Machine Learning and Data Mining Applications in Power Systems
- ▪
- Minority oversampling techniques applied to the detection of injection of false data and commands into communication [1].
- ▪
- Binary-coded genetic algorithms applied to the intelligent scheduling of smart home appliances [2].
- ▪
- Adaptive supervised dictionary learning (SDL) for wide-area stability assessment [3].
- ▪
- Forecasting of consumption in isolated areas using data sequencing, sequential mining, and pattern mining to infer the results into a Hidden Markov Model (MAESHA H2020 project) [4].
- ▪
- Impact of social distancing, implemented as a result of COVID-19, on residential energy consumption [5].
- ▪
- Application of the IpDFT spectrum interpolation method to estimate the fundamental frequency of a power waveform [6].
- ▪
- Application of an adaptive neuro-fuzzy inference system (ANFIS) maximum power point-tracking (MPPT) controller for DFIG-based wind-energy conversion systems (WECS) [7].
- ▪
- ▪
- Application of Dynamic Differential Annealed Optimization to design of off-grid rural electrification in India using renewable energy resources and battery technologies [11].
- ▪
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Saxena, N.; Jung, S.; Choi, B.J. Improving Detection of False Data Injection Attacks Using Machine Learning with Feature Selection and Oversampling. Energies 2022, 15, 212. [Google Scholar] [CrossRef]
- Tutkun, N.; Burgio, A.; Jasinski, M.; Leonowicz, Z.; Jasinska, E. Intelligent Scheduling of Smart Home Appliances Based on Demand Response Considering the Cost and Peak-to-Average Ratio in Residential Homes. Energies 2021, 14, 8510. [Google Scholar] [CrossRef]
- Dabou, R.T.; Kamwa, I.; Tagoudjeu, J.; Mugombozi, F.C. Sparse Signal Reconstruction on Fixed and Adaptive Supervised Dictionary Learning for Transient Stability Assessment. Energies 2021, 14, 7995. [Google Scholar] [CrossRef]
- Guerard, G.; Pousseur, H.; Taleb, I. Isolated Areas Consumption Short-Term Forecasting Method. Energies 2021, 14, 7914. [Google Scholar] [CrossRef]
- Jang, M.; Jeong, H.C.; Kim, T.; Suh, D.H.; Joo, S.-K. Empirical Analysis of the Impact of COVID-19 Social Distancing on Residential Electricity Consumption Based on Demographic Characteristics and Load Shape. Energies 2021, 14, 7523. [Google Scholar] [CrossRef]
- Borkowski, J.; Szmajda, M.; Mroczka, J. The Influence of Power Network Disturbances on Short Delayed Estimation of Fundamental Frequency Based on IpDFT Method with GMSD Windows. Energies 2021, 14, 6465. [Google Scholar] [CrossRef]
- Chhipa, A.A.; Kumar, V.; Joshi, R.R.; Chakrabarti, P.; Jasinski, M.; Burgio, A.; Leonowicz, Z.; Jasinska, E.; Soni, R.; Chakrabarti, T. Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS. Energies 2021, 14, 6275. [Google Scholar] [CrossRef]
- Aksan, F.; Jasiński, M.; Sikorski, T.; Kaczorowska, D.; Rezmer, J.; Suresh, V.; Leonowicz, Z.; Kostyła, P.; Szymańda, J.; Janik, P. Clustering Methods for Power Quality Measurements in Virtual Power Plant. Energies 2021, 14, 5902. [Google Scholar] [CrossRef]
- Jasiński, M.; Sikorski, T.; Kaczorowska, D.; Rezmer, J.; Suresh, V.; Leonowicz, Z.; Kostyła, P.; Szymańda, J.; Janik, P.; Bieńkowski, J.; et al. A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements. Energies 2021, 14, 974. [Google Scholar] [CrossRef]
- Jasiński, M.; Sikorski, T.; Kaczorowska, D.; Rezmer, J.; Suresh, V.; Leonowicz, Z.; Kostyła, P.; Szymańda, J.; Janik, P.; Bieńkowski, J.; et al. A Case Study on a Hierarchical Clustering Application in a Virtual Power Plant: Detection of Specific Working Conditions from Power Quality Data. Energies 2021, 14, 907. [Google Scholar] [CrossRef]
- Kumar, P.P.; Suresh, V.; Jasinski, M.; Leonowicz, Z. Off-Grid Rural Electrification in India Using Renewable Energy Resources and Different Battery Technologies with a Dynamic Differential Annealed Optimization. Energies 2021, 14, 5866. [Google Scholar] [CrossRef]
- Michalec, Ł.; Jasiński, M.; Sikorski, T.; Leonowicz, Z.; Jasiński, Ł.; Suresh, V. Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study. Energies 2021, 14, 3665. [Google Scholar] [CrossRef]
- Wasowski, M.; Sikorski, T.; Wisniewski, G.; Kostyla, P.; Szymanda, J.; Habrych, M.; Gornicki, L.; Sokol, J.; Jurczyk, M. The Impact of Supply Voltage Waveform Distortion on Non-Intentional Emission in the Frequency Range 2–150 kHz: An Experimental Study with Power-Line Communication and Selected End-User Equipment. Energies 2021, 14, 777. [Google Scholar] [CrossRef]
- Kaczorowska, D.; Rezmer, J.; Jasinski, M.; Sikorski, T.; Suresh, V.; Leonowicz, Z.; Kostyla, P.; Szymanda, J.; Janik, P. A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics. Energies 2020, 13, 6670. [Google Scholar] [CrossRef]
- Jasiński, M.; Sikorski, T.; Kaczorowska, D.; Rezmer, J.; Suresh, V.; Leonowicz, Z.; Kostyla, P.; Szymańda, J.; Janik, P. A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application. Energies 2020, 13, 6578. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonowicz, Z.; Jasinski, M. Machine Learning and Data Mining Applications in Power Systems. Energies 2022, 15, 1676. https://doi.org/10.3390/en15051676
Leonowicz Z, Jasinski M. Machine Learning and Data Mining Applications in Power Systems. Energies. 2022; 15(5):1676. https://doi.org/10.3390/en15051676
Chicago/Turabian StyleLeonowicz, Zbigniew, and Michal Jasinski. 2022. "Machine Learning and Data Mining Applications in Power Systems" Energies 15, no. 5: 1676. https://doi.org/10.3390/en15051676
APA StyleLeonowicz, Z., & Jasinski, M. (2022). Machine Learning and Data Mining Applications in Power Systems. Energies, 15(5), 1676. https://doi.org/10.3390/en15051676