A Numerical and Experimental Investigation of a Confluent Jets Ventilation Supply Device in a Conference Room
Abstract
:1. Introduction
- −
- To validate a numerical turbulence model for simulating low momentum confluent jets in a conference room environment;
- −
- To investigate how the number of nozzle rows affects the near-field of the confluent jets’ (0–50d) temperature and flow development as well as thermal comfort, indoor air quality (IAQ), and heat removal effectiveness.
2. Experimental Set-Up
2.1. The Studied Supply Devices
2.2. Test Facilities
2.3. Equipment
2.4. Case Set-Up
2.5. Measurement Procedure and Analysis
3. Computational Set-Up and Numerical Schemes
3.1. Geometrical Set-Up and Boundary Conditions
3.2. Governing Equations
3.3. Turbulence Modeling
3.4. Numerical Details
4. Results and Discussion
4.1. Experimental Results
4.1.1. Air Speed and Temperature Measurement
4.1.2. Tracer Gas Measurement
4.2. Validation of the Numerical Model
4.3. Simulation Results
4.3.1. Jet Development
4.3.2. Indoor Air Quality, Energy Efficiency and Thermal Comfort
5. Conclusions
- The -model in combination with the DO radiation model is an adequate turbulence model to study the confluent jet ventilation (CJV) supply devices and showed few tendencies for numerical instabilities. The numerical predictions with model had the best agreement with the experimental results, both statistically and qualitatively, and is computationally cost-efficient enough to run numerous cases needed for a parametric study.
- A larger array with multiple rows and a lower inlet momentum conserves the inlet temperature and mean age of air better than a single-row array with higher inlet momentum due to the confluent effect. Since the single row has a higher momentum because of a smaller inlet area, the velocities downstream are higher which leads to higher velocities at floor/ankle level in the occupied zone, even though the velocities decline at a faster rate for a single row array at 0–50d.
- The results show that the size of the array has a great impact both on near-field development and on the conditions in the occupied zone. The multiple row arrays had a higher IAQ in the occupied zone because the larger array conserves the mean age of air better. Because of lower inlet velocities, they also had lower velocities at ankle level, which decreases the risk of draft and thermal discomfort.
6. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
d | Inside diameter of nozzle (mm) |
p | Person (-) |
Q | Total airflow (L/s) |
Qp | Airflow per person (L/(s⋅p)) |
T | Temperature (°C) |
Ta | Air temperature (°C) |
TE | Exhaust temperature (°C) |
TP | Point temperature (°C) |
TS | Supply temperature (°C) |
U0 | Jet inlet velocity (m/s) |
Ua | Air speed (m/s) |
Abbreviations
ACE | Air Change Effectiveness |
ACEP | Local Air Change Effectiveness |
ADPI | Air Diffusion Performance Index |
CAV | Constant Air Volume |
CJ | Confluent Jets |
CJV | Confluent Jet Ventilation |
DR | Draft Rate |
DV | Displacement Ventilation |
HRE | Heat Removal Effectiveness |
HTD | Horizontal Temperature Distribution |
IAQ | Indoor Air Quality |
εT | Heat Removal Effectiveness |
MV | Mixing Ventilation |
RMS | Root Mean Square |
TD | Temperature Distribution |
TI | Turbulence Intensity |
VAV | Variable Air Volume |
VTG | Vertical Temperature Gradient |
CFD
C1, C2, Cε1 | Coefficients in turbulence models (-) |
C′ε1, C2ε | Coefficients in turbulence models (-) |
Cμ, Cη, CL | Coefficients in turbulence models (-) |
CL, α, σk | Coefficients in turbulence models (-) |
Reynolds stresses (m2 s2) | |
Kinematic turbulence viscosity (m2/s) | |
k | Turbulence kinetic energy (m2/s2) |
ε | Rate of dissipation of turbulent kinetic energy (m2/s3) |
μt | Eddy viscosity (kg/m·s) |
ρ | Density (kg/m3) |
δij | Kronecker delta (-) |
σt | Turbulence Prandtl number (-) |
Pk | Turbulence production (m2 s−3) |
Tts | Turbulent time scale, (s) |
L | Turbulence length scale (m) |
f | Elliptic relaxation factor (-) |
Wall normal Reynolds stress component (m2/s2) |
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy a review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Cao, G.; Awbi, H.; Yao, R.; Fan, Y.; Sirén, K.; Kosonen, R.; Zhang, J.J. A review of the performance of different ventilation and airflow distribution systems in buildings. Build. Environ. 2014, 73, 171–186. [Google Scholar] [CrossRef]
- Awbi, H.B. Ventilation of Buildings, 2nd ed.; Spon Press: London, UK, 2003. [Google Scholar]
- Yang, B.; Melikov, A.K.; Kabanshi, A.; Zhang, C.; Bauman, F.S.; Cao, G.; Awbi, H.; Wigö, H.; Niu, J.; Cheong, K.W.; et al. A review of advanced air distribution methods—Theory, practice, limitations and solutions. Energy Build. 2019, 202, 109359. [Google Scholar] [CrossRef] [Green Version]
- Etheridge, D.; Sandberg, M. Building Ventilation—Theory and Measurement; John Wiley & Sons: Chichester, UK, 1996. [Google Scholar]
- Chen, Q.; van der Kooi, J. A methodology for indoor airflow computations and energy analysis for a displacement ventilation system. Energy Build. 1990, 14, 259–271. [Google Scholar] [CrossRef]
- Awbi, H.B. Air Distribution in Rooms: Ventilation for Health and Sustainable Environment; Elsevier: Oxford, UK, 2000; Volume 2. [Google Scholar]
- Lin, Z.; Lee, C.K.; Fong, S.; Chow, T.T.; Yao, T.; Chan, A.L.S. Comparison of annual energy performances with different ventilation methods for cooling. Energy Build. 2011, 43, 130–136. [Google Scholar] [CrossRef]
- Fan, Y.; Ito, K. Energy consumption analysis intended for real office space with energy recovery ventilator by integrating BES and CFD approaches. Build. Environ. 2012, 52, 7–67. [Google Scholar] [CrossRef]
- Andersson, H.; Cehlin, M.; Moshfegh, B. Energy-Saving Measures in a Classroom Using Low Pressure Drop Ceiling Supply Device: A Field Study. In Proceedings of the 2016 Ashrae Winter Conference Papers, Orlando, FL, USA, 23–27 January 2016; pp. 1–8. [Google Scholar]
- Melikov, A.; Pitchurov, G.; Naydenov, K.; Langkilde, G. Field study on occupant comfort and the office thermal environment in rooms with displacement ventilation. Indoor Air 2005, 15, 205–214. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ohba, Y. The Influence of a Moving Object on Air Distribution in Displacement Ventilated Rooms. J. Asian Archit. Build. Eng. 2004, 3, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Awbi, H.B. Ventilation Systems: Design and Performance, 1st ed.; Taylor & Francis: London, UK, 2008. [Google Scholar]
- Karimipanah, T.; Awbi, H.B. Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation. Build. Environ. 2002, 37, 1329–1342. [Google Scholar] [CrossRef]
- Ameen, A.; Cehlin, M.; Larsson, U.; Karimipanah, T. Experimental investigation of the ventilation performance of different air distribution systems in an office environment—Cooling mode. Energies 2019, 12, 1354. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Moshfegh, B.; Cehlin, M. Computational investigation on the factors influencing thermal comfort for impinging jet ventilation. Build. Environ. 2013, 66, 29–41. [Google Scholar] [CrossRef]
- Arghand, T.; Karimipanah, T.; Awbi, H.B.H.B.; Cehlin, M.; Larsson, U.; Linden, E. An experimental investigation of the flow and comfort parameters forunder-floor, confluent jets and mixing ventilation systems in an open-plan office. Build. Environ. 2015, 92, 48–60. [Google Scholar] [CrossRef]
- Xu, H.; Niu, J. Numerical procedure for predicting annual energy consumption of the under-floor air distribution system. Energy Build. 2006, 38, 641–647. [Google Scholar] [CrossRef]
- Ji, W.; Luo, Q.; Zhang, Z.; Wang, H.; Du, T.; Heiselberg, P.K. Investigation on thermal performance of the wall-mounted attached ventilation for night cooling under hot summer conditions. Build. Environ. 2018, 146, 268–279. [Google Scholar] [CrossRef]
- Cho, Y.J.; Awbi, H.B.; Karimipanah, T. The characteristics of wall confluent jets for ventilated enclosures. In Proceedings of the 9th International Conference on Air Distribution in Rooms (Roomvent 2004), Coimbra, Portugal, 5 September 2004. [Google Scholar]
- Cho, Y.; Awbi, H.B.H.B.; Karimipanah, T. Theoretical and experimental investigation of wall confluent jets ventilation and comparison with wall displacement ventilation. Build. Environ. 2008, 43, 1091–1100. [Google Scholar] [CrossRef]
- Ghahremanian, S.; Svensson, K.; Tummers, M.J.M.J.; Moshfegh, B. Near-field development of a row of round jets at low Reynolds numbers. Exp. Fluids 2014, 55, 1789. [Google Scholar] [CrossRef]
- Svensson, K.; Rohdin, P.; Moshfegh, B.; Tummers, M.J.M.J. Numerical and experimental investigation of the near zone flow field in an array of confluent round jets. Int. J. Heat Fluid Flow 2014, 46, 127–146. [Google Scholar] [CrossRef]
- Ghahremanian, S.; Svensson, K.; Tummers, M.J.M.J.; Moshfegh, B. Near-field mixing of jets issuing from an array of round nozzles. Int. J. Heat Fluid Flow 2014, 47, 84–100. [Google Scholar] [CrossRef]
- Janbakhsh, S.; Moshfegh, B. Experimental investigation of a ventilation system based on wall confluent jets. Build. Environ. 2014, 80, 18–31. [Google Scholar] [CrossRef]
- Svensson, K.; Rohdin, P.; Moshfegh, B. A computational parametric study on the development of confluent round jet arrays. Eur. J. Mech. B/Fluids 2015, 53, 129–147. [Google Scholar] [CrossRef]
- Ghahremanian, S. Near-Field Study of Multiple Interacting Jets: Confluent Jets; Linköping University Electronic Press: Linköping, Sweden, 2015. [Google Scholar]
- Svensson, K. Experimental and Numerical Investigations of Confluent Round Jets; Linköping University Electronic Press: Linköping, Sweden, 2015. [Google Scholar]
- Ghahremanian, S.; Moshfegh, B. A study on proximal region of low reynolds confluent jets—Part 2: Numerical prediction of the flow field. ASHRAE Trans. 2014, 120, 271–285. [Google Scholar]
- Ghahremanian, S.; Moshfegh, B. Investigation in the Near-Field of a Row of Interacting Jets. J. Fluids Eng. Trans. ASME 2015, 137, 1–18. [Google Scholar] [CrossRef]
- Karimipanah, T.; Awbi, H.B.; Moshfegh, B. The Air Distribution Index as an Indicator for Energy Consumption and Performance of Ventilation Systems. J. Hum.-Environ. Syst. 2008, 11, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Karimipanah, T.; Awbi, H.B.; Blomqvist, C.; Sandberg, M. Effectiveness of confluent jets ventilation system for classrooms. In Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Beijing, China, 4–9 September 2005; pp. 3271–3277. [Google Scholar]
- Andersson, H.; Kabanshi, A.; Cehlin, M.; Moshfegh, B. On the ventilation performance of low momentum confluent jets supply device in a classroom. Energies 2020, 13, 5415. [Google Scholar] [CrossRef]
- Kabanshi, A.; Wigö, H.; Ljung, R.; Sörqvist, P. Human perception of room temperature and intermittent air jet cooling in a classroom. Indoor Built Environ. 2017, 26, 528–537. [Google Scholar] [CrossRef]
- Kabanshi, A.; Wigö, H.; Sandberg, M. Experimental evaluation of an intermittent air supply system—Part 1: Thermal comfort and ventilation efficiency measurements. Build. Environ. 2016, 95, 240–250. [Google Scholar] [CrossRef]
- Bakó-Biró, Z.; Clements-Croome, D.J.; Kochhar, N.; Awbi, H.B.; Williams, M.J. Ventilation rates in schools and pupils’ performance. Build. Environ. 2012, 48, 215–223. [Google Scholar] [CrossRef]
- Karimipanah, T.; Awbi, H.B.; Sandberg, M.; Blomqvist, C. Investigation of air quality, comfort parameters and effectiveness for two floor-level air supply systems in classrooms. Build. Environ. 2007, 42, 647–655. [Google Scholar] [CrossRef]
- Zolfaghari, A.; Izadi, M.; Hooshmand, S.M.; Rateghi, R. Experimental Assessment of Temperature Distribution and Draught Discomfort for a Personalized CJV System Personalized CJV System. Proceedings of The 28th Annual International Conference of Iranian Society of Mechanical Engineers-ISME2020, Tehran, Iran, 27–29 May 2020. [Google Scholar]
- Tan, D.; Li, B.; Cheng, Y.; Liu, H.; Chen, J. Airflow pattern and performance of wall confluent jets ventilation for heating in a typical office space. Indoor Built Environ. 2020, 29, 67–83. [Google Scholar] [CrossRef]
- Conceição, E.Z.E.; Lúcio, M.J.R.M.; Awbi, H.B. Improvement of comfort conditions using confluent jets ventilation located near the floor level in an experimental chamber. In Proceedings of the 8th Windsor Conference, Windsor, UK, 10–13 April 2014; pp. 1035–1049. [Google Scholar]
- Cehlin, M.; Karimipanah, T.; Larsson, U.; Ameen, A. Comparing thermal comfort and air quality performance of two active chilled beam systems in an open-plan office. J. Build. Eng. 2019, 22, 56–65. [Google Scholar] [CrossRef]
- Vachaparambil, K.; Cehlin, M.; Karimipanah, T. Comparative Numerical Study of the Indoor Climate for Mixing and Confluent Jet Ventilation Systems in an Open-plan Office. In Proceedings of the 4th International Conference on Building Energy Environment, Melbourne, Australia, 5–9 February 2018; pp. 73–78. [Google Scholar]
- Chen, H.; Janbakhsh, S.; Larsson, U.; Moshfegh, B. Numerical investigation of ventilation performance of different air supply devices in an office environment. Build. Environ. 2015, 90, 37–50. [Google Scholar] [CrossRef]
- Karimipanah, T.; Moshfegh, B. On the performance of confluent jets ventilation system in office space. In Proceedings of the 10th International Conference on Air Distribution in Rooms (Roomvent 2007), Helsinki, Finland, 13–15 June 2007. [Google Scholar]
- O’Donohoe, P.G.; Gálvez-Huerta, M.A.; Gil-Lopez, T.; Dieguez-Elizondo, P.M.; Castejon-Navas, J. Air diffusion system design in large assembly halls. Case study of the Congress of Deputies parliament building, Madrid, Spain. Build. Environ. 2019, 164, 106311. [Google Scholar] [CrossRef]
- Andersson, H.; Cehlin, M.; Moshfegh, B. Experimental and numerical investigations of a new ventilation supply device based on confluent jets. Build. Environ. 2018, 137, 18–33. [Google Scholar] [CrossRef]
- Kabanshi, A.; Ameen, A.; Yang, B.; Wigö, H.; Sandberg, M. Energy simulation and analysis of an intermittent ventilation system under two climates. In Proceedings of the SEEP 2017, Bled, Slovenia, 27–30 June 2017. [Google Scholar]
- Ameen, A.; Choonya, G.; Cehlin, M. Experimental evaluation of the ventilation effectiveness of corner stratum ventilation in an office environment. Buildings 2019, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, M. On the Efficiency of Displacement Ventilation with Particular Reference to the Influence of Human Physical Activity; University of Gävle: Gävle, Sweden, 1999. [Google Scholar]
- CEN. EN 16798 Energy Performance of Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- Nielsen, P.V. Fifty years of CFD for room air distribution. Build. Environ. 2015, 91, 78–90. [Google Scholar] [CrossRef]
- ISO 7730. Moderate thermal Environment -Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal comfort; International Organization for Standardization: Geneve, Switzerland, 2005. [Google Scholar]
Nozzles | U0 (m/s) | Heat Load (W/m2) | ACH (-) | |
---|---|---|---|---|
Case 1—17.5 °C-50 L/s-1R | 38 | 2.2 | 22 | 2.3 |
Case 2—17.5 °C-50 L/s-2R | 76 | 1.1 | 22 | 2.3 |
Case 3—17.5 °C-50 L/s-3R | 114 | 0.7 | 22 | 2.3 |
Case 4—16.5 °C-70 L/s-1R | 38 | 3.0 | 22 | 3.2 |
Case 5—16.5 °C-70 L/s-2R | 76 | 1.5 | 22 | 3.2 |
Case 6—16.5 °C-70 L/s-3R | 114 | 1.0 | 22 | 3.2 |
Skewness | ||||||
---|---|---|---|---|---|---|
Quality | Excellent | Very good | Good | Acceptable | Poor | Unacceptable |
Value | 0–0.25 | 0.25–0.50 | 0.50–0.80 | 0.80–0.94 | 0.95–0.97 | 0.98–1.00 |
Number of cells | 9,763,910 | 2,091,122 | 356,092 | 26,405 | 1 | 0 |
% of cells | 79.8% | 17.1% | 2.9% | 0.2% | 0.0% | 0.0% |
Orthogonal Quality | ||||||
Quality | Excellent | Very good | Good | Acceptable | Poor | Unacceptable |
Value | 0.95–1.00 | 0.70–0.95 | 0.20–69 | 0.15–0.20 | 0.001–0.14 | 0–0.001 |
Number of cells | 6,594,682 | 3,825,128 | 1,676,456 | 15,498 | 717 | 0 |
% of cells | 54.4% | 31.6% | 13.8% | 0.1% | 0.0% | 0.0% |
Aspect Ratio | ||||||
Value | 1–10 | 10–25 | 25–35 | 35–45 | 45–55 | 55–68.6 |
Number of cells | 10,928,255 | 1,061,709 | 119,207 | 117,007 | 850 | 319 |
% of cells | 89.4% | 8.7% | 1.0% | 1.0% | 0.0% | 0.0% |
y+ | ||||||
Case | 1 | 2 | 3 | 4 | 5 | 6 |
Avg | 1 | 0.9 | 0.8 | 1.1 | 1 | 0.9 |
Max | 2.9 | 2.5 | 2.1 | 3.1 | 2.7 | 2.5 |
Case 1 | Case 2 | Case 3 | Avg. | Case 4 | Case 5 | Case 6 | Avg. | |
---|---|---|---|---|---|---|---|---|
Wall Zone avg. | 0.16 | 0.14 | 0.14 | 0.15 | 0.21 | 0.19 | 0.16 | 0.19 |
Man. Zone avg. | 0.09 | 0.09 | 0.10 | 0.09 | 0.10 | 0.09 | 0.09 | 0.09 |
Sym. Zone avg. | 0.11 | 0.11 | 0.10 | 0.11 | 0.12 | 0.11 | 0.10 | 0.11 |
Case 1 | Case 2 | Case 3 | Avg. | Case 4 | Case 5 | Case 6 | Avg. | |
---|---|---|---|---|---|---|---|---|
Inlet(°C) | 17.49 | 17.60 | 17.42 | 17.50 | 16.49 | 16.43 | 16.37 | 16.43 |
Outlet (°C) | 24.70 | 24.80 | 24.83 | 24.78 | 23.38 | 22.76 | 22.78 | 22.97 |
Diff-in-out (°C) | 7.21 | 7.20 | 7.41 | 7.27 | 6.89 | 6.33 | 6.41 | 6.54 |
Wall Zone (°C) avg. | 24.46 | 24.52 | 24.39 | 24.46 | 22.95 | 22.33 | 22.41 | 22.56 |
Man. Zone (°C) avg. | 24.67 | 24.73 | 24.63 | 24.68 | 23.28 | 22.67 | 22.73 | 22.89 |
Sym. Zone (°C) avg. | 24.60 | 24.66 | 24.64 | 24.63 | 23.36 | 22.75 | 22.54 | 22.88 |
VTG front (°C) avg. | 24.78 | 24.87 | 24.86 | 24.84 | 23.49 | 22.86 | 22.86 | 23.07 |
VTG back (°C) avg. | 24.21 | 24.26 | 24.28 | 24.25 | 22.99 | 22.35 | 22.33 | 22.56 |
Left wall (°C) avg. | 24.50 | 24.67 | 24.71 | 24.63 | 23.42 | 22.74 | 22.75 | 22.97 |
Right Wall (°C) avg. | 24.62 | 24.68 | 24.79 | 24.70 | 23.37 | 22.73 | 22.74 | 22.94 |
Ceiling (°C) avg. | 23.82 | 23.94 | 23.94 | 23.90 | 22.47 | 22.07 | 22.05 | 22.19 |
Floor (°C) avg. | 24.50 | 24.67 | 24.64 | 24.60 | 23.38 | 22.73 | 22.71 | 22.94 |
Back wall (°C) avg. | 24.37 | 24.53 | 24.95 | 24.61 | 23.34 | 22.71 | 22.69 | 22.91 |
Front wall (°C) avg. | 25.04 | 25.24 | 25.26 | 25.18 | 24.00 | 23.35 | 23.32 | 23.55 |
LHRE | 1.02 | 1.02 | 1.04 | 1.03 | 1.03 | 1.03 | 1.04 | 1.03 |
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Avg. | |
---|---|---|---|---|---|---|---|
Air Speed | |||||||
(m/s) | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 |
(%) | 0.9% | 0.9% | 2.9% | 0.7% | 1.3% | 1.0% | 1.3% |
Temperature | |||||||
(°C) | 0.31 | 0.11 | 0.15 | 0.41 | 0.10 | 0.20 | 0.21 |
(%) | 4% | 2% | 2% | 6% | 2% | 3% | 3% |
ACEP | MEAN AGE OF AIR [MIN] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CASE: | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
A | 1.02 | 0.99 | 0.96 | 0.95 | 0.95 | 1.01 | 25.1 | 25.4 | 27.1 | 20.2 | 19.2 | 19.2 |
B | 1.04 | 1.02 | 1.02 | 0.98 | 1.03 | 1.03 | 24.6 | 24.6 | 25.6 | 19.5 | 17.8 | 18.8 |
C | 1.01 | 1.03 | 1.05 | 0.96 | 0.97 | 1.00 | 25.3 | 24.4 | 24.8 | 19.8 | 18.8 | 19.4 |
D | 1.17 | 1.12 | 1.11 | 1.01 | 1.09 | 1.13 | 21.9 | 22.5 | 23.5 | 19 | 16.8 | 17.2 |
E | 1.15 | 1.10 | 1.09 | 1.09 | 1.08 | 1.20 | 22.2 | 22.9 | 24.0 | 17.6 | 16.9 | 16.1 |
OUTLET | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 25.6 | 25.2 | 26.0 | 19.1 | 18.3 | 19.4 |
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Avg. | |
---|---|---|---|---|---|---|---|
Air Speed | |||||||
(m/s) | 0.036 | 0.033 | 0.044 | 0.054 | 0.037 | 0.037 | 0.040 |
(%) | 1.7% | 3.2% | 6.1% | 1.8% | 2.4% | 3.7% | 3.1% |
Temperature | |||||||
(°C) | 0.29 | 0.35 | 0.42 | 0.27 | 0.30 | 0.28 | 0.32 |
(%) | 3.6% | 4.2% | 6.0% | 4.0% | 4.9% | 4.4% | 4.5% |
Mean Age of Air (τp) | |||||||
(min) | 2.3 | 0.9 | 0.7 | 0.8 | 1.0 | 1.0 | 1.1 |
(%) | 9.0% | 3.5% | 2.6% | 4.2% | 5.3% | 5.4% | 5.0% |
ACE Manikins * | ACE BZ ** | εT OZ *** | ACE-0.95 | AR | ||||
---|---|---|---|---|---|---|---|---|
Case | Left | Center | Right | Avg. | ||||
1 | 100% | 102% | 100% | 100% | 102% | 104% | 100% | 0.009 |
2 | 105% | 102% | 99% | 102% | 103% | 105% | 99% | 0.049 |
3 | 107% | 107% | 100% | 105% | 103% | 105% | 88% | 0.139 |
4 | 99% | 94% | 88% | 94% | 94% | 103% | 40% | 0.004 |
5 | 101% | 100% | 91% | 98% | 97% | 104% | 53% | 0.021 |
6 | 101% | 103% | 98% | 101% | 102% | 105% | 100% | 0.056 |
Avg. | 102% | 101% | 96% | 100% | 100% | 104% | 80% | 0.046 |
Case | U0 [m/s] | Occupied Zone | Volume of Occupied Zone with | |||||
---|---|---|---|---|---|---|---|---|
ADPI | DR-Max | Vel.-Max | Vel. < 0.1 | DR < 10 * | Vel.< 0.2 | DR < 20 ** | ||
1 | 2.2 | 93% | 22 | 0.26 | 69% | 89% | 98% | 99% |
2 | 1.1 | 95% | 15 | 0.23 | 76% | 95% | 100% | 100% |
3 | 0.7 | 92% | 17 | 0.23 | 80% | 95% | 100% | 100% |
4 | 3 | 97% | 40 | 0.40 | 51% | 56% | 88% | 89% |
5 | 1.5 | 94% | 22 | 0.24 | 71% | 78% | 98% | 99% |
6 | 1 | 90% | 23 | 0.24 | 75% | 81% | 99% | 99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersson, H.; Cehlin, M.; Moshfegh, B. A Numerical and Experimental Investigation of a Confluent Jets Ventilation Supply Device in a Conference Room. Energies 2022, 15, 1630. https://doi.org/10.3390/en15051630
Andersson H, Cehlin M, Moshfegh B. A Numerical and Experimental Investigation of a Confluent Jets Ventilation Supply Device in a Conference Room. Energies. 2022; 15(5):1630. https://doi.org/10.3390/en15051630
Chicago/Turabian StyleAndersson, Harald, Mathias Cehlin, and Bahram Moshfegh. 2022. "A Numerical and Experimental Investigation of a Confluent Jets Ventilation Supply Device in a Conference Room" Energies 15, no. 5: 1630. https://doi.org/10.3390/en15051630
APA StyleAndersson, H., Cehlin, M., & Moshfegh, B. (2022). A Numerical and Experimental Investigation of a Confluent Jets Ventilation Supply Device in a Conference Room. Energies, 15(5), 1630. https://doi.org/10.3390/en15051630