Life-Related Hazards of Materials Applied to Mg–S Batteries
Abstract
:1. Introduction
- A Built-in PTC (positive temperature coefficient) for protecting against current surges;
- A CID (circuit interrupt device) for opening the circuit at a cell pressure of 1000 kPa;
- A safety vent for liberating gases on undue pressure buildup at 3000 kPa;
- A separator for inhibiting ion flow by a melting process when exceeding a certain temperature threshold.
2. Anode Materials
2.1. Metallic Mg Anodes
2.2. Alternative Anodes
3. Separators
4. Cathodes
Active Cathodes Materials
5. Current Collectors
6. Binders
7. Electrolyte Systems
7.1. Nucleophilic Electrolytes
7.2. Non-Nucleophilic Electrolytes
7.2.1. Chloride-Containing, Non/Less Nucleophilic Electrolytes
7.2.2. Non/Less Corrosive, Nonnucleophilic Electrolytes
7.3. Summary of Electrolyte Systems for Mg–S Batteries
Electrolyte | Cell Type | Anode | Separator | Cathode | Current Collector | Ref. |
---|---|---|---|---|---|---|
HMDSMgCl:AlCl3/THF | CR2032 coin cell | Mg foil | PTFE | S/C (S/C (61% S, 35% CB, 4% PTFE (bind)) on C substrate) | n.a. | [25] |
(HMDS)2Mg:AlCl3/TEG | Swagelok cell | Mg:CB | borosilicate glass fiber | S/CMK (75% S/CMK, 15% Super P, 10% PVdF (bind) NMP or CMC (bind) water) | Inconel 625 | [90] |
(HMDS)2Mg:AlCl3:LiTFSI/TEG | Swagelok cell | Mg foil | Whatman glass fiber | S/ACC (impregnation of activated carbon cloth with sulfur) | Inconel | [22] |
[Mg(THF)6][AlCl4]2 PYR14TFSI/THF | CR2016 coin cells | Mg disk | Celgard 2400 | S/NG (S, N-doped GO, Super P, PVDF (bind)) | Al | [13] |
(HMDS)2Mg:AlCl3/TEG | Swagelok cell | Mg/C pellets | Celgard 2500 | S/rGO (75% S/rGO, 15 % Super P, 10% PVdF (bind) NPM) | Inconel 625 | [93] |
(HMDS)2Mg:AlCl3/TEG | coin cell | Mg foil disc | CNF-coated glass fiber | S/CNF (preactivated CNF matrix filled with S) | CNF | [24] |
MgTFSI2-MgCl2-DME | coin-cell | Mg foil disk | glass fiber | S/ACC (impregnation of active carbon cloth with S). | Inconel, Mo, or W laminate layer | [74] |
THFPB-MgF2-DME | CR2032 coin cell | Mg foil | glass fiber | S/C (80 % S/C, 10% acetylene black, 10% PVdF (bind) NPM) | SS foil, Ni foil, Cu foil, pyrolytic graphitic film | [67] |
B(HFP)3-MgCl2-Mg/DME | CR2032 coin cell | Mg disc | glass microfiber | S/CNTs (80% S-C (S-AMC, S-CNT or S-CMK), 10 % Super P, 10 % PVdF (bind) NMP) | Cu foil | [73] |
([Mg(DG)2] [HMDSAlCl3])2/DG | coin cell | Mg | n.a. | S/CNT (80% S/C (8:2), 10% GO/CNT, 10% PVdF (bind) NMP) | n.a. | [15] |
PhMgCl:AlCl3/THF | CR2016 coin cell | Mg | ENTEK PE membrane | S/MC (70% S@MC, 20% Super P, 10% PVdF (bind) NMP) | Cu foil | [94] |
PhMgCl:AlCl3:LiCl/THF | CR2016 coin cell | Mg | ENTEK PE membrane | S/MC (70% S@MC, 20% Super P, 10% PVdF (bind)-NMP) | Cu foil | [94] |
(HMDS)2Mg-AlCl3-LiTFSI-DG | CR2032 coin cell | Mg foil | Whatman glass fiber with/without RGO layer | S/MOFs (70% ZIF (NPs with Zn)-C-S (various S loading), 20% Super P, 10% PVdF (bind) NMP) | SS or Mo | [68] |
Mg(BH4)2:THFPB/DGM | coin cell | Mg foil | n.a. | S/C (80% S/C, 10% acetylene black, 10% PVdF (bind) NPM) | Al, GF, SS, Ni, Cu, and Ag | [69] |
Mg(TFSI)2:I2/DME | Swagelok cell | Mg foil | glass microfiber | S/ACC | n.a. | [70] |
MgCl2:YCl3-PYR14TFSI/DG | CR2032 coin cell | Mg | n.a. | MgPS/G-CNTs (30% MgS8, 60% G-CNT, 10% PVdF (bind)-NMP) | n.a. | [131] |
Mg(CF3SO3)2:MgCl2:AlCl3- AT/THF/TG | CR2016 coin cell | Mg ribbon | ENTEK PE | S/MC (80% S@MC, 10% Super P, 10% PVdF (bind)-NPM) | Cu foil | [64] |
Mg(CF3SO3)2:MgCl2:AlCl3:LiCl- AT/THF/TG | CR2016 coin cell | Mg ribbon | ENTEK PE | S/MC (80% S@MC, 10% Super P, 10% PVdF (bind)-NPM) | Cu foil | [64] |
Mg(CF3SO3)2:MgCl2:AlCl3:LiCF3SO3- AT/THF/TG | CR2016 coin cell | Mg ribbon | ENTEK PE | S/MC (80% S@MC, 10% Super P, 10% PVdF (bind)-NPM) | Cu foil | [64] |
THFPB-MgF2-DME | CR2032 coin cell | Mg metallic | glass-wool | S/CB (60% (S8, Cu2S, or CuS), 30% Super P, 10% PVdF (bind)-NMP {- THF for S8}) | Cu foil | [98] |
MgCl2/EnPS | CR2016 coin cell | Mg | glass fiber | S/C Pellet type (S or MgS, conductive carbon, PTFE (bind)-acetone Sheet type (S or MgS, conductive carbon, SBR, CMC (bind)–water:ethanol) | Ni | [26] |
Mg(TFSI)2/glyme/diglyme | CR2032 coin cell | Mg disc | microporous PE film | CMK/S (70 % CMK/S, 20% Super P, 10% PVdF (bind)-NMP) | Al | [21] |
Mg[B(hfip)4]2); MgBOR(hfip)/DEG–TEG | Swagelok cell | Mg foil | borosilicate glass fiber | CMK/S (75 wt.% S/CMK, 15 wt.% CB, 10 wt.% CMC (bind)-NMP) | SS | [12] |
(Mg/MgCl2/AlCl3 {1:1 ratio}-DME (MMAC)/Pyr14TFSI | coin cell | Mg foil | Whatman glass fiber | CMK/S (80% CMK/S, 10% CB, 10 wt.% PVdF (bind)-NMP) | Mo foil | [72] |
Mg(TFSI)2:MgCl2 {1:0.8}-DME, DEG or TEG Mg(TFSI)2:MgCl2 {1:0.8}-pure DOL or DOL:DME {1:3; 1:1 or 3:1} Mg(HMDS)2:AlCl3:MgCl2 {1:2:1}-DEG or TEG | CR2032 coin cell | Mg foil | Whatman glass fiber | CMK/S (80% CMK/S, 10% Super P, 5% NaCMC, 5% SBR (bind)-deionized water) | C-Al foil | [52] |
MgTFSI2/MgCl2-DME; MgHMDS2/AlCl3 -THF | CR2032 coin cell | Mg disc | glass fiber or Celgard 2325 | ACC/S | SS | [30] |
Mg-HMDS (Mg(HMDS)2:AlCl3:MgCl2 {49:38:13}-TEGDME | n.a. | Mg foil | Whatman glass fiber | S/KB/PTFE (95 wt.% S/KB (8:2), 5 wt.% PTFE (bind)-IPA) | SS | [28] |
Mg[B(hfip)4]2-3DME | pouch cell | Mg disc | Mix (60 wt.% Mo6S8, 30 wt.% SuperP, 10 wt.% PVDF) on Celgard 2340 or 90 wt.% SuperP and 10 wt.% PVDF | S/C (80 wt.% S/C, 10 wt.% Super P, 10 wt.% PVdF (bind)–NMP); also a variant of mix (90 wt.% S/C, 10 wt.% Mo6S8) instead of pure S/C | Al foil | [29] |
Element of Mg–S Battery | Material | Class of EC 1272/2008 | References |
---|---|---|---|
Anode | Mg | H228, H261 | [75] |
H228, H252, H261 | [77] | ||
Al2O3 | H319, H335, H372 | [87] | |
Separator | CNF | H226, H312 + H332, H319, H360D. | [103] |
TiS2 | H261, H315, H319, H335 | [107] | |
Current collector | Al foil | H228, H400 | [210] |
H400, H410 | [216] | ||
Al Sheet and Foil (mixture) | H228, H251, H252, H261, H400, H410, H411 | [211] | |
Graphite | H319, H335, H350i, H373 | [217] | |
Stainless steel | H242, H300, H310, H317, H331, H332, H351, H410 | [213] | |
H316, H320, H334, H317, H341, H351, H360/H361, H370, H371, H335, H372, H373, H413 | [214] | ||
Cu | H300, H330, H317, H319, H340, H373, H400 | [221] | |
Inconel 625 powder | H317, H334, H351, H372 | [223] | |
N-doped Graphitic Porous Carbon | H351 | [227] | |
N/S co-doped Graphene powder | H319, H335 | [228] | |
Cathode | MoS2 Powder | H319, H335 | [136] |
MoS2 | H315, H319, H335 | [196] | |
MnO2 | H302, H332 | [141] | |
MoO3 | H301, H319, H335, H351, H412 | [144] | |
V2O5 | H302, H332, H335, H341, H361d, H372, H411 | [142] | |
C8H8O4 | H302, H315, H319, H335 | [145] | |
Fullerenes | H315, H319, H351, H335 | [147] | |
CuF2 | H314, H318 | [153] | |
AgCl | H400, H410 | [155] | |
Sulfur | H315, H228 | [158] | |
H303, H313, H315, H333 | [159] | ||
Activated carbon | H252 | [170] | |
H320, H335 | [169] | ||
Mesoporous Carbon CMK-3 | H351 | [179] | |
Mesoporous Carbon | H351 | [180] | |
Carbon Nanofiber | H319, H335 | [186] | |
Carbon Nanotube | H319, H335 | [185] | |
MgS | H302, H311, H314, H400 | [190] | |
FeS2 | H334, H410 | [194] | |
SnS2 | H315, H319, H335 | [195] | |
Ni2S3 | H317, H341, H350i, H372, H410 | [188] | |
CoS2 | H317, H410 | [197] | |
O2 (compressed) | H270, H280 | [152] | |
Binder | polyvinylidene fluoride | H315, H319, H335 | [230] |
Na carboxymethyl cellulose | H402, H412 | [234] | |
Electrolyte | Tetrahydrofuran | H225, H302, H319, H335, H351 | [246] |
AlCl3 | H314 | [236] | |
PhMgCl | H314, H318 | [238] | |
LiCl | H302, H315, H319 | [239] | |
BF3 | H280, H330, H314, H318, H335, H373, H402 | [242] | |
Hexamethyldisilazane | H225, H302 + H332, H311, H412 | [243] | |
Mg bis(hexamethyldisilazide) | H314, H318 | [244] | |
Mg bis(diisopropyl)amide | H225, H261, H304, H314, H331, H335, H341, H351, H412 | [245] | |
2-Methoxyethyl ether | H226, H360FD | [247] | |
Tetraethylene glycol dimethyl ether | H360Df | [248] | |
C2F6LiNO4S | H301, H311, H314, H373, H412 | [252] | |
Li | H260, H314 | [253] | |
Anthracene | H302, H319, H335, H400, H410 | [271] | |
B[HFP]3 | H315, H319, H335 | [255] | |
C8H18Mg | H250, H260, H314 | [261] | |
Trifluoromethanesulfonic acid | H290, H302, H314, H335 | [262] | |
Mg(TFSI)2 | H314 | [260] | |
Butane | H220, H280 | [263] | |
Mg(OH)2 | H315, H319, H335 | [265] | |
18-Crown 6-Ether | H302, H319 | [266] | |
LiCF3SO3 | H315, H319, H335 | [272] | |
Cl2H12MgO6 | H315, H319, H335 | [268] | |
Mg(CF3SO3)2 | H314, H318 | [270] | |
C11H20F6N2O4S2 | H315, H319, H335 | [276] | |
MgCl2 | H261 | [267] | |
YCl3 | H315, H319, H335 | [277] | |
TiCl4 | H302, H314, H318, H330, H335 | [279] | |
(CF3)2CHOH | H314, H318, H361, H373 | [283] | |
tris(2H-hexafluoroisopropyl) borate | H315, H319, H335 | [255] | |
MgF2 | H315, H319, H335 | [287] | |
1,2-dimethoxyethane | H225, H303, H332, H360 | [288] | |
Thiobarbituric Acid | H315, H319, H335 | [290] | |
Mg(BH4)2 | H261, H301, H311, H331, H314 | [286] | |
TEGDME | H360 | [249] | |
Iodine | H302, H312, H315, H319, H332, H335, H372, H400 | [259] |
8. Handling of Mg–S Battery Materials with Hazards Related to Their Use
- In contact with flammable substances, it can be necessary to wear a self-contained breathing apparatus in pressure-demand, Mine Safety and Health Administration/National Institute for Occupational Safety & Health (MSHA/NIOSH) approved, or the equivalent one, and full protective gear;
- In the case of fire occurrence, it is needed to use the appropriate extinguishing media, including water, dry chemicals, chemical foam, or alcohol-resistant foam;
- If the substance causes, or may cause, irritation or allergy to the eyes, it is required to wear appropriate protective eyeglasses or chemical safety goggles as described by the Occupational Safety and Health Administration (OSHA’s) eye and face protection regulations in 29 Code of Federal Regulations (CFR) 1910.133 or European Standard EN166;
- If the substance causes or may cause irritation or allergy to the skin, it is needed to wear appropriate protective gloves to prevent skin exposure. Moreover, it is necessary to wear appropriate protective clothing to prevent skin exposure;
- If the substance causes, or may cause, irritation or allergy of the respiratory tract, and particularly if the exposure limit can be exceeded, it is required to use a NIOSH/MSHA or European Standard EN 149 approved respirator;
- If the substance causes, or may cause, irritation or allergy of the gastrointestinal tract, it is necessary to use good personal hygiene practices, including washing hands before eating, drinking, smoking, or using the toilet;
- If spills or leaks of a dangerous substance may occur, it is needed to absorb the spill with an inert material (e.g., vermiculite, sand, or earth), then place it in a suitable container. It is also necessary to clean up spills immediately, following precautions in the Protective Equipment section, and provide an adequate intensity of ventilation;
- When in contact with a hazardous substance, it is necessary to wash thoroughly after handling. Before the planned reuse, it is needed to remove contaminated or soiled clothing and wash them.
- Chemical identity;
- Physical and chemical properties;
- Health effects.
- Company records;
- SDSs and product safety bulletins from manufacturers or suppliers;
- OSHA chemical sampling information pages;
- The Merck Index [293];
- ChemID;
- Trade associations’ documents.
- Fire Protection Guide to Hazardous Materials [294];
- USA Department of Transportation Emergency Response Guidebook [295];
- OSHA Occupational Chemical Database [296];
- Hazardous Substances Data Bank (HSDB) [297];
- Product safety bulletins from manufacturers or suppliers;
- National Institute for Occupational Safety and Health (NIOSH) documents [298],
- NIOSH Pocket Guide to Chemical Hazards [299],
- International Chemical Safety Cards [300],
- OECD eChemPortal [301],
- The Merck Index [293],
- CRC Handbook of Chemistry and Physics [302],
- Sax’s Dangerous Properties of Industrial Materials [303],
- Bretherick’s Handbook of Reactive Chemicals Hazards [304],
- Trade associations’ documents.
- Frank R. Lautenberg Chemical Safety for the 21st Century Act [305];
- Company-sponsored research reports;
- SDSs and product safety bulletins from manufacturers and suppliers;
- OSHA Occupational Chemical Database [296];
- Hazardous Substances Data Bank (HSDB) [297];
- National Institute of Occupational Safety and Health (NIOSH) documents [298];
- NIOSH Pocket Guide to Chemical Hazards [299];
- Centers for Disease Control and Prevention (CDC) documents [306];
- Agency for Toxic Substances and Disease Registry (ATSDR) documents [307];
- International Chemical Safety Cards [300];
- NIOSH Registry of Toxic Effects of Chemical Substances (RTECS) [308];
- OSHA chemical sampling information pages;
- IARC Monographs on the Identification of Carcinogenic Hazards to Humans [309];
- NTP Annual Report on Carcinogens [310];
- ACGIH Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs) [311];
- OECD eChemPortal [301];
- Hawley’s Condensed Chemical Dictionary [312];
- Sax’s Dangerous Properties of Industrial Materials [303];
- Trade associations’ documents.
9. Methods
10. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Lai-Peng, M.; Cheng, H.M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today 2014, 17, 110–121. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, R.; Chen, T.; Lv, H.; Zhu, G.; Ma, L.; Wang, C.; Jin, Z.; Liu, J. Emerging non-lithium ion batteries. Energy Storage Mater. 2016, 4, 103–129. [Google Scholar] [CrossRef]
- Wu, F.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459. [Google Scholar] [CrossRef]
- Choi, N.S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef]
- Manthiram, A. Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 176–184. [Google Scholar] [CrossRef]
- Hong, X.; Mei, J.; Wen, L.; Tong, Y.; Vasileff, A.J.; Wang, L.; Liang, J.; Sun, Z.; Dou, S.X. Nonlithium metal–sulfur batteries: Steps toward a leap. Adv. Mater. 2019, 31, 1802822. [Google Scholar] [CrossRef]
- Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhirong, Z.K.; Maximilian, F. Magnesium-sulfur battery: Its beginning and recent progress. MRS Commun. 2017, 7, 770–784. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cheng, S.; Wang, J.; Qiu, Y.; Zheng, Z.; Lin, H.; Nanda, S.; Ma, Q.; Xu, Y.; Ye, F.; et al. Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angew. Chem. Int. Ed. 2016, 55, 6406–6410. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Zhao, X.; Fuhr, O.; Fichtner, M. Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Adv. 2013, 3, 16330–16335. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.; Zhou, G.; Pan, Z.; Zhang, Y. A non-nucleophilic mono-Mg2+ electrolyte for rechargeable Mg/S battery. Energy Storage Mater. 2018, 14, 253–257. [Google Scholar] [CrossRef]
- Wang, P.; Buchmeiser, M.R. Rechargeable Magnesium–Sulfur Battery Technology: State of the Art and Key Challenges. Adv. Funct. Mater. 2019, 29, 1905248. [Google Scholar] [CrossRef] [Green Version]
- Parambath, V.B.; Zhao-Karger, Z.; Diemant, T.; Jäckle, M.; Li, Z.; Scherer, T.; Gross, A.; Behm, R.J.; Fichtner, M. Investigation on the formation of Mg metal anode/electrolyte interfaces in Mg/S batteries with electrolyte additives. J. Mater. Chem. A 2020, 8, 22998. [Google Scholar] [CrossRef]
- Han, W.; Li, Q.; Zhu, H.; Luo, D.; Qin, X.; Li, B. Hierarchical Porous Graphene Bubbles as Host Materials for Advanced Lithium Sulfur Battery Cathode. Front. Chem. 2021, 9, 653476. [Google Scholar] [CrossRef]
- Huang, D.; Tan, S.; Li, M.; Wang, D.; Han, C.; An, Q.; Mai, L. Highly Efficient Non-Nucleophilic Mg(CF3SO3)2-Based Electrolyte for High-Power Mg/S Battery. ACS Appl. Mater. Interfaces 2020, 12, 17474–17480. [Google Scholar] [CrossRef]
- Utkarsh, C.; Preetam, B.; Sanjeevikumar, P.; Dikshita, K.; Garima, P.; Samriddhi, N.; Mahika, S.; Murali, B.; Prashant, S.; Shalu, S.; et al. Review—Carbon Electrodes in Magnesium Sulphur Batteries: Performance Comparison of Electrodes and Future Directions. J. Electrochem. Soc. 2021, 168, 120555. [Google Scholar] [CrossRef]
- Ha, S.Y.; Lee, Y.W.; Woo, S.W.; Koo, B.; Kim, J.S.; Cho, J.; Lee, K.T.; Choi, N.S. Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries. ACS Appl. Mater. Interfaces 2014, 6, 4063–4073. [Google Scholar] [CrossRef]
- Gao, T.; Noked, M.; Pearse, A.J.; Gillette, E.; Fan, X.; Zhu, Y.; Luo, C.; Suo, L.; Schroeder, M.A.; Xu, K.; et al. Enhancing the Reversibility of Mg/S Battery Chemistry through Li+ Mediation. J. Am. Chem. Soc. 2015, 137, 12388–12393. [Google Scholar] [CrossRef] [PubMed]
- Robba, A.; Vizintin, A.; Bitenc, J.; Mali, G.; Arčon, I.; Kavčič, M.; Žitnik, M.; Bučar, K.; Aquilanti, G.; Martineau-Corcos, C.; et al. Mechanistic Study of Magnesium–Sulfur Batteries. Chem. Mater. 2017, 29, 9555–9564. [Google Scholar] [CrossRef]
- Yu, X.; Arumugam, M. Performance Enhancement and Mechanistic Studies of Magnesium-Sulfur Cells with an Advanced Cathode Structure. ACS Energy Lett. 2016, 1, 431–437. [Google Scholar] [CrossRef]
- Kim, H.S.; Arthur, T.S.; Allred, G.D.; Zajicek, J.; Newman, J.G.; Rodnyansky, A.E.; Oliver, A.G.; Boggess, W.C.; Muldoon, J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2011, 2, 427. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Matsumoto, R.; Kumagae, K.; Mori, D.; Mizuno, Y.; Hosoi, S.; Kamiguchi, K.; Koshitani, N.; Inaba, Y.; Kudo, Y.; et al. Zinc Blende Magnesium Sulfide in Rechargeable Magnesium-Sulfur Batteries. Chem. Mater. 2018, 30, 6318–6324. [Google Scholar] [CrossRef]
- Xu, Y.; Ye, Y.; Zhao, S.; Feng, J.; Li, J.; Chen, H.; Yang, A.; Shi, F.; Jia, L.; Wu, Y.; et al. In Situ X-ray Absorption Spectroscopic Investigation of the Capacity Degradation Mechanism in Mg/S Batteries. Nano Lett. 2019, 19, 2928–2934. [Google Scholar] [CrossRef]
- Zou, Q.; Sun, Y.; Liang, Z.; Wang, W.; Lu, Y.C. Achieving Efficient Magnesium-Sulfur Battery Chemistry via Polysulfide Mediation. Adv. Energy Mater. 2021, 11, 2101552. [Google Scholar] [CrossRef]
- Wang, L.; Jankowski, P.; Njel, C.; Bauer, W.; Li, Z.; Meng, Z.; Dasari, B.; Vegge, T.; Gar-cía-Lastra, J.M.; Zhao-Karger, Z.; et al. Dual Role of Mo6S8 in Polysulfide Conversion and Shuttle for Mg–S Batteries. Adv. Sci. 2022, 2104605. [Google Scholar] [CrossRef]
- Ford, H.O.; Doyle, E.S.; He, P.; Boggess, W.C.; Oliver, A.G.; Wu, T.; Sterbinsky, G.E.; Schaefer, J.L. Self-discharge of magnesium–sulfur batteries leads to active material loss and poor shelf life. Energy Environ. Sci. 2021, 14, 890–899. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, C.Z.; Yuan, H.; Yuan, C.; Zhang, W.; Huang, J.Q.; Yu, D.; Liu, Y.; Titirici, M.; Chueh, Y.L.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32. [Google Scholar] [CrossRef] [Green Version]
- BU-301a: Types of Battery Cells. 2022. Available online: https://batteryuniversity.com/article/bu-301a-types-of-battery-cells (accessed on 24 January 2022).
- BU-304b: Making Lithiumion Safe. 2022. Available online: https://batteryuniversity.com/article/bu-304b-making-lithium-ion-safe (accessed on 24 January 2022).
- Wagner, N.; Fichtner, M.; Bremes, H.G.; Wolter, C.; Zwanziger, I.; Remmlinger, J. Entwicklung und Herstellung von Wiederaufladbaren Magnesium-Schwefel Batterien ’MagS’. 2019. Available online: https://doi.org/10.2314/KXP:1680881833 (accessed on 28 January 2022). (In German) [CrossRef]
- Montenegro, C.T.; Peters, J.F.; Zhao-Karger, Z.; Wolter, C.; Weil, M. Chapter 13—Life Cycle Analysis of a Magnesium–Sulfur Battery. In Magnesium Batteries: Research and Applications; Fichtner, M., Ed.; The Royal Society of Chemistry: London, UK, 2020; Energy and Environment Series. [Google Scholar] [CrossRef]
- Bautista, S.P.; Weil, M.; Baumann, M. and Montenegro, C.T. Prospective Life Cycle Assessment of a Model Magnesium Battery. Energy Technol. 2021, 9, 2000964. [Google Scholar] [CrossRef]
- Bieker, G.; Küpers, V.; Kolek, M.; Winter, M. Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun Mater 2021, 2, 37. [Google Scholar] [CrossRef]
- Chen, S.; Niu, C.; Lee, H.; Li, Q.; Yu, L.; Xu, W.; Zhang, J.-G.; Dufek, E.J.; Whittingham, M.S.; Meng, S.; et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 2019, 3, 1094–1105. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Lee, H.; Chen, S.; Li, Q.; Du, J.; Xu, W.; Zhang, J.G.; Whittingham, M.S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559. [Google Scholar] [CrossRef]
- Walus, S.; Offer, G.; Hunt, I.; Patel, Y.; Stockley, T.; Williams, J.; Purkayastha, R. Volumetric expansion of lithium-sulfur cell during operation—Fundamental insight into applicable characteristics. Energy Storage Mater. 2018, 10, 233–245. [Google Scholar] [CrossRef]
- Mueller, V.; Scurtu, R.G.; Richter, K.; Waldmann, T.; Memm, M.; Danzer, M.A.; Wohlfahrt-Mehrens, M. Effects of mechanical compression on the aging and the expansion behavior of si/C-composite NMC811 in different lithium-ion battery cell for-mats. J. Electrochem. Soc. 2019, 166, A3796–A3805. [Google Scholar] [CrossRef]
- Li, X.; Banis, M.; Lushington, A.; Yang, X.; Sun, Q.; Zhao, Y.; Liu, C.; Li, Q.; Wang, B.; Xiao, W.; et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating pol-ysulfides via solid-phase lithium-sulfur transformation. Nat. Commun. 2018, 9, 4509. [Google Scholar] [CrossRef]
- Fan, Z.; Ding, B.; Guo, H.; Shi, M.; Zhang, Y.; Dong, S.; Zhang, T.; Dou, H.; Zhang, X. Dual dopamine derived polydopamine coated N-doped porous carbon spheres as a sulfur host for high-performance lithium-sulfur batteries. Chemistry 2019, 25, 10710–10717. [Google Scholar] [CrossRef]
- Dai, F.; Shen, J.; Dailly, A.; Balogh, M.P.; Lu, P.; Yang, L.; Xiao, J.; Liu, J.; Cai, M. Hierarchical electrode architectures for high energy lithium-chalcogen rechargeable batteries. Nano Energy 2018, 51, 668–679. [Google Scholar] [CrossRef]
- Jia, L.; Wang, J.; Chen, Z.; Su, Y.; Zhao, W.; Wang, D.; Wei, Y.; Jiang, K.; Wang, J.; Chun, O.; et al. High areal capacity flexible sulfur cathode based on multi-functionalized super aligned carbon nanotubes. Nano Res. 2019, 12, 1105–1113. [Google Scholar] [CrossRef]
- Chung, S.H.; Manthiram, A. Designing lithium-sulfur batteries with high-loading cathodes at a lean electrolyte condition. ACS Appl. Mater. Interfaces 2018, 10, 43749–43759. [Google Scholar] [CrossRef]
- Weller, C.; Thieme, S.; Härtel, P.; Althues, H.; Kaskel, S. Intrinsic shuttle sup-pression in lithium-sulfur batteries for pouch cell application. J. Electrochem. Soc. 2017, 164, A3766–A3771. [Google Scholar] [CrossRef]
- Cheng, X.B.; Yan, C.; Huang, J.Q.; Li, P.; Zhu, L.; Zhao, L.; Zhang, Y.; Zhu, W.; Yang, S.T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The im-portance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18–25. [Google Scholar] [CrossRef]
- Salihoglu, O.; and Demir-Cakan, R. Factors affecting the proper functioning of a 3Ah Li-S pouch cell. J. Electrochem. Soc. 2017, 164, A2948–A2955. [Google Scholar] [CrossRef]
- Doerfler, S.; Althues, H.; Haertel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level. Joule 2020, 4, 539–554. [Google Scholar] [CrossRef] [Green Version]
- Muldoon, J.; Bucur, C.B. Electrolyte for Magnesium Battery. U.S. Patent 8722242B2, 2011. Available online: https://patents.google.com/patent/US8722242B2/en (accessed on 24 January 2022).
- Sheng, L.; Hao, Z.; Feng, J.; Du, W.; Gong, M.; Kang, L.; Shearing, P.R.; Brett, D.J.L.; Huang, Y.; Wang, F.R. Evaluation and realization of safer Mg-S battery: The decisive role of the electrolyte. Nano Energy 2021, 83, 105832. [Google Scholar] [CrossRef]
- Saha, P.; Datta, M.K.; Velikokhatnyi, O.I.; Manivannan, A.; Alman, D.; Kumta, P.N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86. [Google Scholar] [CrossRef]
- Yoo, H.D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279. [Google Scholar] [CrossRef]
- Aurbach, D.; Suresh, G.S.; Levi, E.; Mitelman, A.; Mizrahi, O.; Chusid, O.; Brunelli, M. Progress in Rechargeable Magnesium Battery Technology. Adv. Mater. 2007, 19, 4260–4266. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Oliver, A.G.; Sugimoto, T.; Matsui, M.; Kim, H.S.; Allred, G.D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941–5950. [Google Scholar] [CrossRef]
- Song, J.; Sahadeo, E.; Noked, M.; Lee, S.B. Mapping the Challenges of Magnesium Battery. J. Phys. Chem. Lett. 2016, 7, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Bucur, C.B. Challenges of a Rechargeable Magnesium Battery. A Guide to the Viability of this Post Lithium-Ion Battery; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zhang, Y.; Chen, D.; Li, X.; Shen, J.; Chen, Z.; Cao, S.; Li, T.; Xu, F. a-MoS3@CNT nanowire cathode for rechargeable Mg batteries: A pseudocapacitive approach for efficient Mg-storage. Nanoscale 2019, 11, 16043–16051. [Google Scholar] [CrossRef] [PubMed]
- Aurbach, D.; Weissman, I.; Gofer, Y.; Levi, E. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 2003, 3, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Schechter, A.; Moshkovich, M.; Aurbach, D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 1999, 466, 203–217. [Google Scholar] [CrossRef]
- Merrill, L.C.; Schaefer, J.L. The Influence of Interfacial Chemistry on Magnesium Electrodeposition in Non-nucleophilic Electrolytes Using Sulfone-Ether Mixtures. Front. Chem. 2019, 7, 194. [Google Scholar] [CrossRef]
- Cheng, Y.; Shao, Y.; Zhang, J.G.; Sprenkle, V.L.; Liu, J.; Li, G. High performance batteries based on hybrid magnesium and lithium chemistry. Chem. Commun. 2014, 50, 9644–9646. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Nuli, Y.; Yang, J.; Wang, J. High Active Magnesium Trifluoromethanesulfonate-Based Electrolytes for Magnesium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 9062–9072. [Google Scholar] [CrossRef]
- Du, A.; Zhang, Z.; Qu, H.; Cui, Z.; Qiao, L.; Wang, L.; Chai, J.; Lu, T.; Dong, S.; Dong, T.; et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Environ. Sci. 2017, 10, 2616–2625. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Liu, R.; Dai, W.; Li, Z.; Diemant, T.; Paranbath, V.B.; Bonatto Minella, C.; Yu, X.; Manthiram, A.; Behm, R.J.; et al. Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip)4]2 Electrolyte. ACS Energy Lett. 2018, 3, 2005–2013. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, Z.; Qiao, L.; Guan, J.; Xu, H.; Wang, X.; Hu, P.; Du, H.; Li, S.; Zhou, X.; et al. Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium-Selenium and Magnesium-Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1602055. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, J.; Hu, J.; Li, C. High Rate Magnesium–Sulfur Battery with Improved Cyclability Based on Metal-Organic Framework Derivative Carbon Host. Adv. Mater. 2018, 30, 1704166. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, Z.; Li, J.; Qiao, L.; Lu, C.; Tang, K.; Dong, S.; Ma, J.; Liu, Y.; Zhou, X.; et al. Multifunctional additives improve the electrolyte properties of magnesium borohydride toward magnesium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 23757–23765. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, T.; Han, F.; Ma, Z.; Fan, X.; Hou, S.; Eidson, N.; Li, W.; Wang, C. Reducing Mg Anode Overpotential via Ion Conductive Surface Layer Formation by Iodine Additive. Adv. Energy Mater. 2018, 8, 1701728. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Bardaji, M.E.G.; Fuhr, O.; Fichtner, M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 2017, 5, 10815–10820. [Google Scholar] [CrossRef]
- Bi, Y.; He, S.; Fan, C.; Luo, J.; Yuan, B.; Liu, T.L. A robust ionic liquid magnesium electrolyte enabling Mg/S batteries. J. Mater. Chem. A 2020, 8, 12301–12305. [Google Scholar] [CrossRef]
- Du, H.; Zhang, Z.; He, J.; Cui, Z.; Chai, J.; Ma, J.; Yang, Z.; Huang, C.; Cui, G. A Delicately Designed Sulfide Graphdiyne Compatible Cathode for High-Performance Lithium/Magnesium–Sulfur Batteries. Small 2017, 13, 1702277. [Google Scholar] [CrossRef]
- Gao, T.; Hou, S.; Wang, F.; Ma, Z.; Li, X.; Xu, K.; Wang, C. Reversible S0/MgSx Redox Chemistry in a MgTFSI2/MgCl2/DME Electrolyte for Rechargeable Mg/S Batteries. Angew. Chem. 2017, 129, 13711–13715. [Google Scholar] [CrossRef]
- (CarlRoth-SDS-Mg) CarlRoth Safety Data Sheet. Magnesium Ribbon ≥99,5 %, CAS number 7439-95-4. 2021. Available online: https://www.carlroth.com/medias/SDB-4468-IE-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNjk5OTF8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oN2IvaDg5LzkwMzc2MjQyNzkwNzAucGRmfDYzN2VmNWQyOTZjNDdhYjUxNGNmZWRjMDU4YTg0NTY5MDkyN2U5MjAzMmE3OTZlMWFjZjJiYzAzMGRlMmNhODI (accessed on 8 January 2022).
- (NWSCI-SDS-Mg) NWSCI Avantor Safety Data Sheet. Magnesium Metal, Turnings and Ribbon, CAS number: 7439-95-4. 2014. Available online: https://www.nwsci.com/content/customer/docs/skudocs/JTB/jtb_sds_2418.pdf (accessed on 8 January 2022).
- (ThermoFisher-SDS-Mg) ThermoFisher Scientific Safety Data Sheet. Magnesium Turnings, CAS No.: 7439-95-4. 2021. Available online: https://www.thermofisher.in/ (accessed on 8 January 2022).
- Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef]
- Son, S.B.; Gao, T.; Harvey, S.P.; Steirer, K.X.; Stokes, A.; Norman, A.; Wang, C.; Cresce, A.; Xu, K.; Ban, C. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 2018, 10, 532–539. [Google Scholar] [CrossRef]
- Wang, Y.; Sahadeo, E.; Rubloff, G.; Lin, C.-F.; Lee, S.B. High-capacity lithium sulfur battery and beyond: A review of metal anode protection layers and perspective of solid-state electrolytes. J. Mater. Sci. 2019, 54, 3671–3693. [Google Scholar] [CrossRef]
- Canepa, P.; Bo, S.H.; Sai Gautam, G.; Key, B.; Richards, W.D.; Shi, T.; Tian, Y.; Wang, Y.; Li, J.; Ceder, G. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 2017, 8, 1759. [Google Scholar] [CrossRef]
- Canepa, P.; Sai Gautam, G.; Broberg, D.; Bo, S.-H.; Ceder, G. Role of Point Defects in Spinel Mg Chalcogenide Conductors. Chem. Mater. 2017, 29, 9657–9667. [Google Scholar] [CrossRef] [Green Version]
- Pinson, M.B.; Bazant, M.Z. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction. J. Electrochem. Soc. 2013, 160, A243. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Andreatta, F.; Lekka, M.; Guzman, L.; Fedrizzi, L. Atomic layer deposition: State-of-the-art and research/industrial perspectives. Corros. Rev. 2011, 29, 191–208. [Google Scholar] [CrossRef]
- Kozen, A.C.; Lin, C.F.; Pearse, A.J.; Schroeder, M.A.; Han, X.; Hu, L.; Lee, S.; Rubloff, G.W.; Noked, M. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. ACS Nano. 2015, 9, 5884–5892. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.C.; Shih, Y.T.; Lin, M.C.; Lin, H.C.; Chen, M.J.; Lin, K.M. A study of atomic layer deposited LiAlxOy films on Mg-Li alloys. Thin Solid Film. 2010, 518, 7501–7504. [Google Scholar] [CrossRef]
- (NCBI-Al2O3) National Center for Biotechnology Information. PubChem Database. Alumina, CID=14769. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Alumina (accessed on 8 January 2022).
- Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Zhu, J.; Yanilmaz, M.; Fu, K.; Chen, C.; Lu, Y.; Ge, Y.; Kim, D.; Zhang, X. Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. J. Membr. Sci. 2016, 504, 89–96. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Zhao, X.; Wang, D.; Diemant, T.; Behm, R.J.; Fichtner, M. Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. Adv. Energy Mater. 2015, 5, 1401155. [Google Scholar] [CrossRef]
- Sievert, B.; Häcker, J.; Bienen, F.; Wagner, N.; Friedrich, K.A. Magnesium Sulfur Battery with a New Magnesium Powder Anode. ECS Trans. 2017, 77, 413–424. [Google Scholar] [CrossRef]
- Gao, T.; Ji, X.; Hou, S.; Fan, X.; Li, X.; Yang, C.; Han, F.; Wang, F.; Jiang, J.; Xu, K.; et al. Thermodynamics and Kinetics of Sulfur Cathode during Discharge in MgTFSI2–DME Electrolyte. Adv. Mater. 2018, 30, 1704313. [Google Scholar] [CrossRef] [PubMed]
- Paranbath, V.B.; Zhao-Karger, Z.; Diemant, T.; Chakravadhanula, V.S.; Schwarzburger, N.I.; Cambaz, M.A.; Behm, R.J.; Kubel, C.; Fichtner, M. Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale 2016, 8, 3296–3306. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Q.; Yuan, H.C.; Nuli, Y.; Zhou, J.J.; Yang, J.; Wang, J.L. Sulfur@microporous Carbon Cathode with a High Sulfur Content for Magnesium-Sulfur Batteries with Nucleophilic Electrolytes. J. Phys. Chem. C 2018, 122, 26764–26776. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, N.; Yang, J.; Wang, J.; NuLi, Y. Application of a Sulfur Cathode in Nucleophilic Electrolytes for Magnesium/Sulfur Batteries. J. Electrochem. Soc. 2017, 164, A2504–A2512. [Google Scholar] [CrossRef]
- Itaoka, K.; Kim, I.; Yamabuki, K.; Yoshimoto, N.; Tsutsumi, H. Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit. J. Power Sources 2015, 297, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yang, Y.; NuLi, Y.; Li, D.; Wang, Y.; Xiang, X. A new class of electrolytes based on magnesium bis(diisopropyl)amide for magnesium–sulfur batteries. Chem. Commun. 2019, 55, 6086–6089. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Choi, J.; Na, S.; Yoo, D.-J.; Kim, J.H.; Cho, B.W.; Kim, Y.-T.; Yim, T.; Choi, J.W.; Oh, S.H. Critical role of elemental copper for enhancing conversion kinetics of sulphur cathodes in rechargeable magnesium batteries. Appl. Surf. Sci. 2019, 484, 933–940. [Google Scholar] [CrossRef]
- GPRDirect. DIY Composites Ltd. Safety Data Sheet. Glass Fibre CSM. 2020. Available online: https://www.gprdirect.com/1/2/f/1/sds-glass-fibre.pdf (accessed on 28 January 2022).
- Stars Berkeley Safety Data Sheet. Woven Unidirectional Fiberglass Fabric, CAS No.: 65997-17-3. 1997. Available online: https://stars.berkeley.edu/assets/files/Fiberglass_MSDS.pdf (accessed on 8 January 2022).
- (ACS-SDS-CNF) ACS Material LLC Safety Data Sheet. Carbon Nanofibers, CAS No.: 308063-67-4. 2017. Available online: https://www.acsmaterial.com/pub/media/catalog/product/s/d/sds-carbon_nanofibers.pdf (accessed on 8 January 2022).
- (AE-SDS-CNF) American Elements Safety Data Sheet. Carbon (Graphite) Nanofibers, CAS No.: 7782-42-5. 2021. Available online: https://www.americanelements.com/carbon-nanofibers-7782-42-5 (accessed on 8 January 2022).
- (Metrohm-MSDS-CNF) Metrohm DropSens Material Safety Data Sheet. Carbon Nanofibers Solution. 2020. Available online: http://www.dropsens.com/en/pdfs_productos/new_brochures/msds/msds_drp_cnfsol_en.pdf (accessed on 8 January 2022).
- Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.W.; Zhuo, D.; Liu, Y.; Sun, J.; et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K.A.; Ceder, G.; Nazar, L.F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 2016, 9, 2273–2277. [Google Scholar] [CrossRef]
- Sun, X.; Bonnick, P.; Nazar, L.F. Layered TiS2 Positive Electrode for Mg Batteries. ACS Energy Lett. 2016, 1, 297–301. [Google Scholar] [CrossRef]
- (LTS-SDS-TiS2) LTS Research Laboratories, Inc. Safety Data Sheet. Titanium Sulfide, CAS No.: 12039-13-3. 2016. Available online: https://www.ltschem.com/msds/TiS2.pdf (accessed on 8 January 2022).
- Gregory, T.D.; Hoffman, R.J.; Winterton, R.C. Nonaqueous Electrochemistry of Magnesium: Applications to Energy Storage. J. Electrochem. Soc. 1990, 137, 775–780. [Google Scholar] [CrossRef]
- Kaveevivitchai, W.; Jacobson, A.J. High Capacity Rechargeable Magnesium-Ion Batteries Based on a Microporous Molybdenum–Vanadium Oxide Cathode. Chem. Mater. 2016, 28, 4593–4601. [Google Scholar] [CrossRef]
- Levi, M.; Lancri, E.; Levi, E.; Gizbar, H.; Gofer, Y.; Aurbach, D. The effect of the anionic framework of Mo6X8 Chevrel Phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ion. 2005, 176, 1695–1699. [Google Scholar] [CrossRef]
- Ma, Z.; MacFarlane, D.R.; Kar, M. Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review. Batter. Supercaps 2019, 2, 115–127. [Google Scholar] [CrossRef]
- Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727. [Google Scholar] [CrossRef]
- Doe, R.E.; Han, R.; Hwang, J.; Gmitter, A.J.; Shterenberg, I.; Yoo, H.D.; Pour, N.; Aurbach, D. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 2014, 50, 243–245. [Google Scholar] [CrossRef]
- Du, A.; Zhang, H.; Zhang, Z.; Zhao, J.; Cui, Z.; Zhao, Y.; Dong, S.; Wang, L.; Zhou, X.; Cui, G. A Crosslinked Polytetrahydrofuran-Borate-Based Polymer Electrolyte Enabling Wide-Working-Temperature-Range Rechargeable Magnesium Batteries. Adv. Mater. 2019, 31, 1805930. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, X. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J. Colloid Interface Sci. 2004, 278, 160–165. [Google Scholar] [CrossRef]
- Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. The challenge of developing rechargeable magnesium batteries. MRS Bull. 2014, 39, 453–460. [Google Scholar] [CrossRef]
- Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 2012, 82, 243–249. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Nam, K.-W.; Ling, C.; Arthur, T.S.; Song, W.; Knapp, A.M.; Ehrlich, S.N.; Yang, X.-Q.; Matsui, M. alpha-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 2012, 23, 110–113. [Google Scholar] [CrossRef]
- Gershinsky, G.; Yoo, H.D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964–10972. [Google Scholar] [CrossRef]
- Mao, M.; Gao, T.; Hou, S.; Wang, C. A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 2018, 47, 8804–8841. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, J.; Bucur, C.B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720. [Google Scholar] [CrossRef]
- Sano, H.; Senoh, H.; Yao, M.; Sakaebe, H.; Kiyobayashi, T. Mg2+ Storage in Organic Positive-electrode Active Material Based on 2,5-Dimethoxy-1,4-benzoquinone. Chem. Lett. 2012, 41, 1594–1596. [Google Scholar] [CrossRef] [Green Version]
- NuLi, Y.; Guo, Z.; Liu, H.; Yang, J. A new class of cathode materials for rechargeable magnesium batteries: Organosulfur compounds based on sulfur-sulfur bonds. Electrochem. Commun. 2007, 9, 1913–1917. [Google Scholar] [CrossRef]
- Pan, B.; Huang, J.; Feng, Z.; Zeng, L.; He, M.; Zhang, L.; Vaughey, J.T.; Bedzyk, M.J.; Fenter, P.; Zhang, Z.; et al. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1600140. [Google Scholar] [CrossRef]
- Zhang, R.; Mizuno, F.; Ling, C. Fullerenes: Non-transition metal clusters as rechargeable magnesium battery cathodes. Chem. Commun. 2015, 51, 1108–1111. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Fichtner, M. Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective. Front. Chem. 2019, 6, 656. [Google Scholar] [CrossRef]
- Levi, E.; Gofer, Y.; Vestfreed, Y.; Lancry, E.; Aurbach, D. Cu2Mo6S8 chevrel phase, a promising cathode material for new rechargeable Mg batteries: A mechanically induced chemical reaction. Chem. Mater. 2002, 14, 2767–2773. [Google Scholar] [CrossRef]
- Huie, M.M.; Bock, D.C.; Takeuchi, E.S.; Marschilok, A.C.; Takeuchi, K.J. Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 2015, 287, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Li, M.; Niu, C.; Li, Q.; Mai, L. Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries. Adv. Funct. Mater. 2019, 29, 1807847. [Google Scholar] [CrossRef]
- Bucur, C.B.; Gregory, T.; Oliver, A.G.; Muldoon, J. Confession of a Magnesium Battery. J. Phys. Chem. Lett. 2015, 6, 3578–3591. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhou, G.; Zhao, S.; Li, W.; Shi, F.; Li, J.; Feng, J.; Zhao, Y.; Wu, Y.; Guo, J.; et al. Improving a Mg/S battery with YCl3 additive and magnesium polysulfide. Adv. Sci. 2019, 6, 1800981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paskach, T.J.; Schrader, G.L.; McCarley, R.E. Synthesis of Methanethiol from Methanol over Reduced Molybdenum Sulfide Catalysts Based on the Mo6S8 Cluster. J. Catal. 2002, 211, 285–295. [Google Scholar] [CrossRef]
- Rabiller-Baudry, M.; Sergent, M.; Chevrel, R. Convenient syntheses of chevrel phase compounds from soluble sulfide precursors under flowing hydrogen atmosphere. Mat. Res. Bull. 1991, 26, 519–526. [Google Scholar] [CrossRef]
- Chevrel, R.; Sergent, M.; Prigent, J. Un nouveau sulfure de molybdene: Mo3S4 preparation, proprietes et structure cristalline. Mater. Res. Bull. 1974, 9, 1487–1498. [Google Scholar] [CrossRef]
- Chen, W.; Qi, W.; Lu, W.; Chaudhury, N.R.; Yuan, J.; Qin, L.; Lou, J. Direct Assessment of the Toxicity of Molybdenum Disulfide Atomically Thin Film and Microparticles via Cytotoxicity and Patch Testing. Small 2018, 14, 1702600. [Google Scholar] [CrossRef]
- (US-RN-SDS-MoS2) US Research Nanomaterials, Inc. Safety Data Sheet. Molybdenum Disulfide (MoS2) Powder, CAS No.: 1317-33-5. 2016. Available online: https://n.b5z.net/i/u/10091461/f/MSDS-NANOPOWDERS/US2180.pdf (accessed on 8 January 2022).
- Lee, H.Y.; Goodenough, J.B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 1999, 144, 220–223. [Google Scholar] [CrossRef]
- Lee, H.Y.; Manivannan, V.; Goodenough, J. Electrochemical capacitors with KCl electrolyte. Comptes Rendus Acad. Des. Sci. Ser. IIC Chem. 1999, 2, 565–577. [Google Scholar] [CrossRef]
- Lee, T.H.; Pham, D.T.; Sahoo, R.; Seok, J.; Luu, T.H.T.; Lee, Y.H. High energy density and enhanced stability of asymmetric supercapacitors with mesoporous MnO2@CNT and nanodot MoO3@CNT free-standing films. Energy Storage Mater. 2018, 12, 223–231. [Google Scholar] [CrossRef]
- Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Env. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- (NCBI-MnO2) National Center for Biotechnology Information. PubChem Database. Manganese Dioxide, CID = 14801. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Manganese-dioxide (accessed on 8 January 2022).
- (Evraz-SDS-V2O5) Evraz Stratcor Inc. Safety Data Sheet. Vanadium Pentoxide (V2O5). 2015. Available online: www.evrazstratcor.com (accessed on 8 January 2022).
- Whittingham, M.S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11440. [Google Scholar] [CrossRef]
- (Materion-SDS-MoO3) Materion Safety Data Sheet. Molybdenum Trioxide (MoO3), CAS No.: 1313-27-5. 2018. Available online: https://www.materion.com/api/materion/Msds/Download?fileName=1XC_MOLYBDENUM%20OXIDE%20(MOO3)_SDS-EU_EU%20English.pdf (accessed on 8 January 2022).
- (SA-SDS-C8H8O4) Sigma-Aldrich Safety Data Sheet. 2,5-Dimethoxy-(1,4)benzoquinone. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/r164348 (accessed on 8 January 2022).
- (TCI-MSDS-C8H8O4) TCI America Material Safety Data Sheet. 2,5-Dimethoxy-1,4-benzoquinone, CAS No.: 3117-03-1. 2005. Available online: https://www.zoro.com/static/cms/enhanced_pdf/ZQ_7n4jgko.PDF (accessed on 8 January 2022).
- Strem Chemicals, Inc. Safety Data Sheet. Fullerenes—C₆₀ /C₇₀ Mixture, CAS No.: 131159-39-2. 2021. Available online: https://www.strem.com/uploads/sds/sd06-0500_US.pdf (accessed on 8 January 2022).
- (ThermoFisher-SDS-Fullerene) ThermoFisher Scienific Safety Data Sheet. Fullerene C60. 2018. Available online: https://www.fishersci.com/store/msds?partNumber=AC295010010&productDescription=FULLERENE+C60%2C+99.90%25+1GR&vendorId=VN00032119&countryCode=US&language=en (accessed on 8 January 2022).
- (Cheap Tubes-MSDS-Fullerenes) Cheap Tubes Inc. Material Safety Data Sheet. Carbon Fullerenes. 2015. Available online: https://www.ctimaterials.com/wp-content/uploads/2015/03/Fullerenes-MSDS.pdf (accessed on 8 January 2022).
- Muldoon, J.; Bucur, C.B.; Gregory, T. Magnesiumbatterien—Ein Aufruf an Synthesechemiker: Elektrolyte und Kathoden dringend gesucht. Angew. Chem. 2017, 129, 12232–12253. [Google Scholar] [CrossRef]
- (Airgas-SDS-O2) Airgas USA Safety Data Sheet. Oxygen, CAS No.: 7782-44-7. 2020. Available online: https://www.airgas.com/msds/001043.pdf (accessed on 8 January 2022).
- (BOC-SDS-O2) BOC Safety Data Sheet. Oxygen Compressed, CAS No.: 7782-44-7. 2016. Available online: https://www.boconline.co.uk/en/images/10021701_tcm410-84499.pdf (accessed on 8 January 2022).
- (ThermoFisher-SDS-CuF2) ThermoFisher Scientific Safety Data Sheet. Copper(II) Fluoride, CAS-No 7789-19-7. 2020. Available online: https://ukpai-acrext-p1.acros.com/DirectWebViewer/private/document.aspx?prd=ACR20337~~PDF~~MTR~~CLP1~~EN~~2020-12-13%2005:35:40~~Copper(II) (accessed on 8 January 2022).
- (ThermoFisher-SDS-CuF2) ThermoFisher Scientific Safety Data Sheet. Copper(II) Fluoride, CAS-No 7789-19-7. 2018. Available online: https://www.fishersci.com/store/msds?partNumber=AC203370250&productDescription=COPPER%28II%29+FLUORIDE%2C+ANH+25GR&vendorId=VN00032119&countryCode=US&language=en (accessed on 8 January 2022).
- (CarlRoth-SDS-AgCl) CarlRoth Safety Data Sheet. Silver Chloride, CAS No.: 7783-90-6. 2017. Available online: https://www.carlroth.com/medias/SDB-5302-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyMDI1ODN8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oODkvaGQzLzg5NTA3MTkzMTU5OTgucGRmfDg0N2UxMTY3YzRjYTAyZTk0MWQ0MGUwN2ViZGM5NDY2MDZlMzdjMmU2MmQzODIwNDU0NTY4NzJmODYxZmRkOWY (accessed on 8 January 2022).
- (Fisher-MSDS-AgCl) Fisher Scientific Material Safety Data Sheet. Silver Chloride, CAS No.: 7783-90-6. 2008. Available online: https://fscimage.fishersci.com/msds/20787.htm (accessed on 8 January 2022).
- (AquaPhoenix-SDS-AgCl) AquaPhoenix Scientific, Inc. Safety Data Sheet. Silver Chloride, CAS No.: 7783-90-6. 2015. Available online: https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/chemicals-s/S25524.pdf (accessed on 8 January 2022).
- (Chem-Supply-SDS-S) Chem-Supply PTY Ltd. Safety Data Sheet. (ABN 19008264211). Sulfur. CAS No.: 7704-34-9. 2014. Available online: https://www.chemsupply.com.au/documents/ST0061CH71.pdf (accessed on 8 January 2022).
- (SA-MSDS-S) Sigma-Aldrich Material Safety Data Sheet. Sulfur. CAS No.: 7704-34-9. 2012. Available online: www.sigma-aldrich.com (accessed on 8 January 2022).
- Li, Y.; Zhang, Y.; Yu, M.; Pei, H.; Liu, W.; Guo, R.; Xie, J.; Wang, Y.; Yang, C. Lightweight flexible sulfur electrode and preparation method and application thereof. CN201811478988, 2019. Shanghai Space Dianyuan Institute. Available online: https://www.jmrhip.com/static/patent/html/CN109713310A.html (accessed on 8 January 2022).
- Chaudhuri, I.; Fruijtier-Pölloth, C.; Ngiewih, Y.; Levy, L. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: A critical review. Crit. Rev. Toxicol. 2018, 48, 143–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- (TIMCAL-MSDS-Super P) TIMCAL Belgium, N.V. Material Safety Data Sheet. Ensaco 150/210/250/260/350 Granular, Ensaco 150/250P, Super P, Super P-Li, C-NERGY Super C 45/65, CAS No.: 1333-86-4. 2011. Available online: https://ehslegacy.unr.edu/msdsfiles/24831.pdf (accessed on 8 January 2022).
- Lenntech, B.V. Chemical Properties of Carbon—Health Effects of Carbon—Environmental Effects of Carbon. 2020. Available online: https://www.lenntech.com/periodic/elements/c.htm (accessed on 8 January 2022).
- Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.; Horcajada, P. Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B 2014, 2, 262–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruyra, A.; Yazdi, A.; Espin, J.; Maspoch, D. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles. Chem.-Eur. J. 2015, 21, 2508–2518. [Google Scholar] [CrossRef]
- Ren, F.; Yang, B.C.; Cai, J.; Jiang, Y.D.; Xu, J.; Wang, S. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. J. Hazard. Mater. 2014, 271, 283–291. [Google Scholar] [CrossRef]
- Grall, R.; Hidalgo, T.; Delic, J.; Garcia-Marquez, A.; Chevillard, S.; Horcajada, P. In vitro biocompatibility of mesoporous metal (III.; Fe, Al, Cr) trimesate MOF nanocarriers. J. Mater. Chem. B 2015, 3, 8279–8292. [Google Scholar] [CrossRef]
- Wagner, A.; Liu, Q.; Rose, O.L.; Eden, A.; Vijay, A.; Rojanasakul, Y.; Dinu, C.Z. Toxicity screening of two prevalent metal organic frameworks for therapeutic use in human lung epithelial cells. Int. J. Nanomed. 2019, 14, 7583–7591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- (BakerCorp-SDS-AC) BakerCorp Safety Data Sheet. Activated Carbon, CAS No.: 7440-44-0. 2015. Available online: https://newpig.scene7.com/is/content/NewPig/pdfs/MSD-V021.pdf (accessed on 8 January 2022).
- (CarlRoth-SDS-AC) Carl Roth Safety Data Sheet. Activated Carbon Powder, CAS No.: 7440-44-0. 2021. Available online: https://www.carlroth.com/medias/SDB-5963-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNTM2MTh8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oZjAvaGE1LzkwMjQyNTU3NTQyNzAucGRmfDMxNDI5OWI3OTgwNTdkYTdjZTRhMmM5ZmNiOTZlODEyN2Y1MjgyYjM1YTMzZmEwYjJmYmJmNmI2MWVmMDJmNDA (accessed on 8 January 2022).
- Chen, R.; Zhao, T.; Wu, F. From a historic review to horizons beyond: Lithium–sulphur batteries run on the wheels. Chem. Commun. 2015, 51, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.B.; Wei, S.; Zhang, L.; Xu, R.; Huang, H.H.; Lou, X.W. Embedding Sulfur in MOF-Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chem. Eur. J. 2013, 19, 10804. [Google Scholar] [CrossRef] [PubMed]
- Oschatz, M.; Thieme, S.; Borchardt, L.; Lohe, M.R.; Biemelt, T.; Bruckner, J.; Althues, H.; Kaskel, S. A new route for the preparation of mesoporous carbon materials with high performance in lithium–sulphur battery cathodes. Chem. Commun. 2013, 49, 5832–5834. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Huang, X.; Liu, H.; Sun, B.; Yeoh, W.; Li, K.; Zhang, J.; Wang, G. 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries. Adv. Energy Mater. 2014, 4, 1301761. [Google Scholar] [CrossRef]
- Jayaprakash, N.; Shen, J.; Moganty, S.S.; Corona, A.; Archer, L.A. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium–Sulfur Batteries. Angew. Chem. 2011, 123, 6026–6030. [Google Scholar] [CrossRef]
- He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L.F. Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes. ACS Nano. 2013, 7, 10920–10930. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef]
- Zuo, P.; Li, Y.; He, M.; Li, R.; Ma, Y.; Du, C.; Gao, Y.; Yin, G. Method for Carbon Fiber Reinforced High-Load Sulfur Electrode. CN107910535A, 2018. Harbin Institute of Technology. Available online: https://patents.google.com/patent/CN107910535A/zh (accessed on 8 January 2022).
- (ACS-SDS-CMK-3) ACS Material LLC Safety Data Sheet. ACS Material Ordered Mesoporous Carbon CMK-3, CAS-No.: 7440-44-0. 2017. Available online: https://www.acsmaterial.com/pub/media/catalog/product/s/d/sds-ordered_mesoporous_carbon_cmk-3.pdf (accessed on 8 January 2022).
- (SA-SDS-MeC) Sigma-Aldrich Safety Data Sheet. Carbon, Mesoporous, CAS No.: 1333-86-4. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/702102 (accessed on 8 January 2022).
- Wang, T.; Jiang, X. Toxicity Mechanism of Graphene Oxide and Nitrogen-doped Graphene Quantum Dots in RBCs Revealed by Surface-Enhanced Infrared Absorption Spectroscopy. Toxicol. Res. 2015, 4, 885–894. [Google Scholar] [CrossRef]
- (CN-MSDS-GP) Cambridge Nanosystems Ltd. Material Safety Data Sheet. CamGraph Graphene Powder. 2019. Available online: https://cambridgenanosystems.com/wp-content/uploads/2015/05/CNS_CamGraph_MSDS_V1.0.pdf (accessed on 8 January 2022).
- (GS-SDS-CGS) Graphene Supermarket Safety Data Sheet. Conductive Graphene Sheets. CAS-No.: 7782-42-5. 2016. Available online: www.graphene-supermarket.com (accessed on 8 January 2022).
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- (Raymor-SDS-CNT) Raymor Nanotech, Division of Raymor Industries Inc. Safety Data Sheet. Carbon Nanotube, Single-Walled. 2014. Available online: https://raymor.com/wp-content/uploads/2014/10/MSDS-SWNT-RN-020.pdf (accessed on 8 January 2022).
- (Pyrograf-SDS-CNF) Pyrograf Products, Inc. Safety data Sheet. Pyrograf III Carbon Nanofiber, PS Grade. 2016. Available online: https://apsci.com/wp-content/uploads/2021/05/UPDATED-SDS-Version-9-PS-grade.pdf (accessed on 8 January 2022).
- (GOLeafe-MSDS-rGO) GOLeafe Materials Safety Data Sheet. Reduced Graphene Oxide, rGO, CAS No.: 7782-4-5. 2019. Available online: https://goleafe.com/wp-content/uploads/2017/09/GOLeafe-MSDS.pdf (accessed on 8 January 2022).
- (ACS-SDS-rGO) ACS Material LLC Safety Data Sheet. ACS Material Reduced Graphene Oxide (rGO), CAS-No.: 7782-42-5. 2017. Available online: https://www.acsmaterial.com/pub/media/catalog/product/file/SDS-Reduced_Graphene_Oxide_rGO_.pdf (accessed on 8 January 2022).
- (CGT-MSDS-rGO) Ceylon Graphene Technologies Pvt Ltd. Material Safety Data Sheet, Reduced Graphene Oxide. 2021. Available online: https://www.ceylongraphene.com/pdf/reduced-graphene-oxide-msds.pdf (accessed on 8 January 2022).
- (XiXisys-SDS-MgS) XiXisys Safety Data Sheet. Magnesium sulfide (MgS), CAS No.: 12032-36-9. 2017. Available online: https://www.guidechem.com/msds/12032-36-9.html (accessed on 28 January 2022).
- Zheng, T.; Gao, Y.; Deng, X.; Liu, H.; Liu, J.; Liu, R.; Shao, J.; Li, Y.; Jia, L. Comparisons between Graphene Oxide and Graphdiyne Oxide in Physicochemistry Biology and Cytotoxicity. ACS Appl. Mater. Interfaces 2018, 10, 32946–32954. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Fu, L.; Huimin, X.; Zhonghua, Z.; Xu, H.; Wang, X. Sulfur/Sulfide/Copper Ternary Composite Positive Electrode and Its Preparation and Application in Magnesium-Sulfur Battery. CN106935796 A, 2017. Qingdao Institute of Bioenergy & Bioprocess Technology Chinese Academy of Science. Available online: https://patents.google.com/patent/CN106935796A/en (accessed on 8 January 2022).
- (SA-SDS-MiC) Sigma-Aldrich Safety Data Sheet. Microporous Carbon Boiling Chips. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/z265918 (accessed on 8 January 2022).
- (LTS-SDS-FeS2) LTS Research Laboratories, Inc. Safety Data Sheet. Iron Disulfide FeS2, CAS No.: 12068-85-8. 2018. Available online: https://www.ltschem.com/msds/FeS2.pdf (accessed on 8 January 2022).
- (LTS-SDS-SnS2) LTS Research Laboratories, Inc. Safety Data Sheet. Tin Sulfide SnS2, CAS No.: 1315-01-1. 2015. Available online: https://www.ltschem.com/msds/SnS2.pdf (accessed on 8 January 2022).
- (LTS-SDS-MoS2) LTS Research Laboratories, Inc. Safety Data Sheet. Molybdenum Sulfide, CAS No.: 1317-33-5. 2015. Available online: https://www.ltschem.com/msds/MoS2.pdf (accessed on 8 January 2022).
- Lorad Chemical Corporation Safety Data Sheet. Cobalt Disulfide CoS2, CAS No: 12013-10-4. 2017. Available online: https://loradchemical.com/data/sds/SDS-Cobalt-Disulfide.pdf (accessed on 8 January 2022).
- (AE-SDS-Ni2S3) American Elements Safety Data Sheet Nickel(III) Sulfide, CAS No.: 12259-56-2. 2021. Available online: https://www.americanelements.com/nickel-iii-sulfide-12259-56-2 (accessed on 8 January 2022).
- Frey, M.; Zenn, R.K.; Warneke, S.; Müller, K.; Hintennach, A.; Dinnebier, R.E.; Buchmeiser, M.R. Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Lett. 2017, 2, 595–604. [Google Scholar] [CrossRef]
- Warneke, S.; Eusterholz, M.; Zenn, R.K.; Hintennach, A.; Dinnebier, R.; Buchmeiser, M.R. Differences in Electrochemistry between Fibrous SPAN and Fibrous S/C Cathodes Relevant to Cycle Stability and Capacity. J. Electrochem. Soc. 2018, 165, A6017–A6020. [Google Scholar] [CrossRef]
- Warneke, S.; Zenn, R.K.; Lebherz, T.; Müller, K.; Hintennach, A.; Starke, U.; Dinnebier, R.E.; Buchmeiser, M.R. Hybrid Li/S Battery Based on Dimethyl Trisulfide and Sulfurized Poly(acrylonitrile). Adv. Sustain. Syst. 2018, 2, 1700144. [Google Scholar] [CrossRef]
- Fanous, J.; Wegner, M.; Spera, M.B.M.; Buchmeiser, M.R. High Energy Density Poly(acrylonitrile)-Sulfur Composite-Based Lithium-Sulfur Batteries. J. Electrochem. Soc. 2013, 160, A1169–A1170. [Google Scholar] [CrossRef]
- Fanous, J.; Wegner, M.; Grimminger, J.; Rolff, M.; Spera, M.B.M.; Tenzerb, M.; Buchmeiser, M.R. Correlation of the electrochemistry of poly(acrylonitrile)–sulfur composite cathodes with their molecular structure. J. Mater. Chem. 2012, 22, 23240–23245. [Google Scholar] [CrossRef]
- Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, Ä.; Buchmeiser, M.R. Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries. Chem. Mater. 2011, 23, 5024–5028. [Google Scholar] [CrossRef]
- Mayer, A.; Buchmeiser, M.R. Communication—Influence of Temperature and Electrolyte Viscosity on the Electrochemical Performance of SPAN-Based Lithium-Sulfur Cells. J. Electrochem. Soc. 2018, 165, A3943–A3945. [Google Scholar] [CrossRef]
- Hintennach, A. Verfahren zur Herstellung eines mit einer Schutzschicht versehenen aktiven Kathodenmaterials für eine Metall-Schwefel-Batterie sowie Kathode für eine Metall-Schwefel-Batterie mit einem derartigen Kathodenmaterial. DE102016014148A1. 2017. Available online: https://www.freepatentsonline.com/DE102016014148A1.html (accessed on 8 January 2022).
- Lv, D.P.; Xu, T.; Saha, P.; Datta, M.K.; Gordin, M.L.; Manivannan, A.; Kumta, P.N.; Wang, D.H. A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl2EtBu)2/THF Electrolyte. J. Electrochem. Soc. 2013, 160, A351–A355. [Google Scholar] [CrossRef] [Green Version]
- (Alufoil-MSDS-Al) Alufoil Products Co., Inc. Material Safety Data Sheet, Uncoated Aluminum Metal, CAS No.: 7429-90-5. 2007. Available online: http://aluminumfoil.alufoil.com/Asset/MSDS-1XXX-20070101-Alufoil.pdf (accessed on 8 January 2022).
- (ThermoFisher-SDS-Al) ThermoFisher Scientific Safety Data Sheet. Aluminium Foil, CAS No.: 7429-90-5. 2020. Available online: https://www.fishersci.ca/store/msds?partNumber=AA00004KI&productDescription=aluminum-foil-0-13mm-0-005in-thick-50x125mm-2-0x4-9in-99-9995-metals-basis-alfa-aesar-2&language=en&countryCode=CA (accessed on 8 January 2022).
- (CDH-SDS-Al) Central Drug House Safety Data Sheet, Aluminium Foil, CAS-No.: 7429-90-5. 2021. Available online: https://www.cdhfinechemical.com/images/product/msds/51_142322642_AluminiumFoil(Roll)-CASNO-7429-90-5-MSDS.pdf (accessed on 8 January 2022).
- (Haydon-SDS-Al) Norandal Aluminum Inc. Safety Data Sheet. Aluminum Sheet and Foil. 2015. Available online: https://www.haydoncorp.com/portals/0/documents/msds/Aluminum%20Sheet%20and%20Foil%20-%20Safety%20Data%20Sheet.pdf (accessed on 8 January 2022).
- (Oxford-MSDS-Al) Oxford Lab Fine Chem LLP Material Safety Data Sheet. Aluminium Metal Foil AR, CAS No.: 7429-90-5. 2021. Available online: https://www.oxfordlabchem.com/msds/(A-00455)%20ALUMINIUM%20METAL%20FOIL%20AR.pdf (accessed on 8 January 2022).
- (Uddeholm-SDS-Steel) Uddeholm Safety Data Sheet. Stainless Steel Foil Supplied by Uddeholm. 2010. Available online: https://www.uddeholm.com/app/uploads/sites/41/2017/12/MSDS_Stainless_steel_foil_supplied_by_Uddeholm.pdf (accessed on 8 January 2022).
- (NS-SDS-Steel) Nippon Steel Chemical & Material Co., Ltd. Safety Data Sheet. Stainless Steel Foil Product. 2018. Available online: https://www.nscm.nipponsteel.com/stainless_steel_foil/pdf/20181001%20SDS%20(SS112)_E.pdf (accessed on 8 January 2022).
- (ThyssenKrupp-SDS-Steel) ThyssenKrupp Materials NA, Inc., Safety Data Sheet. Stainless Steel and Alloys of Stainless Steel. 2018. Available online: https://ucpcdn.thyssenkrupp.com/_legacy/UCPthyssenkruppBAMXNA/assets.files/tkmna_com/resources/safety-data-sheets/metals/stainless_steel_and_alloys_of_stainless_steel_sds_2018.pdf (accessed on 8 January 2022).
- (MTI-SDS-Al) MTI Corporation Safety Data Sheet. Aluminum, CAS No.: 7429-90-5. 2018. Available online: https://www.mtixtl.com/sds/Aluminum_SDS.pdf (accessed on 8 January 2022).
- (MTI-SDS-Graphite) MTI Corporation Safety Data Sheet. Graphite, CAS No.: 7782-42-5. 2018. Available online: https://www.mtixtl.com/sds/Conductive_Graphite_Powder_SDS.pdf (accessed on 8 January 2022).
- (Breckland-SDS-Cu) Breckland Scientific Supplies Ltd. Safety Data Sheet. Copper Metal—Foil 0.1Mm, CAS No.: 7440-50-8. 2018. Available online: https://www.brecklandscientific.co.uk/v/vspfiles/MSDS/S0002033.pdf (accessed on 8 January 2022).
- (AA-SDS-Cu) Alfa Aesar, Johnson Matthey Company; Johnson Matthey Catalog Company, Inc. Safety Data Sheet. Copper foil, CAS No. 7440-50-8. 2011. Available online: https://rsc.aux.eng.ufl.edu/_files/msds/2/Copper%20Foil.pdf (accessed on 8 January 2022).
- (Denkai-SDS-Cu) Denkai America, Inc. Safety Data Sheet. Copper Foil. 2020. Available online: http://denkaiamerica.com/wp-content/uploads/2021/01/Safety-Data-Sheets.pdf (accessed on 8 January 2022).
- (AquaPhoenix-SDS-Cu) AquaPhoenix Scientific, Inc. Safety Data Sheet. Copper, Metal Foil, CAS NO.: 7440-50-8. 2015. Available online: https://preview.fishersci.com/store/msds?partNumber=S25267&productDescription=COPPER+METAL+FOIL+100G+.005&vendorId=VN00115888&countryCode=US&language=en (accessed on 8 January 2022).
- (ESPI-MSDS-Incontel) Electronic Space Products International Material Safety Data Sheet. Incontel. 2002. Available online: http://www.ifa.hawaii.edu/instr-shop/SDS/Inconel.pdf (accessed on 8 January 2022).
- (Renishaw-SDS-Incontel) Renishaw Plc Safety Data Sheet. Inconel 625 Powder. 2016. Available online: http://resources.renishaw.com (accessed on 8 January 2022).
- (GPT-MSDS-Incontel) GPT Industries Material Safety Data Sheet. Inconel 625. 2016. Available online: https://www.gptindustries.com/sites/default/files/documents/en/Inconel%20625%20Material%20Safety%20Data%20Sheet_0.pdf (accessed on 8 January 2022).
- Muldoon, J.; Bucur, C.B.; Oliver, A.G.; Zajicek, J.; Allred, G.D.; Boggess, W.C. Corrosion of magnesium electrolytes: Chlorides—The culprit. Energy Environ. Sci. 2013, 6, 482–487. [Google Scholar] [CrossRef]
- Muthuraj, D.; Ghosh, A.; Kumar, A.; Mitra, S. Nitrogen and Sulfur Doped Carbon Cloth as Current Collector and Polysulfide Immobilizer for Magnesium-Sulfur Batteries. ChemElectroChem 2019, 6, 684–689. [Google Scholar] [CrossRef]
- (ACS-SDS-NdGPC) ACS Material LLC, Safety Data Sheet. ACS Material Nitrogen-Doped Graphitic Porous Carbon, CAS-No.: 7440-44-0. 2017. Available online: https://www.acsmaterial.com/pub/media/catalog/product/s/d/sds-nitrogen-doped_graphitic_porous_carbon_.pdf (accessed on 8 January 2022).
- (AE-SDS-N/ScdGO) American Elements, Safety Data Sheets. Nitrogen/Sulfur Co-Doped Graphene, CAS No.: 1034343-98-0. 2021. Available online: https://www.americanelements.com/nitrogen-sulfur-co-doped-graphene-1034343-98-0 (accessed on 8 January 2022).
- Ji, Z.; Arvapalli, D.M.; Zhang, W.; Yin, Z.; Wei, J. Nitrogen and sulfur co-doped carbon nanodots in living EA.hy926 and A549 cells: Oxidative stress effect and mitochondria targeting. J. Mater. Sci. 2020, 55, 6093–6104. [Google Scholar] [CrossRef]
- Fluorochem Ltd. Safety Data Sheet. Poly(Vinylidene Fluoride), CAS No.: 24937-79-9. 2011. Available online: http://www.fluorochem.co.uk (accessed on 8 January 2022).
- Sajid, M.; Ilyas, M. PTFE-coated non-stick cookware and toxicity concerns: A perspective. Env. Sci. Pollut. Res. Int. 2017, 24, 23436–23440. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Hamada, O.; Sasaki, A.; Ikeda, M. Polymer fume fever. BMJ Case Rep. 2012, 2012, bcr2012007790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HaloPolymer Kirovo-Chepetsk, LLC Safety Data Sheet. Polytetrafluoroethylene, CAS No.: 9002-84-0. 2017. Available online: www.halopolymer.com (accessed on 8 January 2022).
- (MTI-SDS-CMCS) MTI Corporation Safety Data Sheet. Carboxymethylcellulose Sodium, CAS No.: 9004-32-4. 2018. Available online: https://www.mtixtl.com/sds/EQ-Lib-CMC_SDS.pdf (accessed on 8 January 2022).
- (MTI-SDS-SBR) MTI Corporation Safety Data Sheet. SBR Binder for Li-Ion Anode. 2013. Available online: http://mtikorea.co.kr/web/smh/pdf/MSDS_SBR_Binder.pdf (accessed on 8 January 2022).
- (CarlRoth-SDS-AlCl3) CarlRoth Safety Data Sheet. Aluminium Chloride ≥98 %, Anhydrous, Resublimated, CAS Number 7446-70-0. 2021. Available online: https://www.carlroth.com/medias/SDB-CN86-MT-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzMDMyOTR8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oZjgvaGYwLzkwMzY0MDY1MjE4ODYucGRmfGEyY2Q2ZjAxODQxNGRjMjFhNDU3YTZiZWQ0MzE5MmMzYjY2MjliMDJiMWIyNTdjMDNlYjQxMmE3MTczYmVkZmM (accessed on 8 January 2022).
- (ThermoFisher-SDS-AlCl3) ThermoFisher Scientific Safety Data Sheet. Aluminium Chloride, CAS Number 7446-70-0. 2019. Available online: https://www.fishersci.com/msds?productName=AC217460050&product (accessed on 8 January 2022).
- (SA-SDS-PhMgCl) Sigma-Aldrich Safety Data Sheet. Phenylmagnesium Chloride Solution. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/224448 (accessed on 8 January 2022).
- (CarlRoth-SDS-LiCl) CarlRoth Safety Data Sheet. Lithium Chloride, CAS No.: 7447-41-8. 2018. Available online: https://www.carlroth.de/medias/SDB-P007-AU-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyMjE2MDB8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oNmMvaDg1Lzg5Njk3Mzk3OTY1MTAucGRmfDFmMWRlODdmOGQ0MWJmODk4ZGRlNTQ2ZDRiNjQ4MzViZTNjZDI4ZjhhZWVjNDc0YzNiNWRmZDQ1ZDBmOTY2NTk (accessed on 8 January 2022).
- Wall, C.; Zhao-Karger, Z.; Fichtner, M. Corrosion Resistance of Current Collector Materials in Bisamide Based Electrolyte for Magnesium Batteries. ECS Electrochem. Lett. 2014, 4, C8–C10. [Google Scholar] [CrossRef] [Green Version]
- Liebenow, C.; Yang, Z.; Lobitz, P. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates. Electrochem. Commun. 2000, 2, 641645. [Google Scholar] [CrossRef]
- (Linde-SDS-BF3) Linde Inc. Safety Data Sheet. Boron Trifluoride. CAS-No.: 7637-07-2. 2016. Available online: https://www.lindeus.com/-/media/corporate/praxairus/documents/sds/boron-trifluoride-bf3-safety-data-sheet-sds-p4567.pdf?la=en (accessed on 8 January 2022).
- (SA-SDS-Hexamethyldisilazane) Sigma-Aldrich Safety Data Sheet. Hexamethyldisilazane, CAS No.: 999-97-3. 2016. Available online: https://www.tnstate.edu/nanobio/documents/Hexamethyldisilazane%20HMDS.pdf (accessed on 8 January 2022).
- (AE-SDS-Magnesium Bis(hexamethyldisilazide) American Element Safety Data Sheet. Magnesium Bis(hexamethyldisilazide), CAS No.: 857367-60-3. 2021. Available online: https://www.americanelements.com/magnesium-bis-hexamethyldisilazide-857367-60-3 (accessed on 8 January 2022).
- (AE-SDS-Magnesium bis(diisopropyl)amide) American Elements Safety Data Sheet. Magnesium Bis(diisopropyl)amide Solution 0.70 M in THF, CAS No.: 23293-23-4. 2021. Available online: https://www.americanelements.com/magnesium-bis-diisopropyl-amide-23293-23-4 (accessed on 8 January 2022).
- (CarlRoth-SDS-Tetrahydrofuran) CarlRoth Safety Data Sheet. Tetrahydrofuran ≥99,5 %, Stabilized, for Synthesis, CAS No.: 109-99-9. 2021. Available online: https://www.carlroth.com/medias/SDB-4745-IE-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzMDYzNTl8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oOWEvaDk3LzkwMjcwMDIyMDQxOTAucGRmfGY4MmJkODc3OGNkOGJmNjJmYWM4NTc0YjJlODUxODRhOTM3MGMyZTBjYWY3M2RiZjNmZWJmMjRjYmE2YjZlMGI (accessed on 8 January 2022).
- (ThermoFisher-SDS-2-Methoxyethyl ether) ThermoFisher Scientific Safety Data Sheet. 2-Methoxyethyl Ether, CAS No.: 111-96-6. 2021. Available online: https://www.fishersci.co.uk/chemicalProductData_uk/wercs?itemCode=10020110&lang=EN (accessed on 8 January 2022).
- (SA-SDS-Tetraethylene glycol dimethyl ether) Sigma-Aldrich Safety Data Sheet. Tetraethylene Glycol Dimethyl Ether for Synthesis, CAS No.: 143-24-8. 2019. Available online: https://www.merckmillipore.com/PL/pl/product/msds/MDA_CHEM-820959?Origin=PDP (accessed on 8 January 2022).
- (NCBI-TEGDME) National Center for Biotechnology Information. PubChem Compound Summary for CID 8925, Tetraglyme. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tetraglyme (accessed on 8 January 2022).
- (Acros-SDS-TEGDME) Acros Organics, N.V. Safety Data Sheet. Tetraethylene Glycol Dimethyl Ether, 99%, CAS No.: 143-24-8. 2008. Available online: https://fscimage.fishersci.com/msds/34316.htm (accessed on 8 January 2022).
- Zuo, P.; Li, Y.; Yin, G.; Li, R.; Ma, Y.; Du, C.; Gao, Y. Preparation Method and Application of Magnesium-Sulfur Battery Electrolyte Containing Lithium Ion Additive, CN109244544B, 2020. Harbin Institute of Technology. Available online: https://patents.google.com/patent/CN109244544B/en (accessed on 8 January 2022).
- (GB-SDS-C2F6LiNO4S) Gold Biotechnology, Inc. Safety Data Sheet. Bis(trifluoromethane)sulfonimide Lithium Salt, CAS No.: 90076-65-6. 2018. Available online: https://www.goldbio.com/documents/3819/B-340-SDS_(MSDS).pdf (accessed on 8 January 2022).
- (SA-MSDS-Li) Sigma-Aldrich Material Safety Data Sheet. Lithium, CAS No.: 7439-93-2. 2014. Available online: https://www.nwmissouri.edu/naturalsciences/sds/l/Lithium.pdf (accessed on 8 January 2022).
- NuLi, Y.; Zhao, X.; Yang, Y.; Yang, J.; Wang, J. CN1096870727A, 2019. Shanghai Jiao Tong University.
- (AS-SDS-THFPB) Apollo Scientific Ltd. Safety Data Sheet. Tris(2H-hexafluoroisopropyl) Borate, CAS: 6919-80-8. 2007. Available online: https://cymitquimica.com/products/54-PC3486/6919-80-8/tris2h-hexafluoroisopropyl-borate/ (accessed on 8 January 2022).
- Ding, M.S.; Diemant, T.; Behm, R.J.; Passerini, S.; Giffin, G.A. Dendrite Growth in Mg Metal Cells Containing Mg(TFSI)2/Glyme Electrolytes. J. Electrochem. Soc. 2018, 165, A1983–A1990. [Google Scholar] [CrossRef]
- Hu, X.-C.; Shi, Y.; Lang, S.-Y.; Zhang, X.; Gu, L.; Guo, Y.-G.; Wen, R.; Wan, L.-J. Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy 2018, 49, 453–459. [Google Scholar] [CrossRef]
- Yu, Y.; Baskin, A.; Valero-Vidal, C.; Hahn, N.T.; Liu, Q.; Zavadil, K.R.; Eichhorn, B.W.; Prendergast, D.; Crumlin, E.J. Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack. Chem. Mater. 2017, 29, 8504–8512. [Google Scholar] [CrossRef]
- (CarlRoth-SDS-I2) CarlRoth SafetyData Sheet. Iodine ≥ 99.5%, Ph.Eur. Resublimated, CAS No.: 7553-56-2. 2021. Available online: https://www.carlroth.com/medias/SDB-7935-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wzNzk3NDd8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oMTkvaGY2LzkwMTY4NDg4NzU1NTAucGRmfGQyM2IyNjlmZWMwOGZkMzBkNDYyMGE5ZTM0ODVmN2IzM2FiZDk5ZWIxNjk4ODhkMDg0ZDE1OWE3YjY2MDc4ZGQ (accessed on 8 January 2022).
- (SA-SDS-Mg(TFSI)2) Sigma-Aldrich Safety Data Sheet. Magnesium bis(trifluoromethanesulfonimide), CAS-No.: 133395-16-1. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/753424 (accessed on 8 January 2022).
- (NCBI-C8H18Mg, 2021) National Center for Biotechnology Information. PubChem Compound Summary for CID 70929, Dibutylmagnesium. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dibutylmagnesium (accessed on 8 January 2022).
- (GuideChem-SDS-Trifluoromethanesulfonic acid) GuideChem Safety Data Sheet. Trifluoromethanesulfonic acid, CAS No.: 1493-13-6. 2017. Available online: https://www.guidechem.com/msds/1493-13-6.html (accessed on 8 January 2022).
- (BP-SDS-Butane) BP Australia Pty Ltd. Safety Data Sheet. BP Butane. 2021. Available online: https://www.bp.com/content/dam/bp/country-sites/en_au/australia/home/products-services/data-sheets/bp-butane.pdf (accessed on 8 January 2022).
- (SA-MSDS-MgO) Sigma-Aldrich Material Safety Data Sheet. Magnesium oxide, CAS No.: 1309-48-4. 2014. Available online: https://www.nwmissouri.edu/naturalsciences/sds/m/Magnesium%20oxide.pdf (accessed on 8 January 2022).
- (BS-SDS-Mg(OH)2) Breckland Scientific Supplies Ltd Safety Data Sheet. Magnesium Hydroxide, CAS No.: 1309-42-8. 2018. Available online: https://www.brecklandscientific.co.uk/v/vspfiles/MSDS/S0001197.pdf (accessed on 8 January 2022).
- (TCI-SDS-Crown Ether) TCI Europe N.V. Safety Data Sheet. 18-Crown 6-Ether, CAS-No.: 17455-13-9. 2018. Available online: https://www.tcichemicals.com/HU/en/p/C0860#docomentsSectionPDP (accessed on 8 January 2022).
- (ATI-SDS-MgCl2) ATI Safety Data Sheet. Magnesium Chloride (from Titanium Production), CAS No.: 7786-30-3. 2020. Available online: https://www.atimetals.com/safety-data-sheets/Documents/EuropeanUnion/EU-EN/SAC/SAC026%20Magnesium%20Chloride%20(Ti)%20EU-EN%20Rev3.pdf (accessed on 8 January 2022).
- (AquaPhoenix-SDS-Cl2H12MgO6) AquaPhoenix Scientific Safety Data Sheet. (2015) Magnesium Chloride, Hexahydrate, CAS 7791-18-6. Available online: https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/chemicals-m/S25401.pdf (accessed on 8 January 2022).
- (Fisher-MSDS-MgCl2) Fisher Scientific Material Safety Data Sheet. Magnesium Chloride, CAS No.: 7786-30-3. 2007. Available online: https://fscimage.fishersci.com/msds/91830.htm (accessed on 8 January 2022).
- (SA-SDS-Mg(CF3SO3)2) Sigma-Aldrich Safety Data Sheet. Magnesium Trifluoromethanesulfonate, CAS-No. 60871-83-2. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/337986 (accessed on 8 January 2022).
- (Oxford-MSDS-Anthracene) Oxford Lab Fine Chem LLP Material Safety Data Sheet. Anthracene (For Scintillation), CAS No.: 120-12-7. 2021. Available online: https://www.oxfordlabchem.com/msds/ANTHRACENE(For%20Scintillation).pdf (accessed on 8 January 2022).
- (SA-SDS-LiCF3SO3) Sigma-Aldrich Safety Data Sheet. Lithium Trifluoromethanesulfonate, CAS-No.: 33454-82-9. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/481548 (accessed on 8 January 2022).
- (Acros-SDS-PS) Acros Organics N.V. Safety data Sheet. Propyl Sulfone, CAS No.: 598-03-8. 2008. Available online: https://fscimage.fishersci.com/msds/18978.htm (accessed on 8 January 2022).
- (TCI-SDS-DPS) TCI America Safety Data Sheet. Dipropyl Sulfone, CAS No.: 598-03-8. 2018. Available online: https://www.tcichemicals.com/US/en/p/D1171#docomentsSectionPDP (accessed on 8 January 2022).
- (SA-SDS-C11H20F6N2O4S2) Sigma-Aldrich Safety Data Sheet. 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, CAS-No.: 223437-11-4. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/sial/40963 (accessed on 8 January 2022).
- (ILT-SDS- C11H20F6N2O4S2) Ionic Liquids Technologies GmbH Safety Data Sheet. 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, CAS-No.: 223437-11-4. 2017. Available online: https://iolitec.de/sites/iolitec.de/files/sds/SDS%20IL-0035%20BMPyrr%20BTA%2C%201-Butyl-1-methylpyrrolidinium%20bis%28trifluoromethylsulfonyl%29imide_Label_0.pdf (accessed on 8 January 2022).
- (AA-SDS-YCl3) Alfa Aesar Safety Data Sheet. Yttrium Trichloride, CAS-No 10361-92-9. 2016. Available online: https://www.chemblink.com/MSDS/MSDSFiles/10361-92-9_Alfa-Aesar.pdf (accessed on 8 January 2022).
- Zuo, P.; Li, Y.; Yin, G.; Li, R.; Ma, Y.; Du, C.; Gao, Y. Preparation and Application of Electrolysis Liquid for Magnesium-Sulfur Battery. CN109473714A, 2019. Harbin Institute of Technology. Available online: https://www.patentguru.com/inventor/%E6%9D%8E%E7%9D%BF%E6%A5%A0. (accessed on 8 January 2022).
- (Gelest-SDS-TiCl4) Gelest, Inc. Safety Data Sheet. Titanium Tetrachloride, 99%, CAS No.: 7550-45-0. 2015. Available online: https://www.gelest.com/wp-content/uploads/product_msds/INTI065-msds.pdf (accessed on 8 January 2022).
- Krossing, I.; Raabe, I. Noncoordinating Anions—Fact or Fiction? A Survey of Likely Candidates. Angew. Chem. 2004, 43, 2066–2090. [Google Scholar] [CrossRef]
- Barriere, F.; Geiger, W.E. Use of Weakly Coordinating Anions to Develop an Integrated Approach to the Tuning of ΔE1/2 Values by Medium Effects. J. Am. Chem. Soc. 2006, 128, 3980–3989. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.C.; Seguin, T.J.; Carino, E.V.; Hahn, N.T.; Connell, J.G.; Ingram, B.J.; Persson, K.A.; Zavadil, K.R.; Liao, C. Widening Electrochemical Window of Mg Salt by Weakly Coordinating Perfluoroalkoxyaluminate Anion for Mg Battery Electrolyte. J. Electrochem. Soc. 2019, 166, A1510–A1519. [Google Scholar] [CrossRef]
- (SA-SDS-(CF3)2CHOH) Sigma-Aldrich Safety Data Sheet. 1,1,1,3,3,3-Hexafluoro-2-propanol, CAS No.: 920-66-1. 2021. Available online: https://www.merckmillipore.com/PL/pl/product/msds/MDA_CHEM-804515?Origin=PDP (accessed on 8 January 2022).
- Xiu, Y.; Li, Z.; Bhaghavathi Parambath, V.; Ding, Z.; Wang, L.; Reupert, A.; Fichtner, M.; Zhao-Karger, Z. Combining Quinone-Based Cathode with an Efficient Borate Electrolyte for High-Performance Magnesium Batteries. Batter. Supercaps. 2021. [Google Scholar] [CrossRef]
- Ji, Y.; Liu-Théato, X.; Xiu, Y.; Indris, S.; Njel, C.; Maibach, J.; Ehrenberg, H.; Fichtner, M.; Zhao-Karger, Z. Polyoxometalate Modified Separator for Performance Enhancement of Magnesium-Sulfur Batteries. Adv. Funct. Mater. 2021, 31, 2100868. [Google Scholar] [CrossRef]
- (AE-SDS-Mg(BH4)2) American Elements Safety Data Sheet. Sodium Borohydride, CAS No.: 16903-37-0. 2021. Available online: https://www.americanelements.com/magnesium-borohydride-16903-37-0 (accessed on 8 January 2022).
- (LTS-SDS-MgF2, 2014) LTS Research Laboratories, Inc. Safety Data Sheet. Magnesium fluoride, CAS No.: 7783-40-6. 2014. Available online: https://www.ltschem.com/msds/MgF2.pdf (accessed on 8 January 2022).
- (SA-MSDS-1,2-Dimethoxyethane) Sigma-Aldrich Material Safety Data Sheet. 1,2-Dimethoxyethane, CAS No.: 110-71-4. 2013. Available online: https://www.nwmissouri.edu/naturalsciences/sds/0-9/1%202-Dimethoxyethane.pdf (accessed on 8 January 2022).
- Hintennach, A. Elektrolyt Für Wiederaufladbare Magnesium-Lonen- und Magnesium-Batterien Sowie Wiederaufladbare MagNesium-Lonen- und Magnesium-Batterien mit Dem Elektrolyt. DE102017007426A1, 2018. Daimler AG. Available online: https://www.freepatentsonline.com/DE102017007426A1.html (accessed on 8 January 2022).
- (CC-SDS-Thiobarbituric Acid) Cayman Chemical Company Safety Data Sheet. Thiobarbituric Acid, CAS No.: 504-17-6. 2014. Available online: https://www.bioscience.co.uk/userfiles/pdf/10009055m.pdf (accessed on 8 January 2022).
- (SA-SDS-2-Thiobarbituric acid) Sigma-Aldrich Safety Data Sheet. 2-Thiobarbituric Acid, CAS No.: 504-17-6. 2021. Available online: https://www.sigmaaldrich.com/PL/en/sds/sial/t5500 (accessed on 8 January 2022).
- Sobianowska-Turek, A.; Urbanska, W.; Janicka, A.; Zawislak, M.; Matla, J. The Necessity of Recycling of Waste Li-Ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment. Recycling 2021, 6, 35. [Google Scholar] [CrossRef]
- The Merck Index. 2022. Available online: https://www.rsc.org/merck-index (accessed on 24 January 2022).
- Fire Protection Guide to Hazardous Materials. 2010. Available online: https://catalog.nfpa.org/Fire-Protection-Guide-to-Hazardous-Materials-2010-Edition-P14118.aspx (accessed on 24 January 2022).
- USA Department of Transportation. Emergency Response Guidebook. 2020. Available online: https://www.phmsa.dot.gov/hazmat/erg/emergency-response-guidebook-erg (accessed on 24 January 2022).
- OSHA Occupational Chemical Database. 2022. Available online: www.osha.gov/chemicaldata (accessed on 24 January 2022).
- Hazardous Substances Data Bank (HSDB). 2022. Available online: Toxnet.nlm.nih.gov (accessed on 24 January 2022).
- National Institute for Occupational Safety and Health (NIOSH). 2022. Available online: www.cdc.gov/niosh/topics/chemical.html (accessed on 24 January 2022).
- NIOSH Pocket Guide to Chemical Hazards. 2022. Available online: www.cdc.gov/niosh/npg (accessed on 24 January 2022).
- International Chemical Safety Cards. 2022. Available online: www.cdc.gov/niosh/ipcs (accessed on 24 January 2022).
- OECD eChemPortal. 2022. Available online: https://www.oecd.org/chemicalsafety/echemportalglobalportaltoinformationonchemicalsubstances.htm (accessed on 24 January 2022).
- Rumle, J.R. (Ed.) CRC Handbook of Chemistry and Physics, 102nd ed.; Taylor & Francis: Abingdon, UK, 2021. [Google Scholar]
- Sax’s Dangerous Properties of Industrial Materials; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2004. [CrossRef]
- Urben, P.G. (Ed.) Bretherick’s Handbook of Reactive Chemicals Hazards, 8th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Frank, R. Lautenberg Chemical Safety for the 21st Century Act. Public Law 114-182—June 22. 2016. Available online: https://www.congress.gov/114/plaws/publ182/PLAW-114publ182.pdf (accessed on 24 January 2022).
- Centers for Disease Control and Prevention (CDC). 2022. Available online: https://www.usa.gov/federal-agencies/centers-for-disease-control-and-prevention (accessed on 24 January 2022).
- Agency for Toxic Substances and Disease Registry (ATSDR). 2022. Available online: https://www.atsdr.cdc.gov/ (accessed on 24 January 2022).
- NIOSH Registry of Toxic Effects of Chemical Substances (RTECS®). 2022. Available online: www.cdc.gov/niosh/rtecs/RTECSaccess.html (accessed on 24 January 2022).
- IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Lyon (FR): International Agency for Research on Cancer. 1987. Available online: https://www.ncbi.nlm.nih.gov/books/NBK294452/ (accessed on 24 January 2022).
- NTP 15-th Annual Report on Carcinogens. 2021. Available online: https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/roc/index.html (accessed on 24 January 2022).
- TLVs and BEIs (ACGIH). 2022. Available online: https://www.acgih.org/science/tlv-bei-guidelines/policies-procedures-presentations/ (accessed on 24 January 2022).
- Larrañaga, M.D.; Lewis Sr., R.J.; Lewis, R.A. Hawley’s Condensed Chemical Dictionary, 16th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Hazard Communication. Hazard Classification Guidance for Manufacturers, Importers, and Employers. Occupational Safety and Health Administration U.S. Department of Labor. OSHA 3844-02 2016. Available online: https://www.osha.gov/sites/default/files/publications/OSHA3844.pdf (accessed on 24 January 2022).
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 9954443. [Google Scholar] [CrossRef]
- Arning, J.; Matzke, M. Toxicity of Ionic Liquids Towards Mammalian Cell Lines. Curr. Org. Chem. 2011, 15, 1905–1917. [Google Scholar] [CrossRef]
- Bailey, J.; Thew, M.; Balls, M. An analysis of the use of animal models in predicting human toxicology and drug safety. Altern Lab Anim. 2014, 42, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Hebert, C.D. Basic Overview of Preclinical Toxicology Animal Models. Southern Research Institute. 5 December 2013. Available online: https://www.uab.edu/medicine/adda/images/131205%20Tox%20Animal%20Models.pdf. (accessed on 24 January 2022).
- Fuart Gatnik, M.; Worth, A. Review of Software Tools for Toxicity Prediction. EUR 24489 EN; Publications Office of the European Union: Luxembourg, 2010; JRC59685. [Google Scholar] [CrossRef]
- Siczek, K. The Toxicity of Secondary Lithium-Sulfur Batteries Components. Batteries 2020, 6, 45. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, Y.; Li, Y. Electrospun Core-Shell Nanofiber as Separator for Lithium-Ion Batteries with High Performance and Improved Safety. Energies 2019, 12, 3391. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.H.; Chen, M.; Ogunseitan, O.A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Env. Sci Technol. 2013, 47, 5495–5503. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siczek, K. Life-Related Hazards of Materials Applied to Mg–S Batteries. Energies 2022, 15, 1543. https://doi.org/10.3390/en15041543
Siczek K. Life-Related Hazards of Materials Applied to Mg–S Batteries. Energies. 2022; 15(4):1543. https://doi.org/10.3390/en15041543
Chicago/Turabian StyleSiczek, Krzysztof. 2022. "Life-Related Hazards of Materials Applied to Mg–S Batteries" Energies 15, no. 4: 1543. https://doi.org/10.3390/en15041543
APA StyleSiczek, K. (2022). Life-Related Hazards of Materials Applied to Mg–S Batteries. Energies, 15(4), 1543. https://doi.org/10.3390/en15041543