Chemical Looping Combustion: A Brief Overview
Abstract
:1. Introduction
2. Oxygen Carriers
- Reactivity with combustibles and oxygen;
- Oxygen transport capacity (OTC);
- Chemical lifetime;
- Mechanical resistance (including melting temperature);
- Tendency to carbon deposition on oxygen carrier surface;
- Toxicity and environmental impact;
- Price and availability.
Fe2O3/Fe3O4 | Mn3O4/MnO | CuO/Cu | NiO/Ni | CoO/Co | |
---|---|---|---|---|---|
Reactivity with CH4 | low | average | high | very high | low |
Reactivity with CO and H2 | average | high | very high | average | low |
Oxygen transport capacity | low | average | high | high | high |
CLOU effect | no | no 1 | yes | no | no 2 |
Cost | low | average | high | very high | very high |
Melting temperature | high | average | low | high | high |
Health and environment | safe | safe | harmful | very harmful | very harmful |
3. Chemical Looping Systems
3.1. SG-CLC System
3.2. iG-CLC System
3.3. CLOU System
3.4. CLR System
4. Chemical Looping Reactors
4.1. Dual Fluidized-Bed Reactor
4.2. Swing Reactor
4.3. Rotary Reactor
5. Competitiveness of CLC Technology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AR | Air reactor |
ASU | Air separation unit |
BFB | Bubbling fluidized bed |
CAPEX | Capital expenditures |
CCS | Carbon capture and storage |
CCSU | Carbon capture, storage, and utilization |
CCU | Carbon capture and utilization |
CFB | Circulating fluidized bed |
CLC | Chemical looping combustion |
CLOU | Chemical looping with oxygen uncoupling |
CLR | Chemical looping reforming |
CS | Carbon stripper |
DFB | Dual fluidized bed |
EGR | Enhanced gas recovery |
EOR | Enhanced oil recovery |
FFB | Fast fluidized bed |
FR | Fuel reactor |
IGCC | Integrated gasification combined cycle |
iG-CLC | Incsitu gasification chemical looping combustion |
MDFB | Multipurpose dual fluidized bed |
MEA | Monoethanolamine |
OC | Oxygen carrier |
OP | Oxygen polishing |
OPEX | Operating expenditures |
OTC | Oxygen transport capacity |
OXY | Oxy-fuel combustion |
SG-CLC | Syngas chemical looping combustion |
SR | Shift reactor |
USDOE | United States Department of Energy |
References
- Sifat, N.S.; Haseli, Y. A critical review of CO2 capture technologies and prospects for clean power generation. Energies 2019, 12, 4143. [Google Scholar] [CrossRef] [Green Version]
- Cannone, S.F.; Lanzini, A.; Santarelli, M. A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies 2021, 14, 387. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Alminshid, A.H. CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Sci. Total Environ. 2021, 788, 147850. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Naveneethan, S.; Kus, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Czakiert, T.; Zuwala, J.; Lasek, J. Oxy-fuel combustion: The state of the art. In Proceedings of the 12th International Conference on Fluidized Bed Technology, Cracow, Poland, 23–27 May 2017; Nowak, W., Sciazko, M., Mirek, P., Eds.; Printing House of the Redemptorists: Tuchow, Poland, 2017. [Google Scholar]
- Hossain, M.M.; de Lasa, H.I. Chemical-looping combustion (CLC) for inherent CO2 separations—A review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F. Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 2012, 38, 215–282. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.J. Chemical-looping combustion systems and technology for carbon dioxide (CO2) capture in power plants. In Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology; Maroto-Valer, M.M., Ed.; Woodhead Publishing: Cambridge, UK, 2010; Volume 1, pp. 358–379. [Google Scholar]
- Cao, C.; Liu, H.; Hou, Z.; Mehmood, F.; Liao, J.; Feng, W. A review of CO2 storage in view of safety and cost-effectiveness. Energies 2020, 13, 600. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Jahandideh, A.; Jha, B.; Jafarpour, B. Geologic CO2 storage optimization under geomechanical risk using coupled-physics models. Int. J. Greenh. Gas Control 2021, 110, 103385. [Google Scholar] [CrossRef]
- Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and challenges in CO2 utilization. J. Environ. Sci. 2022, 113, 322–344. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.-Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent advances in carbon dioxide utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Liang, Y.; Wang, Q.; Guo, Y.-J.; Gao, M.; Wang, Z.-B.; Liu, W.-L. Status and progress of worldwide EOR field applications. J. Pet. Sci. Eng. 2020, 193, 107449. [Google Scholar] [CrossRef]
- Alvarado, V.; Manrique, E. Enhanced oil recovery: An update review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Lui, S.-Y.; Ren, B.; Li, H.-Y.; Yang, Y.-Z.; Wang, Z.-Q.; Wang, B.; Xu, J.-C.; Agarwal, R. CO2 storage with enhanced gas recovery (CSEGR): A review of experimental and numerical studies. Pet. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Hamza, A.; Hussein, I.A.; Al-Marri, M.J.; Mahmoud, M.; Shawabkeh, R.; Aparicio, S. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review. J. Pet. Sci. Eng. 2021, 196, 107685. [Google Scholar] [CrossRef]
- Gur, T.M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies. Prog. Energy Combust. Sci. 2022, 89, 100965. [Google Scholar] [CrossRef]
- Eide, L.I.; Batum, M.; Dixon, T.; Elamin, Z.; Graue, A.; Hagen, S.; Havorka, S.; Nazarian, B.; Nokleby, P.H.; Olsen, G.I.; et al. Enabling large-scale carbon capture, utilization, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments—A review. Energies 2019, 12, 1945. [Google Scholar] [CrossRef] [Green Version]
- Kamkeng, A.D.N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2021, 409, 128138. [Google Scholar] [CrossRef]
- Alok, A.; Shrestha, R.; Ban, S.; Devkota, S.; Uprety, B.; Joshi, R. Technological advances in the transformative utilization of CO2 to value-added products. J. Environ. Chem. Eng. 2022, 10, 106922. [Google Scholar] [CrossRef]
- Atsbha, T.A.; Yoon, T.; Seongho, P.; Lee, C.-J. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons. J. CO2 Util. 2021, 44, 101413. [Google Scholar] [CrossRef]
- Park, J.H.; Yang, J.; Kim, D.; Gim, H.; Choi, W.Y.; Lee, J.W. Review of recent technologies for transforming carbon dioxide to carbon materials. Chem. Eng. J. 2022, 427, 130980. [Google Scholar] [CrossRef]
- Lee, M.; Kim, Y.; Suk Lim, H.; Jo, A.; Kang, D.; Lee, J.W. Reverse water-gas shift chemical looping using a core-shell structured perovskite oxygen carrier. Energies 2020, 13, 5324. [Google Scholar] [CrossRef]
- Gorke, R.H.; Marek, E.J.; Donat, F.; Scott, S.A. Reduction and oxidation behavior of strontium perovskites for chemical looping air separation. Int. J. Greenh. Gas Control 2020, 94, 102891. [Google Scholar] [CrossRef]
- Miccio, F.; Bendoni, R.; Piancastelli, A.; Medri, V.; Landi, E. Geopolymer composites for chemical looping combustion. Fuel 2018, 225, 436–442. [Google Scholar] [CrossRef]
- Bendoni, R.; Miccio, F.; Medri, V.; Landi, E. Chemical looping combustion using geopolymer-based oxygen carriers. Chem. Eng. J. 2018, 341, 187–197. [Google Scholar] [CrossRef]
- Murri, A.N.; Miccio, F.; Medri, V.; Landi, E. Geopolymer-composites with thermomechanical stability as oxygen carriers for fluidized bed chemical looping combustion with oxygen uncoupling. Chem. Eng. J. 2020, 393, 124756. [Google Scholar] [CrossRef]
- Hildor, F.; Mattisson, T.; Leion, H.; Linderholm, C.; Ryden, M. Steel converter slag as an oxygen carrier in a 12 MWth CFB boiler—Ash interaction and material evolution. Int. J. Greenh. Gas Control 2019, 88, 321–331. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Li, W.; Cai, N. The melting characteristics of Vietnamese ilmenite and manganese ores used in chemical looping combustion. Int. J. Greenh. Gas Control 2019, 90, 102792. [Google Scholar] [CrossRef]
- Rumble, J.R. Handbook of Chemistry and Physics, 99th ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Idziak, K.; Czakiert, T.; Krzywanski, J.; Zylka, A.; Kozlowska, M.; Nowak, W. Safety and environmental reasons for the use of Ni-, Co-, Cu-, Mn- and Fe-based oxygen carriers in CLC/CLOU applications: An overview. Fuel 2020, 268, 117245. [Google Scholar] [CrossRef]
- Thorne, R.J.; Bouman, E.A.; Sundseth, K.; Aranda, A.; Czakiert, T.; Pacyna, J.M.; Pacyna, E.G.; Krauz, M.; Celinska, A. Environmental impacts of a chemical looping combustion power plant. Int. J. Greenh. Gas Control 2019, 86, 101–111. [Google Scholar] [CrossRef]
- Mattisson, T.; Keller, M.; Linderholm, C.; Moldenhauer, P.; Ryden, M.; Leion, H.; Lyngfelt, A. Chemical-looping technologies using circulating fluidized bed systems: Status of development. Fuel Process. Technol. 2018, 172, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cho, P.; Mattisson, T.; Lyngfelt, A. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel 2004, 83, 1215–1225. [Google Scholar] [CrossRef]
- Lyngfelt, A. Oxygen carriers for chemical-looping combustion. In Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture; Fennell, P., Anthony, B., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 221–254. [Google Scholar]
- Adanez, J.; de Diego, L.F.; Garcia-Labiano, F.; Gayan, P.; Abad, A.; Palacios, J.M. Selection of oxygen carriers for chemical combustion. Energy Fuels 2004, 18, 371–377. [Google Scholar] [CrossRef]
- U.S. Department of the Interior and U.S. Geological Survey. Mineral Commodity Summaries 2018. U.S. Geological Survey; U.S. Department of the Interior and U.S. Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Dueso, C.; Garcia-Labiano, F.; Adanez, J.; de Diego, L.F.; Gayan, P.; Abad, A. Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier. Fuel 2009, 88, 2357–2364. [Google Scholar] [CrossRef]
- Tian, H.; Chaudhari, K.; Simonyi, T.; Poston, J.; Liu, T.; Sanders, T.; Veser, G.; Siriwardane, R. Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers. Energy Fuels 2008, 22, 3744–3755. [Google Scholar] [CrossRef]
- Cuadrat, A.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F.; Adanez, J. Relevance of the coal rank on the performance of the in situ gasification chemical-looping combustion. Chem. Eng. J. 2012, 195–196, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Huang, Z. High-efficiency and pollution-controlling in-situ gasification chemical looping combustion system by using CO2 instead of steam as gasification agent. Chin. J. Chem. Eng. 2018, 26, 2368–2376. [Google Scholar] [CrossRef]
- Adanez-Rubio, I.; Abad, A.; Gayan, P.; de Diego, L.F.; Garcia-Labiano, F.; Adanez, J. Performance of CLOU process in the combustion of different types of coal with CO2 capture. Int. J. Greenh. Gas Control 2013, 12, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Mattisson, T.; Lyngfelt, A.; Leion, H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int. J. Greenh. Gas Control 2009, 3, 11–19. [Google Scholar] [CrossRef]
- Strohle, J.; Galloy, A.; Epple, B. Feasibility study on the carbonate looping process for post-combustion CO2 capture from coal-fired power plants. Energy Procedia 2009, 1, 1313–1320. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Lisbona, P.; Lara, Y.; Romeo, L.M. Carbonate looping cycle for CO2 capture: Hydrodynamic of complex CFB systems. Energy Procedia 2011, 4, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Yi, Y.; Wang, S.; Wang, Z.; Du, M.; Pan, J.; Wang, Q. Review of hydrogen production using chemical-looping technology. Renew. Sustain. Energy Rev. 2018, 81, 3186–3214. [Google Scholar] [CrossRef]
- Ryden, M.; Lyngfelt, A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int. J. Hydrogen Energy 2006, 31, 1271–1283. [Google Scholar] [CrossRef] [Green Version]
- Mattisson, T.; Lyngfelt, A.; Cho, P. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel 2001, 80, 1953–1962. [Google Scholar] [CrossRef]
- de Diego, L.F.; Garcia-Labiano, F.; Adanez, J.; Gayan, P.; Abad, A.; Corbella, B.M.; Palacios, J.M. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 2004, 83, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Siriwardane, R.; Monazam, E.; Miller, D.; Poston, J.; Richards, G. Production of CO and hydrogen via chemical looping gasification of coal with calcium ferrite and oxidation with steam. In Proceedings of the 5th International Conference on Chemical Looping, Park City, UT, USA, 24–27 September 2018. [Google Scholar]
- Abad, A. Chemical looping for hydrogen production. In Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture; Fennell, P., Anthony, B., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 327–374. [Google Scholar]
- Hu, J.; Galvita, V.V.; Poelman, H.; Marin, G.B. Catalyst-assisted chemical looping auto-thermal dry reforming: The effect of operating pressure. In Proceedings of the 5th International Conference on Chemical Looping, Park City, UT, USA, 24–27 September 2018. [Google Scholar]
- Tang, M.; Liu, K.; Roddick, D.M.; Fan, M. Enhanced lattice oxygen reactivity over Fe2O3/Al2O3 redox catalyst for chemical-looping dry (CO2) reforming of CH4: Synergistic La-Ce effect. J. Catal. 2018, 368, 38–52. [Google Scholar] [CrossRef]
- De Vos, Y.; Vamvakeros, A.; Matras, D.; Jacobs, M.; Van Der Voort, P.; Van Driessche, I.; Jacques, S.; Middelkoop, V.; Verberckmoes, A. Sustainable iron-based oxygen carriers for hydrogen production—Real-time operando investigation. Int. J. Greenh. Gas Control 2019, 88, 393–402. [Google Scholar] [CrossRef]
- Ugwu, A.; Zaabout, A.; Amini, S. An advancement in CO2 utilization through novel gas switching dry reforming. Int. J. Greenh. Gas Control 2019, 90, 102791. [Google Scholar] [CrossRef]
- Shen, T.; Ge, H.; Shen, L. Characterization of combined Fe-Cu oxides as oxygen carrier in chemical looping gasification of biomass. Int. J. Greenh. Gas Control 2018, 75, 63–73. [Google Scholar] [CrossRef]
- Wu, J.; Bai, L.; Tian, H.; Riley, J.; Siriwardane, R.; Wang, Z.; He, T.; Li, J.; Zhang, J.; Wu, J. Chemical looping gasification of lignin with bimetallic oxygen carriers. Int. J. Greenh. Gas Control 2020, 93, 102897. [Google Scholar] [CrossRef]
- Song, T.; Shen, L. Review of reactor for chemical looping combustion of solid fuels. Int. J. Greenh. Gas Control 2018, 76, 92–110. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Lu, Y.; Hu, X.; Luo, X.; Chen, H.; Wang, J.; Yang, Y. Control of pressure balance and solids circulation characteristics in DCFB reactors. Powder Technol. 2018, 328, 114–121. [Google Scholar] [CrossRef]
- Noorman, S.; van Sint Annaland, M.; Kuipers, H. Packed bed reactor technology for chemical-looping combustion. Ind. Eng. Chem. Res. 2007, 46, 4212–4220. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.R.; Alarcon, J.M. Chemical looping combustion process in fixed-bed reactors using ilmenite as oxygen carrier: Conceptual design and operation strategy. Chem. Eng. J. 2015, 264, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Iloeje, C.O.; Chen, T.; Ghoniem, A.F. Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology. Fuel 2014, 121, 327–343. [Google Scholar] [CrossRef]
- Hakonsen, S.F.; Grande, C.A.; Blom, R. Rotating bed reactor for CLC: Bed characteristics dependences on internal gas mixing. Appl. Energy 2014, 113, 1952–1957. [Google Scholar] [CrossRef]
- Kolbitsch, P.; Bolhar-Nordenkampf, J.; Proll, T.; Hofbauer, H. Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Int. J. Greenh. Gas Control 2010, 4, 180–185. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Leckner, B. A 1000 MWth boiler for chemical-looping combustion of solid fuels—Discussion of design and costs. Appl. Energy 2015, 157, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Bayham, S.; Straub, D.; Weber, J. Operation of a 50-kWth chemical looping combustion test facility under autothermal conditions. Int. J. Greenh. Gas Control 2019, 87, 211–220. [Google Scholar] [CrossRef]
- Kolbitsch, P.; Bolhar-Nordenkampf, J.; Proll, T.; Hofbauer, H. Design of a chemical looping combustor using a dual circulating fluidized bed (DCFB) reactor system. In Proceedings of the 9th International Conference on Circulating Fluidized Beds, Hamburg, Germany, 13–16 May 2008; Werther, J., Nowak, W., Wirth, K.-E., Hartge, E.-U., Eds.; TuTech Innovation GmbH: Hamburg, Germany, 2008. [Google Scholar]
- Chen, X.; Ma, J.; Tian, X.; Wan, J.; Zhao, H. CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal. Int. J. Greenh. Gas Control 2019, 90, 102800. [Google Scholar] [CrossRef]
- Adanez, J.; Gayan, P.; Celaya, J.; de Diego, L.F.; Garcia-Labiano, F.; Abad, A. Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: Effect of operating conditions on methane combustion. Ind. Eng. Chem. Res. 2006, 45, 6075–6080. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, M.; Liu, L.; Li, Y.; Li, Z.; Cai, N. Coal-fired chemical looping combustion coupled with a high-efficiency annual carbon stripper. Int. J. Greenh. Gas Control 2020, 93, 102889. [Google Scholar] [CrossRef]
- Nasah, J.; Jensen, B.; Dyrstad-Cincotta, N.; Gerber, J.; Laudal, D.; Mann, M.; Srinivasachar, S. Method for separation of coal conversion products from oxygen carriers. Int. J. Greenh. Gas Control 2019, 88, 361–370. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, X.; Chen, D.; Al-Qadri, B.M.H. Retrospect and prospect of carbon stripper technology in solid-fuel chemical looping combustion. Fuel Process. Technol. 2021, 221, 106920. [Google Scholar] [CrossRef]
- Mei, D.; Linderholm, C.; Lyngfelt, A. Performance on an oxy-polishing step in the 100 kWth chemical looping combustion prototype. Chem. Eng. J. 2021, 409, 128202. [Google Scholar] [CrossRef]
- Perez-Vega, R.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F.; Adanez, J. Coal combustion in a 50 kWth chemical looping combustion unit: Seeking operating conditions to maximize CO2 capture and combustion efficiency. Int. J. Greenh. Gas Control 2016, 50, 80–92. [Google Scholar] [CrossRef]
- Whitty, K.J.; Hamilton, M.A.; Merrett, K.M.; Lighty, J.S. Performance of a dual fluidized bed reactor for chemical looping combustion with oxygen uncoupling. In Proceedings of the 12th International Conference on Fluidized Bed Technology, Cracow, Poland, 23–27 May 2017; Nowak, W., Sciazko, M., Mirek, P., Eds.; Printing House of the Redemptorists: Tuchow, Poland, 2017. [Google Scholar]
- Ohlemuller, P.; Busch, J.P.; Reitz, M.; Strohle, J.; Epple, B. Chemical-looping combustion of hard coal: Autothermal operation of a 1 MWth pilot plant. J. Energy Resour. Technol. 2016, 137, 042203. [Google Scholar] [CrossRef]
- Shen, T.; Wang, S.; Yan, J.; Shen, L.; Tian, H. Performance improvement of chemical looping combustion with coal by optimizing operational strategies in a 3 kWth interconnected fluidized bed. Int. J. Greenh. Gas Control 2020, 98, 103060. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, T.; Bollas, G.; Shen, L. Design and operation of a multi-stage reactor system for chemical looping combustion process. Fuel Process. Technol. 2021, 215, 106748. [Google Scholar] [CrossRef]
- Gogolev, I.; Linderholm, C.; Gall, D.; Schmitz, M.; Mattisson, T.; Pettersson, J.B.C.; Lyngfelt, A. Chemical-looping combustion in a 100 kW unit using a mixture of synthetic and natural oxygen carriers—Operational results and fate of biomass fuel alkali. Int. J. Greenh. Gas Control 2019, 88, 371–382. [Google Scholar] [CrossRef]
- Lindmuller, L.; Haus, J.; Nair, A.R.K.; Heinrich, S. Minimizing gas leakages in a system of coupled fluidized bed reactors for chemical looping combustion. Chem. Eng. Sci. 2022, 250, 117366. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, X.; Ma, J.; Su, M.; Wang, B.; Mei, D. Development of tailor-made oxygen carriers and reactors for chemical looping processes at Huazhong University of Science & Technology. Int. J. Greenh. Gas Control 2020, 93, 102898. [Google Scholar] [CrossRef]
- Ma, J.; Tian, X.; Wang, C.; Chen, X.; Zhao, H. Performance of a 50 kWth coal-fuelled chemical looping combustor. Int. J. Greenh. Gas Control 2018, 75, 98–106. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Brink, A.; Langorgen, O.; Mattisson, T.; Ryden, M.; Linderholm, C. 11,000 h of chemical-looping combustion operation—Where are we and where do we want to go? Int. J. Greenh. Gas Control 2019, 88, 38–56. [Google Scholar] [CrossRef]
- Hallberg, P.; Hanning, M.; Ryden, M.; Mattisson, T.; Lyngfelt, A. Investigation of a calcium manganite as oxygen carrier during 99 h of operation of chemical-looping combustion in a 10 kWth reactor unit. Int. J. Greenh. Gas Control 2016, 53, 222–229. [Google Scholar] [CrossRef]
- Moldenhauer, P.; Ryden, M.; Mattisson, T.; Lyngfelt, A. Chemical-looping combustion and chemical-looping reforming of kerosene in a circulating fluidized-bed 300 W laboratory reactor. Int. J. Greenh. Gas Control 2012, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vilches, T.B.; Lind, F.; Ryden, M.; Thunman, H. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale. Appl. Energy 2017, 190, 1174–1183. [Google Scholar] [CrossRef]
- Siriwardane, R.; Benincosa, W.; Riley, J.; Tian, H.; Richards, G. Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier. Appl. Energy 2016, 183, 1550–1564. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Sun, H.; Li, Z.; Cai, N. Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Appl. Energy 2016, 162, 940–947. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, H.; Tian, X.; Wei, Y.; Rajendran, S.; Zhang, Y.; Bhattacharya, S.; Zheng, C. Chemical looping combustion of coal in a 5 kWth interconnected fluidized bed reactor using hematite as oxygen carrier. Appl. Energy 2015, 157, 304–313. [Google Scholar] [CrossRef]
- Cuadrat, A.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L.F.; Adanez, J. Effect of operating conditions in chemical-looping combustion of coal in a 500 Wth unit. Int. J. Greenh. Gas Control 2012, 6, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, M.; Linderholm, C.J.; Lyngfelt, A. Chemical looping combustion of four different solid fuels using a manganese-silicon-titanium oxygen carrier. Int. J. Greenh. Gas Control 2018, 70, 88–96. [Google Scholar] [CrossRef]
- Abad, A.; Adanez-Rubio, I.; Gayan, P.; Garcia-Labiano, F.; de Diego, L.F.; Adanez, J. Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kWth continuously operating unit using a Cu-based oxygen-carrier. Int. J. Greenh. Gas Control 2012, 6, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Strohle, J.; Orth, M.; Epple, B. Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier. Appl. Energy 2015, 157, 288–294. [Google Scholar] [CrossRef]
- Mei, D.; Soleimanisalim, A.H.; Linderholm, C.; Lyngfelt, A.; Mattisson, T. Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion. Fuel Process. Technol. 2021, 215, 106743. [Google Scholar] [CrossRef]
- Moldenhauer, P.; Ryden, M.; Mattisson, T.; Younes, M.; Lyngfelt, A. The use of ilmenite as oxygen carrier with kerosene in a 300 W CLC laboratory reactor with continuous circulation. Appl. Energy 2014, 113, 1846–1854. [Google Scholar] [CrossRef] [Green Version]
- Pishahang, M.; Larring, Y.; Stensrod, R.E.; Andreassen, K.A.; Spjelkavik, A.I. 3 kW circulating fluidized bed chemical looping reactor—A thermochemical and chemomechanical investigation on the performance of Cu- impregnated Al2O3 as an oxygen carrier material. Int. J. Greenh. Gas Control 2021, 109, 103384. [Google Scholar] [CrossRef]
- Idziak, K.; Czakiert, T.; Krzywanski, J.; Zylka, A.; Nowak, W. Studies on solids flow in a cold model of a dual fluidized bed reactor for chemical looping combustion of solid fuels. J. Energy Resour. Technol. 2020, 142, 022102. [Google Scholar] [CrossRef]
- Abad, A.; Gayan, P.; Garcia-Labiano, F.; de Diego, L.F.; Adanez, J. Relevance of plant design on CLC process performance using a Cu-based oxygen carrier. Fuel Process. Technol. 2018, 171, 78–88. [Google Scholar] [CrossRef]
- Xiao, R.; Song, Q.; Song, M.; Lu, Z.; Zhang, S.; Shen, L. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier. Combust. Flame 2010, 157, 1140–1153. [Google Scholar] [CrossRef]
- Zaabout, A.; Cloete, S.; Tolchard, J.R.; Amini, S. A pressurized gas switching combustion reactor: Autothermal operation with a CaMnO3-δ-based oxygen carrier. Chem. Eng. Res. Des. 2018, 137, 20–32. [Google Scholar] [CrossRef]
- Han, L.; Bollas, G.M. Chemical-looping combustion in a reverse-flow fixed bed reactor. Energy 2016, 102, 669–681. [Google Scholar] [CrossRef]
- Gallucci, F.; Hamers, H.P.; van Zanten, M.; van Sint Annaland, M. Experimental demonstration of chemical-looping combustion of syngas in packed bed reactors with ilmenite. Chem. Eng. J. 2015, 274, 156–168. [Google Scholar] [CrossRef]
- Wang, P.; Howard, B.; Means, N. Investigation of reactivities of bimetallic Cu-Fe oxygen carriers with coal in high temperature in-situ gasification chemical-looping combustion (iG-CLC) and chemical-looping with oxygen uncoupling (CLOU) using a fixed bed reactor. Fuel 2021, 285, 119012. [Google Scholar] [CrossRef]
- Nemati, N.; Ryden, M. Chemical-looping combustion in packed-fluidized beds: Experiments with random packings in bubbling bed. Fuel Process. Technol. 2021, 222, 106978. [Google Scholar] [CrossRef]
- Tian, Q.; Che, L.; Ding, B.; Wang, Q.; Su, Q. Performance of Cu-based oxygen carrier in a CLC process based on fixed bed reactors. Greenh. Gases Sci. Technol. 2017, 7, 731–744. [Google Scholar] [CrossRef]
- Tian, Q.; Che, L.; Ding, B.; Wang, Q.; Su, Q. Performance of a Cu–Fe-based oxygen carrier combined with a Ni-based oxygen carrier in a chemical-looping combustion process based on fixed-bed reactors. Greenh. Gases Sci. Technol. 2018, 8, 542–556. [Google Scholar] [CrossRef]
- Kooiman, R.F.; Hamers, H.P.; Gallucci, F.; van Sint Annaland, M. Experimental demonstration of two-stage packed bed chemical-looping combustion using syngas with CuO/Al2O3 and NiO/CaAl2O4 as oxygen carriers. Ind. Eng. Chem. Res. 2015, 54, 2001–2011. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yu, Q.; Qin, Q.; Zuo, Z.; Wu, T. Evaluation of Cu-based oxygen carrier for chemical looping air separation in a fixed-bed reactor. Chem. Eng. J. 2016, 287, 292–301. [Google Scholar] [CrossRef]
- Tilland, A.; Prieto, J.; Petitjean, D.; Schaer, E. Study and analyses of a CLC oxygen carrier degradation mechanism in a fixed bed reactor. Chem. Eng. J. 2016, 302, 619–632. [Google Scholar] [CrossRef]
- Hamers, H.P.; Gallucci, F.; Williams, G.; van Sint Annaland, M. Experimental demonstration of CLC and the pressure effect in packed bed reactors using NiO/CaAl2O4 as oxygen carrier. Fuel 2015, 159, 828–836. [Google Scholar] [CrossRef]
- Iloeje, C.O.; Zhao, Z.; Ghoniem, A.F. Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture. Appl. Energy 2018, 231, 1179–1190. [Google Scholar] [CrossRef]
- Iloeje, C.O.; Zhao, Z.; Ghoniem, A.F. A reduced fidelity model for the rotary chemical looping combustion. Appl. Energy 2017, 190, 725–739. [Google Scholar] [CrossRef]
- Hakonsen, S.F.; Blom, R. Chemical looping combustion in a rotating bed reactor—Finding optimal process conditions for prototype reactor. Environ. Sci. Technol. 2011, 45, 9611–9626. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ghoniem, A.F. Design of a rotary reactor for chemical-looping combustion. Part 2: Comparison of copper-, nickel-, and iron-based oxygen carriers. Fuel 2014, 121, 344–360. [Google Scholar] [CrossRef]
- Ekstrom, C.; Schwendig, F.; Biede, O.; Franco, F.; Haupt, G.; de Koeijer, G.; Papapavlou, C.; Rokke, P.E. Techno-economic evaluations and benchmarking of pre-combustion CO2 capture and oxy-fuel processes developed in the European ENCAP project. Energy Procedia 2009, 1, 4233–4240. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Kumar, P.; Yang, A.; Fennell, P. Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture. J. Environ. Chem. Eng. 2015, 3, 2104–2114. [Google Scholar] [CrossRef] [Green Version]
- Mendiara, T.; Garcia-Labiano, F.; Abad, A.; Gayan, P.; de Diego, L.F.; Izquierdo, M.T.; Adanez, J. Negative CO2 emissions through the use of biofuels in chemical looping technology: A review. Appl. Energy 2018, 232, 657–684. [Google Scholar] [CrossRef]
- Coppola, A.; Scala, F. Chemical looping for combustion of solid biomass: A review. Energy Fuels 2021, 35, 19248–19265. [Google Scholar] [CrossRef]
- Gauthier, T.; Yazdanpanah, M.; Forret, A.; Amblard, B.; Lambert, A.; Bertholin, S. CLC, a promising concept with challenging development issues. In Proceedings of the 15th International Conference on Fluidization, Fluidization XV, Montebello, QC, Canada, 22–27 May 2016; Chaouki, J., Berruti, F., Bi, X., Cocco, R., Eds.; ECI Symposium Series: New York, NY, USA, 2016. [Google Scholar]
- Bourgeon, S.; Gauthier, T.; Guillou, F.; Stainton, H. Chemical looping combustion: Development status and perspectives. In Proceedings of the 2th International Conference on Chemical Looping, Darmstadt, Germany, 26–28 September 2012. [Google Scholar]
- Saari, J.; Peltola, P.; Tynjala, T.; Hyppanen, T.; Kaikko, J.; Vakkilainen, E. High-efficiency bioenergy carbon capture integrating chemical looping combustion with oxygen uncoupling and a large cogeneration plant. Energies 2020, 13, 3075. [Google Scholar] [CrossRef]
- Keller, M.; Kaibe, K.; Hatano, H.; Otomo, J. Techno-economic evaluation of BECCS via chemical looping combustion of Japanese woody biomass. Int. J. Greenh. Gas Control 2019, 83, 69–82. [Google Scholar] [CrossRef]
- Ogidiama, O.V.; Abu-Zahra, M.R.M.; Shamim, T. Techno-economic analysis of a poly-generation solar-assisted chemical looping combustion power plant. Appl. Energy 2018, 228, 724–735. [Google Scholar] [CrossRef]
- Ogidiama, O.V.; Zahra, M.A.; Shamim, T. Techno-economic analysis of a carbon capture chemical looping combustion power plant. J. Energy Resour. Technol. 2018, 140, 112004. [Google Scholar] [CrossRef]
- Sethi, S.S.; Dutta, S.K.; Singh, J.; Kumar, M. Techno economic analysis of chemical looping system for Indian power plants. Environ. Technol. Innov. 2018, 9, 16–29. [Google Scholar] [CrossRef]
- Diego, M.E.; Abanades, J.C. Techno-economic analysis of a low carbon back-up power system using chemical looping. Renew. Sustain. Energy Rev. 2020, 132, 110099. [Google Scholar] [CrossRef]
- Spinelli, M.; Peltola, P.; Bischi, A.; Ritvanen, J.; Hyppanen, T.; Romano, M.C. Process integration of chemical combustion with oxygen uncoupling in a coal-fired power plant. Energy 2016, 103, 646–659. [Google Scholar] [CrossRef]
- Mantripragada, H.C.; Rubin, E.S. Chemical looping for pre-combustion and post-combustion CO2 capture. Energy Procedia 2017, 114, 6403–6410. [Google Scholar] [CrossRef]
- Erlach, B.; Schmidt, M.; Tsatsaronis, G. Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. Energy 2011, 36, 3804–3815. [Google Scholar] [CrossRef]
- Bartocci, P.; Abad, A.; Cabello, A.; Zampilli, M.; Buia, G.; Serra, A.; Calantoni, S.; Taiana, A.; Bidini, G.; Fantozzi, F. Technical economic and environmental analysis of chemical looping versus oxyfuel combustion for NGCC power plant. E3S Web Conf. 2021, 312, 08019. [Google Scholar] [CrossRef]
- Stenberg, V.; Spallina, V.; Mattisson, T.; Ryden, M. Techno-economic analysis of H2 production processes using fluidized bed heat exchangers with steam reforming—Part 1: Oxygen carrier aided combustion. Int. J. Hydrogen Energy 2020, 45, 6059–6081. [Google Scholar] [CrossRef]
- Stenberg, V.; Spallina, V.; Mattisson, T.; Ryden, M. Techno-economic analysis of processes with integration of fluidized bed heat exchangers for H2 production—Part 2: Chemical-looping combustion. Int. J. Hydrogen Energy 2021, 46, 25355–25375. [Google Scholar] [CrossRef]
- Sun, Z.; Aziz, M. Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes. J. Clean. Prod. 2021, 321, 129023. [Google Scholar] [CrossRef]
- Sayeed, I.; Kibria, M.A.; Bhattacharya, S. Process modelling and techno-economic analysis of a 550 MWe chemical looping power plant with victorian brown coal. Int. J. Greenh. Gas Control 2022, 113, 103547. [Google Scholar] [CrossRef]
CFB Unit (Reference) | MEA 30% | CLC | |
---|---|---|---|
Net power, MWe | 630 | 630 | 630 |
Net efficiency, % | 44.9 | 34.9 | 40 |
Coal consumption, t/h | 198 | 255 | 222 |
CAPEX, M EUR | 1215 | 2064 | 1785 |
OPEX, M EUR | 156 | 220 | 206 |
Cost of electricity, EUR/MWh | 63 | 98 | 88 |
CO2 avoidance cost, EUR/tCO2 | - | 53 | 37 |
CO2 capture rate, % | - | >90 | >90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czakiert, T.; Krzywanski, J.; Zylka, A.; Nowak, W. Chemical Looping Combustion: A Brief Overview. Energies 2022, 15, 1563. https://doi.org/10.3390/en15041563
Czakiert T, Krzywanski J, Zylka A, Nowak W. Chemical Looping Combustion: A Brief Overview. Energies. 2022; 15(4):1563. https://doi.org/10.3390/en15041563
Chicago/Turabian StyleCzakiert, Tomasz, Jaroslaw Krzywanski, Anna Zylka, and Wojciech Nowak. 2022. "Chemical Looping Combustion: A Brief Overview" Energies 15, no. 4: 1563. https://doi.org/10.3390/en15041563
APA StyleCzakiert, T., Krzywanski, J., Zylka, A., & Nowak, W. (2022). Chemical Looping Combustion: A Brief Overview. Energies, 15(4), 1563. https://doi.org/10.3390/en15041563