froment, K.; Seiler, J.-M.; Defoort, F.; Ravel, S. Inorganic Species Behaviour in Thermochemical Processes for Energy Biomass Valorisation. Oil Gas Sci. Technol.–Rev. D’IFP Energ. Nouv. 2013, 68, 725–739. [Google Scholar] [CrossRef] [Green Version]
- Valin, S.; Ravel, S.; Pons de Vincent, P.; Thiery, S.; Miller, H.; Defoort, F.; Grateau, M. Fluidised Bed Gasification of Diverse Biomass Feedstocks and Blends—An Overall Performance Study. Energies 2020, 13, 3706. [Google Scholar] [CrossRef]
- Xu, C.C.; Zhu, J. Prediction of the minimum fluidization velocity for fine particles of various degrees of cohesiveness. Chem. Eng. Commun. 2008, 196, 499–517. [Google Scholar] [CrossRef]
- Dantan, N. Determination of Water Traces in Various Organic Solvents Using Karl Fischer Method under FIA Conditions. Talanta 2000, 52, 101–109. [Google Scholar] [CrossRef]
- Kurkela, E. Status of Peat and Biomass Gasification in Finland. Biomass 1989, 18, 287–292. [Google Scholar] [CrossRef]
- Maier, S.; Tuomi, S.; Kihlman, J.; Kurkela, E.; Dietrich, R.-U. Techno-Economically-Driven Identification of Ideal Plant Configurations for a New Biomass-to-Liquid Process—A Case Study for Central-Europe. Energy Convers. Manag. 2021, 247, 114651. [Google Scholar] [CrossRef]
Parameter | Unit | SWP | Bark | Lignin | Blend |
---|---|---|---|---|---|
Water content (W), ar | wt.-% | 3.7 | 4.8 | 4.5 | 4.0 |
Volatiles (V), daf | wt.-% | 82.59 | 70.90 | 69.74 | 72.17 |
Higher heating value (HHV), dry | MJ/kg | 20.80 | 21.57 | 22.43 | 21.00 |
Ultimate analysis, db | |||||
Ash content (A) | wt.-% | 0.22 | 2.0 | 4.37 | 2.99 |
Carbon (C) | wt.-% | 52.06 | 57.19 | 57.60 | 55.61 |
Hydrogen (H) | wt.-% | 5.38 | 5.06 | 4.86 | 5.10 |
Oxygen (O) | wt.-% | 42.26 | 35.31 | 31.29 | 35.76 |
Nitrogen (N) | wt.-% | 0.06 | 0.38 | 1.41 | 0.43 |
Sulphur (S) | wt.-% | 0.02 | 0.04 | 0.21 | 0.05 |
Ash melting behaviour * | |||||
Initial deformation temperature | °C | 660 | 700 | 600 | - |
Softening temperature | °C | 900 | 940 | 690 | - |
Hemispherical temperature | °C | 1420 | 1500 | 1310 | - |
Flow temperature | °C | 1560 | 1520 | 1540 | - |
Olivine | ||
---|---|---|
Bulk density (d) | kg/m3 | 1504 |
Particle density (d) | kg/m3 | 2722 |
Real density (d) | kg/m3 | 3248 |
Grain porosity | - | 0.16 |
Fixed bed porosity | - | 0.45 |
>500 | µm | 9.04% |
425–500 | µm | 11.65% |
315–425 | µm | 30.20% |
250–315 | µm | 14.70% |
200–250 | µm | 15.77% |
160–200 | µm | 6.00% |
100–160 | µm | 7.27% |
<100 | µm | 5.39% |
Mean particle diameter | µm | 241.65 |
Umf [35] | m/s | 0.0484 |
SWP | Bark | Lignin | Blend | |||||
---|---|---|---|---|---|---|---|---|
Run number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
In bed temp. [°C] (T3) | 841.4 | 850.2 | 848.0 | 842.7 | 827.4 | 835.8 | 813.6 | 825.6 |
Reactor pressure [barg] | 1.11 | 4.92 | 0.98 | 4.88 | 1.18 | 4.83 | 1.05 | 4.94 |
Fuel ar [kg/h; kW] | 23.22; 128.0 | 67.37; 371.3 | 28.08; 137.5 | 80.79; 395.6 | 21.80; 133.1 | 58.73; 358.6 | 24.00; 125.9 | 71.93; 377.2 |
Recycle [kg/h] | 83.4 | 253.6 | 63.0 | 254.9 | 62.9 | 254.9 | 63.0 | 254.9 |
Average composition of the gasifying agent [kg/h]: | ||||||||
O2 | 11.62 | 29.94 | 12.52 | 35.20 | 12.08 | 26.49 | 12.00 | 30.88 |
CO2 | 19.20 | 49.40 | 13.60 | 40.00 | 13.80 | 38.61 | 13.40 | 39.56 |
H2O | 11.79 | 46.46 | 12.59 | 46.27 | 17.60 | 53.00 | 16.80 | 51.00 |
N2 | 4.41 | 3.84 | 3.39 | 1.45 | 4.41 | 5.14 | 4.34 | 5.08 |
Average composition of producer gas [vol. % dry]: | ||||||||
H2 | 10.73 | 8.31 | 18.39 | 18.40 | 16.67 | 17.62 | 18.33 | 15.61 |
N2 | 9.91 | 3.53 | 7.27 | 1.41 | 9.38 | 4.71 | 8.50 | 3.93 |
CO | 16.48 | 19.28 | 19.57 | 19.33 | 20.02 | 21.16 | 20.69 | 17.66 |
CO2 | 50.66 | 56.51 | 46.05 | 49.21 | 41.61 | 43.99 | 41.29 | 49.04 |
CH4 | 8.51 | 8.62 | 5.89 | 7.90 | 5.50 | 5.81 | 4.67 | 7.58 |
C2H4 | 2.91 | 2.31 | 1.79 | 2.01 | 1.12 | 1.19 | 1.39 | 1.74 |
C2H6 | 0.39 | 0.57 | 0.24 | 0.57 | 0.33 | 0.34 | 0.23 | 0.51 |
HHV [MJ/Nm3] * | 9.24 | 9.16 | 8.68 | 9.87 | 8.39 | 8.87 | 8.48 | 9.25 |
Total yield of gas [Nm3/kgdaf] ** | 1.589 | 1.364 | 1.549 | 1.446 | 1.869 | 1.742 | 1.899 | 1.674 |
H2/CO [-] | 0.65 | 0.43 | 0.94 | 0.95 | 0.83 | 0.83 | 0.89 | 0.88 |
H2O [g/Nm3] | 531.00 | 680.00 | 275.94 | 458.24 | 438.62 | 483.00 | 420.41 | 460.00 |
Tar [g/Nm3] *** | 45.28 | 58.34 | 50.52 | 51.87 | 29.28 | 46.37 | 17.92 | 26.73 |
Solids [g/Nm3] | 4.51 | 5.34 | 15.59 | 16.93 | 4.18 | 1.87 | 3.76 | 6.50 |
FB gasification parameters: | ||||||||
U/Umf BFB [-] | 20.31 | 20.28 | 20.20 | 20.14 | 21.56 | 20.05 | 22.44 | 20.69 |
U/Umf riser [-] | 93.45 | 97.84 | 92.15 | 94.43 | 98.63 | 98.82 | 100.53 | 96.94 |
λ [-] (Equation (1)) | 0.37 | 0.33 | 0.35 | 0.34 | 0.35 | 0.28 | 0.34 | 0.29 |
[g/g] (Equation (2)) | 1.12 | 1.48 | 0.97 | 1.23 | 1.47 | 1.63 | 1.60 | 1.62 |
[g/g] (Equation (3)) | 1.67 | 1.48 | 1.00 | 1.03 | 1.12 | 1.16 | 1.12 | 1.10 |
[g/g] (Equation (7)) | 0.42 | 0.60 | 0.48 | 0.61 | 0.69 | 0.76 | 0.76 | 0.77 |
Gasification efficiency parameters [%]: | ||||||||
CGE (Equation (4)) | 69.81 | 59.56 | 67.46 | 71.64 | 67.02 | 66.06 | 70.26 | 67.60 |
HGE (Equation (5)) | 75.47 | 66.85 | 72.58 | 79.56 | 72.11 | 72.64 | 75.39 | 75.19 |
CCE (Equation (6)) | 92.71 | 91.16 | 91.39 | 91.99 | 94.73 | 92.55 | 96.45 | 95.03 |
Unit | SWP | Bark | Lignin | Blend | ||
---|---|---|---|---|---|---|
Run number | 1 + 2 | 3 | 4 | 5 + 6 | 7 + 8 | |
Proximate analysis | ||||||
Volatiles (V), daf | [wt.-%] | 8.98 | 60.22 | 51.40 | 27.33 | 21.67 |
Higher heating value (HHV), dry | [MJ/kg] | 8463 | 2509 | 2607 | 7564 | 10,140 |
Ultimate analysis, db | ||||||
Ash content (A) | [wt.-%] | 74.11 | 86.42 | 84.92 | 72.14 | 65.42 |
Carbon (C) | [wt.-%] | 25.08 | 11.27 | 11.36 | 25.08 | 30.43 |
Hydrogen (H) | [wt.-%] | 0.34 | 0.30 | 0.26 | 0.24 | 0.59 |
Oxygen (O) | [wt.-%] | 0.34 | 1.86 | 3.34 | 1.54 | 3.17 |
Nitrogen (N) | [wt.-%] | 0.12 | 0.11 | 0.12 | 0.40 | 0.30 |
Sulphur (S) | [wt.-%] | 0.02 | 0.04 | 0.00 | 0.61 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szul, M.; Iluk, T.; Zuwała, J. Use of CO2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses. Energies 2022, 15, 1395. https://doi.org/10.3390/en15041395
Szul M, Iluk T, Zuwała J. Use of CO2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses. Energies. 2022; 15(4):1395. https://doi.org/10.3390/en15041395
Chicago/Turabian StyleSzul, Mateusz, Tomasz Iluk, and Jarosław Zuwała. 2022. "Use of CO2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses" Energies 15, no. 4: 1395. https://doi.org/10.3390/en15041395
APA StyleSzul, M., Iluk, T., & Zuwała, J. (2022). Use of CO2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses. Energies, 15(4), 1395. https://doi.org/10.3390/en15041395