A Dual-Redundancy Two-Phase Hybrid Stepping Motor for Satellite Antenna Drive System
Abstract
:1. Introduction
2. Mathematical Model
2.1. Basic Equations
2.2. Torque-Frequency Characteristics of Stepping Motor
3. Finite Element Analysis Simulation
3.1. Design of Dual-Redundancy HSM
3.2. Transient Magnetic Field Analysis
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Derammelaere, S.; Haemers, M.; de Viaene, J.; Verbelen, F.; Stockman, K. A quantitative comparison between BLDC, PMSM, brushed DC and stepping motor technologies. In Proceedings of the 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–5. [Google Scholar]
- Wang, X.; Lu, S.; Zhang, S. Rotating Angle Estimation for Hybrid Stepper Motors with Application to Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2020, 69, 5556–5568. [Google Scholar] [CrossRef]
- Salis, V.; Chiappinelli, N.; Costabeber, A.; Zanchetta, P.; Bifaretti, S.; Tomei, P.; Verrelli, C.M. Learning Position Controls for Hybrid Step Motors: From Current-Fed to Full-Order Models. IEEE Trans. Ind. Electron. 2018, 65, 6120–6130. [Google Scholar] [CrossRef]
- Daouda, M.; Lin, C.-L.; Lee, C.-S.; Yang, C.-C.; Chen, C.-A. Model predictive control of sensorless hybrid stepper motors in auxiliary adjuster for stereotactic frame fixation. Mechatronics 2017, 47, 160–167. [Google Scholar] [CrossRef]
- Lu, B.; Xu, Y.; Ma, X. Design and Analysis of a Novel Stator-Permanent-Magnet Hybrid Stepping Motor. IEEE Trans. Appl. Supercond. 2016, 26, 0607705. [Google Scholar] [CrossRef]
- Praveen, R.P.; Ravichandran, M.H.; Achari, V.T.S.; Raj, V.P.J.; Madhu, G.; Bindu, G.R. Design and finite element analysis of hybrid stepper motor for spacecraft applications. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3–6 May 2009; pp. 1051–1057. [Google Scholar]
- Hojati, M.; Baktash, A. Design and fabrication of a new hybrid stepper motor with significant improvements in torque density. Eng. Sci. Technol. 2021, 24, 1116–1122. [Google Scholar] [CrossRef]
- Stuebig, C.; Ponick, B. Comparison of Calculation Methods for Hybrid Stepping Motors. IEEE Trans. Ind. Appl. 2012, 48, 2182–2189. [Google Scholar] [CrossRef]
- Lim, S.; Jung, D.; Kim, K.; Koo, D.; Lee, J. Characteristic Analysis of Permanent-Magnet-Type Stepping Motor with Claw Poles by Using 3 Dimensional Finite Element Method. IEEE Trans. Magn. 2007, 43, 2519–2521. [Google Scholar] [CrossRef]
- Rao, E.S.; Prasad, P. Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method for Different Design Topologies. Int. J. Power Electron. Drive Syst. 2012, 2, 107. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Singh, B.; Singh, B.P. Optimal tooth-geometry for specific performance requirements of a hybrid stepper motor. IEEE Trans. Magn. 2003, 39, 3010–3012. [Google Scholar] [CrossRef]
- Li, P.; Hua, L.U.; Zheng, W.; Shen, J. A Model Transformation-Based Simulation and Analysis Method for Static Properties of Hybrid Stepping Motors. Proc. CSEE 2016, 36, 4737–4745. [Google Scholar]
- Rahimi, A.; Kumar, K.D.; Alighanbari, H. Fault Isolation of Reaction Wheels for Satellite Attitude Control. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 610–629. [Google Scholar] [CrossRef]
- Aranda, L.A.; Reviriego, P.; Maestro, J.A. Toward a Fault-Tolerant Star Tracker for Small Satellite Applications. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3421–3431. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, L.; Chen, Y.; Chen, L.; Quan, L. A Non-Rare-Earth Doubly Salient Flux Controllable Motor Capable of Fault-Tolerant Control. IEEE Trans. Magn. 2015, 51, 8111204. [Google Scholar] [CrossRef]
- Feng, T.; Hao, S.; Zhang, X.; Yang, T.; Wang, L. Development of a Fault-Tolerant Permanent-Magnet Synchronous Motor. IEEE Access 2019, 7, 146228–146239. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, B.; Fang, H.; Guo, H. Guaranteeing the fault transient performance of aerospace multiphase permanent magnet motor system: An adaptive robust speed control approach. CES Trans. Electr. Mach. Syst. 2020, 4, 114–122. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, W.; Cao, R.; Hao, Z.; Jiang, W. Electric Drive System of Dual-Winding Fault-Tolerant Permanent-Magnet Motor for Aerospace Applications. IEEE Trans. Ind. Electron. 2015, 62, 7322–7330. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, D.; Gu, L.; Li, Q.; Xu, B.; Li, Y. Short-Circuit Fault-Tolerant Operation of Dual-Winding Permanent-Magnet Motor Under the Four-Quadrant Condition. IEEE Trans. Ind. Electron. 2019, 66, 6789–6798. [Google Scholar] [CrossRef]
- Lin, H.; Li, W.; Hu, B.; Chen, J.; Li, J.; Zhao, F. Dual Permanent Magnet Synchronous Motor Drive with a Fault-tolerant Inverter based on an Improved Width Modulation Scheme. In Proceedings of the 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar]
- Azer, P.; Ye, J.; Emadi, A. Advanced Fault-Tolerant Control Strategy for Switched Reluctance Motor Drives. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 20–25. [Google Scholar]
- Sangha, P.S.; Sawata, T. Design and test results for dual-lane fault-tolerant PM motor for safety critical aircraft actuator. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 4055–4060. [Google Scholar]
- Fu, Z.; Liu, J. Research on the design of multi-redundancy BLDC motor. In Proceedings of the 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21–24 October 2012; pp. 1–4. [Google Scholar]
- Lin, F.; Hung, Y.; Tsai, M. Fault-Tolerant Control for Six-Phase PMSM Drive System via Intelligent Complementary Sliding-Mode Control Using TSKFNN-AMF. IEEE Trans. Ind. Electron. 2013, 60, 5747–5762. [Google Scholar] [CrossRef]
- Kuang, X.; Guo, H.; Xu, J.; Zhou, T. Research on a six-phase permanent magnet synchronous motor system at dual-redundant and fault tolerant modes in aviation application. Chin. J. Aeronaut. 2017, 30, 1548–1560. [Google Scholar] [CrossRef]
- Basak, S.; Chakraborty, C. Dual Stator Winding Induction Machine: Problems, Progress, and Future Scope. IEEE Trans. Ind. Electron. 2015, 62, 4641–4652. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, X.; Dong, L.; Deng, Y.; Wu, H. Performance optimization of dual channel fault-tolerant switched reluctance motor. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 10–12 October 2016; pp. 938–944. [Google Scholar]
- Le-Huy, H.; Brunelle, P.; Sybille, G. Design and implementation of a versatile stepper motor model for simulink’s SimPowerSystems. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 437–442. [Google Scholar]
- Kukla, M.; Tarkowski, P.; Malujda, I.; Talaśka, K.; Górecki, J. Determination of the Torque Characteristics of a Stepper Motor. Procedia Eng. 2016, 136, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Acarnley, P. Stepping Motors: A Guide to Theory and Practice; IET Digital Library: Newcastle, UK, 2002; pp. 41–58. [Google Scholar]
- Ma, R.; Liu, W.; Xie, E. Simulation and Test of Position Servo System Based on Dual-redundancy BLDCM. Proc. CSEE 2008, 18, 98–103. [Google Scholar]
- Kou, B.; Li, L.; Cheng, S.; Meng, F. Torque characteristics of double-stator hybrid stepping motor with serial magnetic circuit structure. In Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC), Madison, WI, USA, 1–4 June 2003; Volume 1, pp. 313–318. [Google Scholar]
- Bennett, J.W.; Atkinson, G.J.; Mecrow, B.C.; Atkinson, D.J. Fault-Tolerant Design Considerations and Control Strategies for Aerospace Drives. IEEE Trans. Ind. Electron. 2012, 59, 2049–2058. [Google Scholar] [CrossRef]
- Zhao, Y.; Lipo, T. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Trans. Ind. Appl. 1995, 31, 1100–1109. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Number of phases | 2 | Inner diameter of PM | 7.1 mm |
Stator inner diameter | 18 mm | Outer diameter of PM | 16 mm |
Stator outer diameter | 32 mm | Thickness of PM | 2 mm |
Length of stator core | 28.5 mm | Pole height | 3 mm |
Tooth height | 0.7 mm | Pole width | 3.25 mm |
Tooth width | 0.7 mm | PM material | NSC27G |
Air gap width | 0.06 mm | Punching material | DW230-35 |
Parameters | Specification |
---|---|
Quiescent current of each phase winding | 0.6 A |
Winding resistance per pole | 0.30 Ω |
Winding resistance of each phase | 1.18 Ω |
Inductance of each pole winding | 0.000437 H |
Inductance of each phase winding | 0.001749 H |
Rotor inertia | 9.36 × 10−6 kg·m2 |
Speed/rpm | Torque1/mN·m | Torque2/mN·m |
---|---|---|
25 | 125 | 243 |
50 | 123 | 240 |
75 | 120 | 235 |
100 | 118 | 235 |
125 | 115 | 231 |
150 | 93 | 180 |
175 | 62 | 120 |
200 | 39 | 82 |
Speed/rpm | Torque1/mN·m | Torque2/mN·m |
---|---|---|
25 | 121 | 241 |
50 | 120 | 236 |
75 | 118 | 229 |
100 | 115 | 230 |
125 | 113 | 228 |
150 | 93 | 176 |
175 | 60 | 115 |
200 | 41 | 80 |
Reliability | Structure | Volume | Weight | |
---|---|---|---|---|
Dual-redundancy HSM | High | Simple | Small | Light |
Dual-motor redundant system | High | Complex | Large | Heavy |
Reliability | Drive Circuit | Volume | Weight | |
---|---|---|---|---|
Dual-redundancy HSM | High | Simple | Small | Light |
Multiphase permanent magnet motor | High | Complex | Large | Heavy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Liu, Z.; Liu, X. A Dual-Redundancy Two-Phase Hybrid Stepping Motor for Satellite Antenna Drive System. Energies 2022, 15, 1612. https://doi.org/10.3390/en15051612
Fu Z, Liu Z, Liu X. A Dual-Redundancy Two-Phase Hybrid Stepping Motor for Satellite Antenna Drive System. Energies. 2022; 15(5):1612. https://doi.org/10.3390/en15051612
Chicago/Turabian StyleFu, Zhaoyang, Zheng Liu, and Xingbang Liu. 2022. "A Dual-Redundancy Two-Phase Hybrid Stepping Motor for Satellite Antenna Drive System" Energies 15, no. 5: 1612. https://doi.org/10.3390/en15051612
APA StyleFu, Z., Liu, Z., & Liu, X. (2022). A Dual-Redundancy Two-Phase Hybrid Stepping Motor for Satellite Antenna Drive System. Energies, 15(5), 1612. https://doi.org/10.3390/en15051612