Machine-Learning Methods for Complex Flows
1. Introduction
2. Summary of the Contributions
Acknowledgments
Conflicts of Interest
References
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [PubMed] [Green Version]
- Vinuesa, R.; Brunton, S.L. The potential of machine learning to enhance computational fluid dynamics. arXiv 2021, arXiv:2110.02085. [Google Scholar]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Vinuesa, R.; Sirmacek, B. Interpretable deep-learning models to help achieve the Sustainable Development Goals. Nat. Mach. Intell. 2021, 3, 926. [Google Scholar] [CrossRef]
- Karnama, A.; Haghighi, E.B.; Vinuesa, R. Organic data centers: A sustainable solution for computing facilities. Results Eng. 2019, 4, 100063. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef]
- Eivazi, H.; Tahani, M.; Schlatter, P.; Vinuesa, R. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. arXiv 2021, arXiv:2107.10711. [Google Scholar]
- Srinivasan, P.A.; Guastoni, L.; Azizpour, H.; Schlatter, P.; Vinuesa, R. Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids 2019, 4, 054603. [Google Scholar] [CrossRef] [Green Version]
- López-Martín, M.; Le Clainche, S.; Carro, B. Model-free short-term fluid dynamics estimator with a deep 3D-convolutional neural network. Exp. Syst. Appl. 2021, 117, 114924. [Google Scholar] [CrossRef]
- Abadía-Heredia, R.; López-Martín, M.; Carro, B.; Arribas, J.I.; Pérez, J.; Le Clainche, S. A predictive hybrid reduced order model based on proper orthogonal decomposition combined with deep learning architectures. Exp. Syst. Appl. 2021, 187, 115910. [Google Scholar] [CrossRef]
- Eivazi, H.; Guastoni, L.; Schlatter, P.; Azizpour, H.; Vinuesa, R. Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence. Int. J. Heat Fluid Flow 2021, 90, 108816. [Google Scholar] [CrossRef]
- Le Clainche, S.; Vega, J. A Review on Reduced Order Modeling Using DMD-Based Methods; IUTAM Bookseries; Springer: Cham, Switzerland, 2018; Volume 36. [Google Scholar]
- Le Clainche, S.; Vega, J. Analyzing nonlinear dynamics via data-driven dynamic mode decomposition-like methods. Complexity 2018, 1, 6920783. [Google Scholar] [CrossRef]
- Le Clainche, S. Prediction of the Optimal Vortex in Synthetic Jets. Energies 2019, 12, 1635. [Google Scholar] [CrossRef] [Green Version]
- Vega, J.M.; Le Clainche, S. Higher Order Dynamic Mode Decomposition and Its Applications; Elsevier: Amsterdam, The Netherlands, 2020; p. 320. ISBN 9780128227664. [Google Scholar]
- Le Clainche, S.; Rosti, M.; Brandt, L. Flow structures and shear-stress predictions in the turbulent channel flow over an anisotropic porous wall. J. Phys. Conf. Ser. 2020, 1522, 012016. [Google Scholar] [CrossRef]
- Pérez, J.M.; Le Clainche, S.; Vega, J.M. Reconstruction of three-dimensional flow fields from two-dimensional data. J. Comput. Phys. 2020, 407, 109239. [Google Scholar] [CrossRef]
- Murata, T.; Fukami, K.; Fukagata, K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 2020, 882, A13. [Google Scholar] [CrossRef] [Green Version]
- Fukami, K.; Nakamura, T.; Fukagata, K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data. Phys. Fluids 2020, 32, 095110. [Google Scholar] [CrossRef]
- Eivazi, H.; Le Clainche, S.; Hoyas, S.; Vinuesa, R. Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows. arXiv 2021, arXiv:2109.01514. [Google Scholar]
- Guastoni, L.; Güemes, A.; Ianiro, A.; Discetti, S.; Schlatter, P.; Azizpour, H.; Vinuesa, R. Convolutional-network models to predict wall-bounded turbulence from wall quantities. J. Fluid Mech. 2021, 928, A27. [Google Scholar] [CrossRef]
- Güemes, A.; Discetti, S.; Ianiro, A.; Sirmacek, B.; Azizpour, H.; Vinuesa, R. From coarse wall measurements to turbulent velocity fields through deep learning. Phys. Fluids 2021, 33, 075121. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Won, S.; Lee, C. Unsupervised deep learning for super-resolution reconstruction of turbulence. J. Fluid Mech. 2021, 910, A29. [Google Scholar] [CrossRef]
- Rabault, J.; Kuchta, M.; Jensen, A.; Réglade, U.; Cerardi, N. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech. 2019, 865, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Vinuesa, R.; Lehmkuhl, O.; Lozano-Durán, A.; Rabault, J. Flow control in wings and discovery of novel approaches via deep reinforcement learning. Fluids 2022, 7, 62. [Google Scholar] [CrossRef]
- Jiang, C.; Vinuesa, R.; Chen, R.; Mi, J.; Laima, S.; Li, H. An interpretable framework of data-driven turbulence modeling using deep neural networks. Phys. Fluids 2021, 33, 055133. [Google Scholar] [CrossRef]
- Weatheritt, J.; Sandberg, R.D. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship. J. Comput. Phys. 2016, 325, 22–37. [Google Scholar] [CrossRef]
- Weatheritt, J.; Sandberg, R.D. The development of algebraic stress models using a novel evolutionary algorithm. Int. J. Heat Fluid Flow 2017, 68, 298–318. [Google Scholar] [CrossRef]
- Morita, Y.; Rezaeiravesh, S.; Tabatabaei, N.; Vinuesa, R.; Fukagata, K.; Schlatter, P. Applying Bayesian optimization with Gaussian-process regression to Computational Fluid Dynamics problems. J. Comput. Phys. 2022, 449, 110788. [Google Scholar] [CrossRef]
- Fukami, K.; Nabae, Y.; Kawai, K.; Fukagata, K. Synthetic turbulent inflow generator using machine learning. Phys. Rev. Fluids 2019, 4, 064603. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.A.; Paredes, P. Transition prediction in incompressible boundary layer with finite-amplitude streaks. Energies 2021, 14, 2147. [Google Scholar] [CrossRef]
- Bhushan, S.; Burgreen, G.W.; Brewer, W.; Dettwiller, D. Development and validation of a machine learned turbulence model. Energies 2021, 14, 1465. [Google Scholar] [CrossRef]
- Aguilar-Fuertes, J.J.; Noguero-Rodríguez, F.; Jaen Ruiz, J.C.; García-Raffi, L.M.; Hoyas, S. Tracking turbulent coherent structures by means of neural networks. Energies 2021, 14, 984. [Google Scholar] [CrossRef]
- Hadavimoghaddam, F.; Ostadhassan, M.; Heidaryan, E.; Sadri, M.A.; Chapanova, I.; Popov, E.; Cheremisin, A.; Rafieepour, S. Prediction of dead oil viscosity: Machine learning vs. classical correlations. Energies 2021, 14, 930. [Google Scholar] [CrossRef]
- Tokarev, M.; Palkin, E.; Mullyadzhanov, R. Deep Reinforcement Learning Control of Cylinder Flow Using Rotary Oscillations at Low Reynolds Number. Energies 2020, 13, 5920. [Google Scholar] [CrossRef]
- Viqueira-Moreira, M.; Ferrer, E. Insights into the Aeroacoustic Noise Generation for Vertical Axis Turbines in Close Proximity. Energies 2020, 13, 4148. [Google Scholar] [CrossRef]
- Tiseira Izaguirr, A.; Navarro García, R.; Benjamin Inhestern, L.; Hervás Gómez, N. Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines. Energies 2020, 13, 2930. [Google Scholar] [CrossRef]
- Li, B.; Garicano-Mena, J.; Zheng, Y.; Valero, E. Dynamic Mode Decomposition Analysis of Spatially Agglomerated Flow Databases. Energies 2020, 13, 2134. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinuesa, R.; Le Clainche, S. Machine-Learning Methods for Complex Flows. Energies 2022, 15, 1513. https://doi.org/10.3390/en15041513
Vinuesa R, Le Clainche S. Machine-Learning Methods for Complex Flows. Energies. 2022; 15(4):1513. https://doi.org/10.3390/en15041513
Chicago/Turabian StyleVinuesa, Ricardo, and Soledad Le Clainche. 2022. "Machine-Learning Methods for Complex Flows" Energies 15, no. 4: 1513. https://doi.org/10.3390/en15041513
APA StyleVinuesa, R., & Le Clainche, S. (2022). Machine-Learning Methods for Complex Flows. Energies, 15(4), 1513. https://doi.org/10.3390/en15041513