Positive Aspects of Green Roof Reducing Energy Consumption in Winter
Abstract
:1. Introduction
2. Test Site and Methods
3. Results and Discussion
3.1. Green Roof Impact on Temperature Courses
3.2. Differences between Green Roofs
3.3. Longwave Radiation and Snow Impact
3.4. Correlation Coefficient
3.5. Histogram for Membrane Temperatures
4. Conclusions
- -
- The existence of the green roof above the waterproofing membrane increases the temperatures of the membranes significantly;
- -
- The temperatures of the membranes are almost the same in both analysed green roofs.
- -
- The temperature of the vegetation is much higher than that of the surface of the regular roof.
- -
- The green roof decreases the thermal loss of the roof as additional insulation and protects the surface against overcooling.
- -
- The single-ply flat roof R suffers from overcooling of its outer surface (up to 10 °C in one case), which is also visible within the structure.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bevilacqua, P. The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results. Renew. Sustain. Energy Rev. 2021, 151, 111. [Google Scholar] [CrossRef]
- Palermo, S.A.; Turco, M.; Principato, F.; Piro, P. Hydrological effectiveness of an extensive green roof in Mediterranean climate. Water 2019, 11, 1378. [Google Scholar] [CrossRef] [Green Version]
- Talebi, A.; Bagg, S.; Sleep, B.E.; O’Carroll, D.M. Water retention performance of green roof technology: A comparison of canadian climates. Ecol. Eng. 2019, 126, 1–15. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Zhang, S.; Ge, D. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations. J. Environ. Manag. 2021, 291, 112682. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.M.; Todorov, D.; Driscoll, C.T.; Montesdeoca, M. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations. Environ. Pollut. 2016, 218, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Akbari, H. Analysis of urban heat island phenomenon and mitigation solutions evaluation for Montreal. Sustain. Cities Soc. 2016, 26, 438–446. [Google Scholar] [CrossRef]
- Gülten, A.; Aksoy, U.T.; Öztop, H.F. Influence of trees on heat island potential in an urban canyon. Sustain. Cities Soc. 2016, 26, 407–418. [Google Scholar] [CrossRef]
- Kubilay, A.; Allegrini, J.; Strebel, D.; Zhao, Y.; Derome, D.; Carmeliet, J. Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. Atmosphere 2020, 11, 1313. [Google Scholar] [CrossRef]
- Schweitzer, O.; Erell, E. Evaluation of the energy performance and irrigation requirements of extensive green roofs in a water-scarce Mediterranean climate. Energy Build. 2014, 68, 25–32. [Google Scholar] [CrossRef]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The evapotranspiration process in green roofs: A review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Sun, T.; Bou-Zeid, E.; Ni, G.-H. To irrigate or not to irrigate: Analysis of green roof performance via a vertically-resolved hygrothermal model. Build. Environ. 2014, 73, 127–137. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; DE Rossi, F.; Turni, G.; Vanoli, G.P. Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning? Appl. Energy 2013, 104, 845–859. [Google Scholar] [CrossRef]
- Heusinger, J.; Weber, S. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements. Sci. Total Environ. 2017, 577, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, F.; Bibbiani, C.; Gargari, C.; Rugani, R.; Salvadori, G. Do green roofs really provide significant energy saving in a Mediterranean climate? Critical evaluation based on different case studies. Front. Arch. Res. 2021, 10, 447–465. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.-E.; Belarbi, R.; Djedjig, R. Characterization of green roof components: Measurements of thermal and hydrological properties. Build. Environ. 2012, 56, 78–85. [Google Scholar] [CrossRef]
- Pianella, A.; Clarke, R.E.; Williams, N.S.; Chen, Z.; Aye, L. Steady-state and transient thermal measurements of green roof substrates. Energy Build. 2016, 131, 123–131. [Google Scholar] [CrossRef]
- Malcolm, E.G.; Reese, M.L.; Schaus, M.H.; Ozmon, I.M.; Tran, L.M. Measurements of nutrients and mercury in green roof and gravel roof runoff. Ecol. Eng. 2014, 73, 705–712. [Google Scholar] [CrossRef]
- Stöckl, B.; Zirkelbach, D.; Künzel, H.M. Hygrothermal Simulation of Green Roofs—New Models and Practical Application. In Proceedings of the 10th Nordic Symposium, Lund, Sweden, 15–19 June 2014. [Google Scholar]
- Smalls-Mantey, L.; Montalto, F. The seasonal microclimate trends of a large scale extensive green roof. Build. Environ. 2021, 197, 107792. [Google Scholar] [CrossRef]
- Ávila-Hernández, A.; Simá, E.; Xamán, J.; Hernández-Pérez, I.; Téllez-Velázquez, E.; Chagolla-Aranda, M. Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy Build. 2020, 209, 109709. [Google Scholar] [CrossRef]
- Vera, S.; Pinto, C.; Tabares-Velasco, P.C.; Bustamante, W.; Victorero, F.; Gironás, J.; Bonilla, C.A. Influence of vegetation, substrate, and thermal insulation of an extensive vegetated roof on the thermal performance of retail stores in semiarid and marine climates. Energy Build. 2017, 146, 312–321. [Google Scholar] [CrossRef]
- Yang, Y.; Davidson, C.I.; Zhang, J. Evaluation of thermal performance of green roofs via field measurements and hygrothermal simulations. Energy Build. 2021, 237, 110800. [Google Scholar] [CrossRef]
- Vertaľ, M.; Zozulák, M.; Vašková, A.; Korjenic, A. Hygrothermal initial condition for simulation process of green building construction. Energy Build. 2018, 167, 166–176. [Google Scholar] [CrossRef]
- Wei, T.; Jim, C.; Chen, A.; Li, X. A random effects model to optimize soil thickness for green-roof thermal benefits in winter. Energy Build. 2021, 237, 110827. [Google Scholar] [CrossRef]
- Klein, P.M.; Coffman, R. Establishment and performance of an experimental green roof under extreme climatic conditions. Sci. Total Environ. 2015, 512–513, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.S.; Jim, C. Thermal-irradiance behaviours of subtropical intensive green roof in winter and landscape-soil design implications. Energy Build. 2019, 209, 109692. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Zhao, M.; Srebric, J.; Berghage, R.D.; Dressler, K.A. Accumulated snow layer influence on the heat transfer process through green roof assemblies. Build. Environ. 2015, 87, 82–91. [Google Scholar] [CrossRef]
- Moody, S.S.; Sailor, D.J. Development and application of a building energy performance metric for green roof systems. Energy Build. 2013, 60, 262–269. [Google Scholar] [CrossRef]
- Cascone, S.; Catania, F.; Gagliano, A.; Sciuto, G. A comprehensive study on green roof performance for retrofitting existing buildings. Build. Environ. 2018, 136, 227–239. [Google Scholar] [CrossRef]
- Ponechal, R. Increasing thermal mass in low carbon dwelling. Procedia Eng. 2015, 111, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Ponechal, R.; Staffenova, D. Impact of external wall insulation thickness on internal surface temperature behavior. In Proceedings of the Matec Web of Conferences, RSP 2017—XXVI R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering, Warsaw, Poland, 21–25 August 2017; Volume 117. [Google Scholar] [CrossRef] [Green Version]
- Evins, R.; Dorer, V.; Carmeliet, J. Simulating external longwave radiation exchange for buildings. Energy Build. 2014, 75, 472–482. [Google Scholar] [CrossRef]
- Daouas, N. Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model. Appl. Energy 2016, 177, 136–148. [Google Scholar] [CrossRef]
- Juras, P.; Jurasova, D. Outdoor Climate Change Analysis in University Campus: Case Study with Heat-Air-Moisture Simulation. Civ. Environ. Eng. 2020, 16, 370–378. [Google Scholar] [CrossRef]
- Jurasova, D. Analysis of long-term measured exterior air temperature in Zilina. Civ. Environ. Eng. 2018, 14, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Vertal, M.; Vranayova, Z.; Varga, J.; Poorova, Z.; Vranay, F.; Zozulak, M.; Vargova, A.; Zelenakova, M.; Gregorek, R. Experimentálna vegetačná strecha s biodiverzným potenciálom (in Slovak). Strechy Fasády Izol. 2020, 25–29. [Google Scholar]
- Testujeme Zelené Střechy. Available online: https://www.uceeb.cz/aktuality/testujeme-zelene-strechy (accessed on 21 November 2021).
- Juras, P. Introduction to the Green Roof Research. Lect. Notes Civ. Eng. 2021, 189, 108–115. [Google Scholar]
- Štaffenová, D.; Ponechal, R.; Ďurica, P.; Cangár, M. Climate Data Processing for Needs of Energy Analysis. Adv. Mater. Res. 2014, 1041, 129–134. [Google Scholar]
21 December–19 January 2021 | Min | Max | Average | ΔΘ (°C) |
---|---|---|---|---|
Air temperature | −20 | 9.4 | −0.1 | 29.4 |
membrane | −18.18 | 15.46 | 0.05 | 33.64 |
GR1 top | −2.06 | 6.41 | 1.41 | 8.47 |
GR2 top | −1.34 | 5.7 | 1.31 | 7.04 |
GR1 membrane | 0.47 | 6.35 | 2.05 | 5.88 |
GR2 membrane | −0.1 | 5.83 | 1.46 | 5.93 |
slab R | 15.42 | 20.03 | 17.63 | 4.61 |
slab GR | 15.7 | 20.46 | 17.77 | 4.76 |
27 December 2020 | ||||
Air temperature | −7.7 | 5.3 | −1.13 | 13 |
membrane | −14.06 | 5.67 | −4.35 | 19.73 |
GR1 top | −1.24 | 0.15 | −0.45 | 1.39 |
GR2 top | −0.4 | 0.1 | −0.13 | 0.5 |
GR1 membrane | 0.6 | 1.14 | 0.77 | 0.54 |
GR2 membrane | 0.14 | 0.7 | 0.27 | 0.56 |
10–12 January 2021 | ||||
Air temperature | −9.2 | 2.5 | −4.19 | 11.7 |
membrane | −18.18 | 8.23 | −6.85 | 26.41 |
GR1 top | −2.06 | 0.16 | −0.69 | 2.22 |
GR2 top | −1.35 | −0.05 | −0.47 | 1.29 |
GR1 membrane | 0.48 | 0.79 | 0.62 | 0.31 |
GR2 membrane | −0.08 | 0.21 | 0.06 | 0.29 |
13–15 January 2021 | ||||
Air temperature | −6.9 | 0.1 | −2.44 | 7 |
membrane | −4.44 | 0.35 | −0.43 | 4.79 |
GR1 top | −0.45 | 0.11 | −0.02 | 0.56 |
GR2 top | −0.51 | −0.18 | −0.26 | 0.33 |
GR1 membrane | 0.5 | 0.52 | 0.51 | 0.02 |
GR2 membrane | −0.08 | −0.07 | −0.08 | 0.01 |
16–18 January 2021 | ||||
Air temperature | −20.00 | −3.40 | −4.25 | 16.60 |
membrane | −10.00 | 0.35 | −0.43 | 10.35 |
GR1 top | −0.22 | 0.06 | −0.52 | 0.28 |
GR2 top | −0.41 | −0.22 | −0.29 | 0.19 |
GR1 membrane | 0.47 | 0.51 | 0.49 | 0.04 |
GR2 membrane | −0.09 | −0.07 | −0.08 | 0.02 |
Roof R | GR1 | GR2 | GR2A | GR2B | |
---|---|---|---|---|---|
11 January, Figure 7 | 1.39 × 105 | −5.83 × 103 | −8.33 × 102 | −2.15 × 103 | −2.77 × 103 |
normalized | 2.16 | −0.09 | −0.01 | −0.03 | −0.04 |
29 December, Figure 5 | 2.70 × 104 | 2.86 × 104 | 2.35 × 104 | 2.42 × 104 | 2.42 × 104 |
normalized | 0.42 | 0.44 | 0.36 | 0.38 | 0.38 |
14 January, Figure 12 | 0.478 | −0.153 | 0.0224 | −0.0205307 | −0.0363826 |
normalized | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
16–17 January, Figure 13 | 2.18 × 105 | −1.96 × 104 | 3.22 × 103 | −2.82 × 103 | −5.35 × 103 |
normalized | 3.38 | −0.30 | 0.05 | −0.04 | −0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juras, P. Positive Aspects of Green Roof Reducing Energy Consumption in Winter. Energies 2022, 15, 1493. https://doi.org/10.3390/en15041493
Juras P. Positive Aspects of Green Roof Reducing Energy Consumption in Winter. Energies. 2022; 15(4):1493. https://doi.org/10.3390/en15041493
Chicago/Turabian StyleJuras, Peter. 2022. "Positive Aspects of Green Roof Reducing Energy Consumption in Winter" Energies 15, no. 4: 1493. https://doi.org/10.3390/en15041493
APA StyleJuras, P. (2022). Positive Aspects of Green Roof Reducing Energy Consumption in Winter. Energies, 15(4), 1493. https://doi.org/10.3390/en15041493