Influence of the HTS Winding Tape on Limiting the Transient Currents in Superconducting Transformers
Abstract
:1. Introduction
2. PSpice Model of HTS Transformer
3. Influence of HTS Tapes on Transient Currents in 21 MVA Transformer Windings
3.1. Inrush Current Modelling
3.2. Fault Current Modelling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalsi, S.S. Applications of High Temperature Superconductors to Electric Power Equipment; IEEE Press, Wiley: Piscataway, NJ, USA, 2011. [Google Scholar]
- Czerwiński, D.; Jaroszyński, L.; Majka, M.; Kozak, J.; Charmas, B. Comparison of overcurrent responses of 2G HTS tapes. IEEE Trans. Appl. Supercon. 2016, 26, 5602904. [Google Scholar] [CrossRef]
- Berger, A.; Chevatskiy, S.; Noe, M.; Leibfried, T. Comparison of the efficiency of superconducting and conventional transformers. J. Phys. Conf. Ser. 2010, 234, 032004. [Google Scholar] [CrossRef]
- Wojtasiewicz, G.; Janowski, T.; Kozak, S.; Kozak, J.; Majka, M.; Kondratowicz-Kucewicz, B. Tests and performance analysis of 2G HTS transformer. IEEE Trans. Appl. Supercond. 2013, 23, 5500505. [Google Scholar] [CrossRef]
- Surdacki, P.; Jaroszyński, L.; Woźniak, Ł. Modeling of the power losses and the efficiency of a 21 MVA Superconducting Transformer. 2018 EPMCCS Conf. Proc. J. Phys. Conf. Ser. 2018, 234, 032004. [Google Scholar] [CrossRef]
- Janowski, T.; Wojtasiewicz, G.; Jaroszyński, L. Transformatory Nadprzewodnikowe; Instytut Elektrotechniki: Warszawa, Poland, 2016; ISBN 978-83-61956-54-9. [Google Scholar]
- Trollier, T.; Ravex, A.; Poncet, J.M. Cryostat design for an HTS transformer. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2004; Volume 710, p. 831. [Google Scholar] [CrossRef]
- Sun, R.M.; Jin, J.X.; Chen, X.Y.; Tang, C.L.; Zhu, Y.P. Critical Current and Cooling Favored Structure Design and Electromagnetic Analysis of 1 MVA HTS Power Transformer. IEEE Trans. Appl. Supercond. 2014, 24, 1–5. [Google Scholar] [CrossRef]
- Moradnouri, A.; Vakilian, M.; Hekmati, A.; Fardmanesh, M. The impact of multilayered flux diverters on critical current in HTS transformer windings. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Staines, M.; Sidorov, G.; Eicher, A. Heat transfer and recovery performance enhancement of metal and superconducting tapes under high current pulses for improving fault current limiting behavior of HTS transformers. Supercond. Sci. Technol. 2020, 33, 095014. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Staines, M.; Sidorov, G.; Davies, M.; Bailey, J.; Allpress, N.; Glasson, N.; Gholamian, S.A. Fault current limiting HTS transformer with extended fault withstand time. Supercond. Sci. Technol. 2019, 32, 035006. [Google Scholar] [CrossRef]
- Hellmann, S.; Abplanalp, M.; Hofstetter, L.; Noe, M. Manufacturing of a 1-MVA-Class Superconducting Fault Current Limiting Transformer with Recovery-Under-Load Capabilities. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Surdacki, P.; Jaroszyński, L.; Woźniak, Ł. Limiting short-circuit current with a 10 kVA superconducting transformer. In Proceedings of the 2017 International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors (ELMECO & AoS), Naleczow, Poland, 3–6 December 2017. [Google Scholar] [CrossRef]
- Surdacki, P.; Jaroszyński, L.; Woźniak, Ł. Modelling short-circuit current of a 21 MVA HTS superconducting transformer. J. Phys. Conf. Ser. 2021, 1782, 012036. [Google Scholar] [CrossRef]
- Rahman, M.A.A.; Lie, T.T.; Prasad, K. The Effects of Short-Circuit and Inrush Currents on HTS Transformer Windings. IEEE Trans. Appl. Supercond. 2011, 22, 5500108. [Google Scholar] [CrossRef]
- Komarzyniec, G. Calculating the inrush current of superconducting transformers. Energies 2021, 14, 6714. [Google Scholar] [CrossRef]
- Surdacki, P.; Jaroszyński, L.; Woźniak, Ł. PSpice modeling of the inrush current in a 10 kVA superconducting transformer. In Proceedings of the 2017 Applied Electrical Engineering (PAEE), Koscielisko, Poland, 25–30 June 2017. [Google Scholar] [CrossRef]
- Surdacki, P.; Jaroszyński, L.; Woźniak, Ł. Modeling of the inrush current in superconducting transformers using PSpice. In Proceedings of the 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE), Janow Podlaski, Poland, 9–12 June 2019. [Google Scholar] [CrossRef]
- Turner, A.R.; Smith, S.K. Transformer inrush current. IEEE Ind. Appl. Mag. 2010, 16, 14–19. [Google Scholar] [CrossRef]
- Kasztenny, B. Impact of transformer inrush current on sensitive protection functions. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Dallas, TX, USA, 21–24 May 2006. [Google Scholar] [CrossRef]
- Song, W.; Jiang, Z.; Staines, M.; Badcock, R. Design of a single-phase 6.5 MVA/25 kV superconducting traction transformer for the Chinese Fuxing high-speed train. Int. J. Electr. Power Energy Syst. 2020, 119, 105956. [Google Scholar] [CrossRef]
- Hu, D.; Li, Z.; Hong, Z.; Jin, Z. Development of a single-phase 330kVA HTS transformer using GdBCO tapes. Phys. C Supercond. Its Appl. 2017, 539, 8–12. [Google Scholar] [CrossRef]
- Vysotsky, V.S.; Fetisov, S.S.; Zubko, V.V.; Zanegin, S.Y.; Nosov, A.A.; Ryabov, S.M.; Bykovsky, N.V.; Svalov, G.G.; Volkov, E.P.; Fleishman, L.S.; et al. Development and test results of HTS windings for superconducting transformer with 1 MVA rated power. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Iwakuma, M.; Sakaki, K.; Tomioka, A.; Miyayama, T.; Konno, M.; Hayashi, H.; Okamoto, H.; Gosho, Y.; Eguchi, T.; Yoshida, S.; et al. Development of a 3 φ-66/6.9 kV-2 MVA REBCO superconducting transformer. IEEE Trans. Appl. Supercond. 2015, 25, 1–6. [Google Scholar] [CrossRef]
- Funaki, K.; Iwakuma, M.; Kajikawa, K.; Hara, M.; Suchiro, J.; Ito, T.; Takata, Y.; Bohno, T.; Nose, S.I.; Konno, M.; et al. Development of a 22 kV/6.9 kV single phase model for a 3MVA HTS power transformer. IEEE Trans. Appl. Supercond. 2001, 11, 1578–1581. [Google Scholar] [CrossRef]
- Tixador, P.; Donnier-Valentin, G.; Maher, E. Design and construction of a 41 kVA Bi/Y transformer. IEEE Trans. Appl. Supercond. 2003, 13, 2331–2336. [Google Scholar] [CrossRef]
- Funaki, K.; Iwakuma, M.; Takeo, M.; Yamafuji, K.; Suchiro, J.; Hara, M.; Konno, M.; Kasagawa, Y.; Itoh, I.; Nose, S.; et al. Preliminary tests of A 500 kVA-class oxide superconducting transformer cooled by subcooled nitrogen. IEEE Trans. Appl. Supercond. 1997, 7, 824–827. [Google Scholar] [CrossRef]
- Volkov, E.P.; Dzhafarov, E.A.; Fleishman, L.S.; Vysotskii, V.S.; Sukonkin, V.V. The first in Russia HTSC transformer 1 MVA 10/0 4 kV. Proc. Russian Acad. Sci. Power Eng. 2016, 27, 809–916. [Google Scholar] [CrossRef]
- Komarzyniec, G. 14 kVA superconducting transformer with (RE)BCO windings. In Proceedings of the 2017 International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors (ELMECO & AoS), Nałęczów, Poland, 3–6 December 2017. [Google Scholar]
- Lapthorn, A.; Bodger, P.; Enright, W. A 15-kV A high temperature superconducting partial-core transformer—Part 1: Transformer Modeling. IEEE Trans. Power Deliv. 2013, 28, 245–252. [Google Scholar] [CrossRef]
- Jiles, D.C.; Atherton, D.L. Theory of ferromagnetic hysteresis. J. Appl. Phys. 1984, 55, 2115. [Google Scholar] [CrossRef]
- Jiles, D.C.; Atherton, D.L. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 1986, 61, 48–60. [Google Scholar] [CrossRef]
- Du, R.; Robertson, P. Dynamic Jiles-Atherton model for determining the magnetic power loss at high frequency in permanent magnet machines. IEEE Trans. Magn. 2015, 51, 7301210. [Google Scholar]
- Wilson, P.R.; Ross, J.N.; Brown, A.D. Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm. IEEE Trans. Magn. 2001, 37, 989–993. [Google Scholar] [CrossRef]
- Rhyner, J. Magnetic properties and AC -losses of superconductors with power law current -voltage characteristics. Physica C 1993, 212, 292–300. [Google Scholar] [CrossRef]
Parameter | Description | Value Implemented in the Model | Equation | Catalogue Data |
---|---|---|---|---|
A | Shape parameter of the normal magnetisation curve | 7.23 A/m | Hx, Bx, Ms, C | |
C | Reversible energy loss parameter | 0.3 | Hc, Br, μ | |
K | Irreversible energy loss parameter | 10 A/m | Hc, Br | |
MS | Saturation magnetisation | 1.50 MA/m | Hs, Bs | |
AREA | Core cross-section area | 3160 cm2 | ||
PACK | Core packing factor | 0.90 | ||
PATH | Average length of magnetic flux path | 463 cm | ||
GAP | Core air gap | 0.11 mm |
Type of HTS Tape | SCS12050 | SF12050 |
---|---|---|
Manufacturer | Super Power | Super Power |
Thickness [mm] | 0.06 | 0.1 |
Width [mm] | 12 | 12 |
Tape strength [MPa] | 550 | 350 |
Critical current density [A/mm2] | 220 | 450 |
Critical current [A] | 300 | 300 |
Equivalent tape resistance (room temperature) [Ω/m] | 0.00362 | 0.105 |
Resistivity of the tape substrate (77 K) [µΩcm] | 125 | 125 |
Tape length [m] | 200 | 200 |
Parameter | HTS Transformer |
---|---|
Core material (electrical sheet) | ET 114-27 |
Width/thickness of HTS tape [mm] SF12050 SCS12050 | 12/0.055 12/0.1 |
Critical current of HTS tape [A] | 280 |
Primary voltage [kV] | 69.86 |
Secondary voltage [kV] | 10.5 |
Primary current [A] | 301 |
Secondary current [A] | 2000 |
Number of parallel tapes in HTS windings HV/LV | 2/10 |
Magnetic flux density [T] | 1.63 |
Total number of windings turns HV/LV | 712/102 |
Cable length HV/LV [m] | 3791/2360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surdacki, P.; Woźniak, Ł. Influence of the HTS Winding Tape on Limiting the Transient Currents in Superconducting Transformers. Energies 2022, 15, 1688. https://doi.org/10.3390/en15051688
Surdacki P, Woźniak Ł. Influence of the HTS Winding Tape on Limiting the Transient Currents in Superconducting Transformers. Energies. 2022; 15(5):1688. https://doi.org/10.3390/en15051688
Chicago/Turabian StyleSurdacki, Paweł, and Łukasz Woźniak. 2022. "Influence of the HTS Winding Tape on Limiting the Transient Currents in Superconducting Transformers" Energies 15, no. 5: 1688. https://doi.org/10.3390/en15051688
APA StyleSurdacki, P., & Woźniak, Ł. (2022). Influence of the HTS Winding Tape on Limiting the Transient Currents in Superconducting Transformers. Energies, 15(5), 1688. https://doi.org/10.3390/en15051688