Sediment Transport Management Using the Planned Construction of the Lower Vistula Cascade as an Example
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bathymetry Changes without Barrages—Scenario S0
3.2. Impact of the Lower Vistula Cascade on Bathymetry Changes in the SII Scenario
3.3. Identification of Flushing Flows
3.4. Flushing Process
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, M.W.; Hotchkiss, R.H.; Huffaker, R. Reservoir Sustainability and Sediment Management. J. Water Resour. Plan. Manag. 2017, 143, 04016077. [Google Scholar] [CrossRef] [Green Version]
- Babiński, Z. Erosion and Accumulation Processes Below the Włocławek Barrage, Their Consequences, and Impact on the Morphodynamics of the Planned Nieszawa Reservoir; IGiZP PAN: Toruń, Poland, 1997; 46p. (In Polish) [Google Scholar]
- Babiński, Z.; Habel, M. Hydromorphological conditions of the lower Vistula in the development of navigation and hydropower. Acta Energetica 2013, 2, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Damrat, M.; Zaborska, A.; Zajączkowski, M. Sediment from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea). Oceanologia 2013, 55, 937–950. [Google Scholar] [CrossRef] [Green Version]
- Szydłowski, M.; Gąsiorowski, D.; Hakiel, J.; Zima, P.; Szymkiewicz, R. Analysis of the hydraulic effects of the Lower Vistula Cascade. Inżynieria Morska I Geotech. 2014, 5, 420–432. (In Polish) [Google Scholar]
- Mykita, M.; Fedorczak, T.; Topiłko, J. Analysis of the Adaptation of the Vistula River in the Section from Włocławek to the Mouth of the Gulf of Gdańsk to the Large and Small Cascade—Modeling. In Stage III Volume I Annex 1 Tests on the Numerical Model; DHV Hydroprojekt—IMGW PIB: Warsaw, Poland, 2018; 122p. (In Polish) [Google Scholar]
- JACOBS Halcrow Group Ltd. Feasibility Study for Comprehensive International Inland Waterway Management: E-40 for Vistula River between Gdansk and Warsaw, E-40 from Warsaw to the Poland-Belarus Border (Brest) and E-70 between the Vistula River and the Vistula Lagoon (Elblag); State Water Holding Polish Waters: Gdańsk, Poland, 2020; 3304p. (In Polish) [Google Scholar]
- Wrzosek, K.; Sobiesak, P.; Sikorski, G. Characteristic technical solutions of the planned water barrages on the Vistula River at the E40 International Waterway section. Water Resour. 2021, 10, 23–32. [Google Scholar]
- Woś, K.; Wrzosek, K. The Siarzewo Barrage Project as an example of a new quality in the realization of investments for the rational water resources management in Poland. HydropowerDams 2021, 2, 34–40. [Google Scholar]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoir sand regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Kubrak, J.; Kiczko, A.; Kubrak, E. Case Study: Forecasting the Lower Vistula Bed Deformation without and with Development of Dam Cascade. Water 2021, 13, 2142. [Google Scholar] [CrossRef]
- Woś, K. Directions of Activation of in-Land Shipping Activities in the Area of the Oder Estuary in the Conditions of Polish Integration with the European Union; Oficyna Wydawnicza “Sadyba”: Warszawa, Poland, 2005; 214p. (In Polish) [Google Scholar]
- ARUP. Ensuring Public Safety in the Area of the Włocławek Dam with Water Energy and Improving the Potential of Aquatic and Dependent Water Ecosystems; Technical Report; National Water Management Authority (KZGW): Warsaw, Poland, 2012. (In Polish) [Google Scholar]
- Kubrak, J.; Kiczko, A. Analysis of the Adaptation of the Vistula River in the Section from Włocławek to the Mouth of the Gulf of Gdańsk to the Large and Small Cascade—Modeling. In Stage III Volume I appendix 2a Investigation of Erosion Processes on Numerical Models, DHV Hydroprojekt; IMGW PIB: Warsaw, Poland, 2018; 135p. (In Polish) [Google Scholar]
- ISOK. Project Report—Task 1.3.2—Data Preparation Hydrological Range Necessary for Hydraulic Modeling—Annex 1; MGW PIB: Warsaw, Poland, 2013; 95p. (In Polish) [Google Scholar]
- Babiński, Z. Transport of suspended and bed load of the lower Vistula during the exploitation of the Włocławk barrage. Przegląd Geogr. 1994, 3–4, 285–307. (In Polish) [Google Scholar]
- Pruszak, Z.; Szmytkiewicz, M. Vistula Delta, General Mechanisms of Formation of River Deltas and Estuaries; IBW PAN: Gdańsk, Poland, 2015; 148p. (In Polish) [Google Scholar]
- Lisimenka, A.; Kubicki, A. Bedload transport in the Vistula River mouth derived from dune migration rates, southern Baltic Sea. Oceanologia 2018, 61, 384–394. [Google Scholar] [CrossRef]
- Babiński, Z. Contemporary Channel Processes of the Lower Vistula, Prace Geogr; IGiZP PAN: Wrocław-Warsaw-Kraków, Poland, 1992; Volume 157, 171p. (In Polish) [Google Scholar]
- DHI; MIKE 11. A Modeling System for Rivers and Channels. User Guide. Available online: https://manuals.mikepoweredbydhi.help>MIKE11 (accessed on 2 February 2021).
- Ngoc, T. Assessing the Effects of Upstream Dam Developments on Sediment Distribution in the Lower Mekong Delta, Vietnam. J. Water Resour. Prot. 2017, 9, 822–840. [Google Scholar] [CrossRef] [Green Version]
- Robakiewicz, M.; Sobczak, Ł. The Influence of River Training on Hydrodynamics and Morphological Changes in Open Channel Flow—the Example of the Lower Vistula River; Publications of the Institute of Geophysics; Polish Academy of Sciences; Water Resources E-5: Warsaw, Poland, 2005; Volume 387, pp. 149–177. [Google Scholar]
- Hutter, K.A. Tutorial on Prograding and Retrograding Hypo- and Hyper-Pycnal Deltaic Foramations into Quiescent Ambients. In: Contributions on Sediment Transport. In Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft der TU München; TU-Munich: Munich, Germany, 2013; Volume 127, pp. 1–80. [Google Scholar]
- Reisenbüchler, M.; Bui, M.D.; Skublics, D.; Rutschmann, P. Sediment Management at Run-of-River Reservoirs Using Numerical Modelling. Water 2020, 12, 249. [Google Scholar] [CrossRef] [Green Version]
- Reckendorfer, W.; Badura, H.; Schütz, C. Drawdown flushing in a chain of reservoirs—Effects on grayling populations and implications for sediment management. Ecol. Evol. 2018, 9, 1437–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurszo, R. Over 420 bird nests have been destroyed and 5 million fish killed will help to win the legal battle against the perpetrators. Available online: https://oko.press/zniszczono-ponad-420-gniazd-ptakow-i-zabito-5-mln-ryb-pomoz-wygrac-batalie-prawna-ze-sprawcami/ (accessed on 28 November 2021). (In Polish).
- Betrie, G.D.; Mohamed, Y.A.; van Griensven, A.; Srinivasan, R. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol. Earth Syst. Sci. 2011, 15, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Granata, T. Sediment transport and channel adjustments associated with dam removal: Field observations. Water Resour. Res. 2007, 43, 1–14. [Google Scholar] [CrossRef]
Location | Millage of the River [km] | Damming Level [m.a.s.l] | Damming Height [m] | Installed Power [MW] | Average Annual Energy Production [GWh] |
---|---|---|---|---|---|
Włocławek | 674.85 | 57.30 | 8.80 | 160 | 700.0 |
Siarzewo | 706.38 | 46.00 | 8.50 | 70 | 384.0 |
Solec Kujawski | 758.00 | 37.50 | 8,50 | 79 | 379.2 |
Chełmno | 801.55 | 29.00 | 7.00 | 68 | 326.4 |
Grudziądz | 829.50 | 22.00 | 7.00 | 56.5 | 271.2 |
Gniew | 876.30 | 15.00 | 7.20 | 76 | 364.8 |
Location | Scenario I (SI) | Scenario II (SII) | Scenario III (SIII) | Scenario IV (SIV) |
---|---|---|---|---|
Włocławek | 1970 | 1970 | 1970 | 1970 |
Siarzewo | 2028 | 2028 | 2028 | 2028 |
Solec Kujawski | 2034 | 2052 | 2034 | 2040 |
Chełmno | 2040 | 2046 | 2034 | 2040 |
Grudziądz | 2046 | 2040 | 2040 | 2034 |
Gniew | 2052 | 2034 | 2040 | 2034 |
Characteristic Name | Flow [m3/s] |
---|---|
SNQ | 289 |
SSQ | 921 |
Q50% | 2964 |
Q10% | 5195 |
Q1% | 8008 |
Q0.2% | 9885 |
W0 | WI | WII | |
---|---|---|---|
SI | −3.21 m | −2.50 m | −1.83 m |
SII | −3.90 m | −2.85 m | −2.16 m |
SIII | −3.71 m | −2.78 m | −2.07 m |
SIV | −3.90 m | −2.75 m | −2.11 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biegowski, J.; Robakiewicz, M.; Woś, K.; Wrzosek, K. Sediment Transport Management Using the Planned Construction of the Lower Vistula Cascade as an Example. Energies 2022, 15, 1689. https://doi.org/10.3390/en15051689
Biegowski J, Robakiewicz M, Woś K, Wrzosek K. Sediment Transport Management Using the Planned Construction of the Lower Vistula Cascade as an Example. Energies. 2022; 15(5):1689. https://doi.org/10.3390/en15051689
Chicago/Turabian StyleBiegowski, Jarosław, Małgorzata Robakiewicz, Krzysztof Woś, and Krzysztof Wrzosek. 2022. "Sediment Transport Management Using the Planned Construction of the Lower Vistula Cascade as an Example" Energies 15, no. 5: 1689. https://doi.org/10.3390/en15051689
APA StyleBiegowski, J., Robakiewicz, M., Woś, K., & Wrzosek, K. (2022). Sediment Transport Management Using the Planned Construction of the Lower Vistula Cascade as an Example. Energies, 15(5), 1689. https://doi.org/10.3390/en15051689