Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor
Abstract
:1. Introduction
2. Electromagnetic Dynamic Balance Control for Scroll Compressors’ Axial Separation Force
2.1. Mechanical Structure Diagram of the Electromagnetic Balance Mechanism
2.2. Axial Gas Separation Force
2.3. Sealing Effect with Theoretical Axial Gas Force as the Target Force
3. Target Force Curve Searching Method
3.1. Evaluation Criteria of the Target Force Curve Searching
3.2. Automatic Segmented Control Method for the Target Force Curve Searching
4. Influence of System Parameters on Response
4.1. Influence of Partition Number on the Tracking Effect
4.2. Automatic Optimization Algorithm of the Partition Number
5. Experiment and Results
5.1. Experimental Platform
5.2. The Steps of the Experiment
5.3. The Results of the Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olabi, A.G.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Alami, A.H. Compressed air energy storage systems: Components and operating parameters—A review. J. Energy Storage 2021, 34, 102000. [Google Scholar] [CrossRef]
- Luo, X.; Sun, H.; Wang, J. An energy efficient pneumatic-electrical system and control strategy development. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011. [Google Scholar]
- Zheng, S.; Wei, M.; Song, P.; Hu, C.; Tian, R. Thermodynamics and flow unsteadiness analysis of trans-critical CO2 in a scroll compressor for mobile heat pump air-conditioning system. Appl. Therm. Eng. 2020, 175, 115368. [Google Scholar] [CrossRef]
- Pereira, E.L.; Braga, V.M.; Deschamps, C.J. Data from the numerical analysis of radial and tangential leakage of gas in scroll compressors. Data Brief 2020, 29, 105197. [Google Scholar] [CrossRef] [PubMed]
- Morishita, E. Geometrical Theory of Scroll Compressor. Turbomachine 1985, 13, 23–33. [Google Scholar]
- Morishita, E.; Sugihara, M.; Wu, F. Scroll Compressor Design Issues. Compress. Technol. 1988, 4, 11–20. (In Chinese) [Google Scholar]
- Chen, Y.; Halm, N.P.; Braun, J.E.; Groll, E.A. Mathematic Modeling of Scroll Compressor. Int. J. Refrig. 2002, 25, 731–764. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Cheng, M.; Fukuta, M.; Shimizu, T. Optimum operating pressure ratio for scroll compressor. In Proceeding of the Purdue International Compressor Engineering Conference, West Lafayette, IN, USA, 17–20 July 1990; p. 732. [Google Scholar]
- Blunier, B.; Cirrincione, G.; Herve, Y.; Miraoui, A. A new analytical and dynamical model of a scroll compressor with experimental validation. Int. J. Refrig. 2009, 32, 874–891. [Google Scholar] [CrossRef]
- Liu, T.; Wu, Z. Modeling of Top Scroll Profile Using Equidistant-Curve Approach for a Scroll Compressor. Math. Probl. Eng. 2015, 2015, 403249. [Google Scholar] [CrossRef]
- Qiang, J.; Peng, B.; Liu, Z. Dynamic model for the orbiting scroll based on the pressures in scroll chambers—Part I: Analytical modeling. Int. J. Refrig. 2013, 36, 1830–1849. [Google Scholar] [CrossRef]
- Cavazzini, G.; Giacomel, F.; Benato, A.; Nascimben, F.; Ardizzon, G. Analysis of the Inner Fluid-Dynamics of Scroll Compressors and Comparison between CFD Numerical and Modelling Approaches. Energies 2021, 14, 1158. [Google Scholar] [CrossRef]
- Cardone, M.; Gargiulo, B. Numerical Simulation and Experimental Validation of an Oil Free Scroll Compressor. Energies 2020, 13, 5863. [Google Scholar] [CrossRef]
- Sung, J.P.; Boo, J.H.; Jung, E.G. Transient Thermodynamic Modeling of a Scroll Compressor Using R22 Refrigerant. Energies 2020, 13, 3911. [Google Scholar] [CrossRef]
- Wang, B.; Han, L.; Shi, W.; Li, X. Modulation method of scroll compressor based on suction gas bypass. Appl. Therm. Eng. 2012, 37, 183–189. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z.; Liu, X.; Liang, G.; Tang, L. Research on back pressure hole of double scroll compressor. Fluid Mach. 2007, 35, 12–15. (In Chinese) [Google Scholar]
- Gennami, H.; Kuroki, K.; Nakajima, N.; Tsubai, S.; Suitou, K.; Kimura, K. Scroll Compress and Methods for Circulating Lubrication Oil through the Same. U.S. Patent US20020136653 A1, 26 September 2002. [Google Scholar]
- Shen, Y.; Liu, D.; Liu, L.; Li, S.; Chen, S.; Gan, Z.; Qiu, M. Experimental study on a floating scroll-type compressor driving a precooled JT cryocooler. Appl. Therm. Eng. 2020, 178, 115627. [Google Scholar] [CrossRef]
- Liu, X.; Wang, B.; Zeng, Q.; Zhou, T. Research on variable condition back pressure balance system of scroll compressor for electric vehicle. Fluid Mach. 2019, 47, 16–22. (In Chinese) [Google Scholar]
- Su, X.; Zhu, Y. Scroll Compressor with Back Pressure Chamber Having Leakage Channel. U.S. Patent US9897088 B2, 20 February 2018. [Google Scholar]
- Kim, J.; Lee, S.-R.; Park, S.-S. Analyses of thrust bearings in scroll compressors considering keyways. Tribol. Int. 2010, 43, 728–736. [Google Scholar] [CrossRef]
- Tang, Y.; Hung, C.; Chang, Y. Performance improvements in low side scroll compressor with extended operation speeds. Appl. Therm. Eng. 2011, 31, 3542–3551. [Google Scholar] [CrossRef]
- Wei, Z.; Cao, M.; Liu, X.; Tang, Y.; Lu, B. Flow behaviour analysis and experimental investigation for emitter micro-channels. Chin. J. Mech. Eng. 2012, 25, 729–737. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Cui, X.; Zhang, X.; Zhang, J. Study on axial clearance seal of oil-free scroll compressor. Coal Mine Mach. 2007, 6, 43–46. (In Chinese) [Google Scholar]
- Steingart, D.A.; Evans, J.W. Measurements of granular flows in two-dimensional hoppers by particle image velocimetry. Part I: Experimental method and results. Chem. Eng. Sci. 2005, 60, 1043–1051. [Google Scholar] [CrossRef]
- Sun, X.; Dou, R.; Sun, F.; Wang, K.; Jin, J. Analysis of magnetic driven non-bearing oil free scroll compressor. In Proceedings of the 2016 IEEE Advanced Information Management, Communicates. Electronic and Automation Control Conference2016, Xian, China, 3–5 October 2016. [Google Scholar]
- Cai, J.; Cao, Y.; Cheng, K.; Zhu, L.; Wang, Z.; Jiang, H. Research on adaptive advance tracking of axial balancing electromagnetic force of scroll compressor. J. Mech. Electr. Eng. 2020, 37, 365–370. (In Chinese) [Google Scholar]
- Cai, J.; Zhu, L.; Liu, L.; Shi, Y.; Qu, X. Research on electromagnetic dynamic balance control of axial force in scroll air compressor. J. Mech. Electr. Eng. 2021, 38, 469–473. (In Chinese) [Google Scholar]
- Li, C.; Zhao, R.; Liu, Z. Analysis of the influence of mechanism error on seal clearance of scroll compressor. Lubr. Eng. 2007, 7, 66–68, 71. (In Chinese) [Google Scholar]
- Sun, S.; Wang, X.; Guo, P.; Song, Z. Investigation on the modifications of the suction flow passage in a scroll refrigeration compressor. Appl. Therm. Eng. 2020, 170, 115031. [Google Scholar] [CrossRef]
- Jin, D.; Chen, X.; Tian, T. Stress and deformation analysis of a moving vortex disk in a scroll compressor under non-uniform temperature field. Fluid Mach. 2003, 6, 11–13+6. (In Chinese) [Google Scholar]
- Rak, J.; Pietrowicz, S. Internal flow field and heat transfer investigation inside the working chamber of a scroll compressor. Energy 2020, 202, 117700. [Google Scholar] [CrossRef]
- Lin, C.; Chang, Y.; Liang, K.; Hung, C. Temperature and thermal deformation analysis on scrolls of scroll compressor. Appl. Therm. Eng. 2004, 25, 1724–1739. [Google Scholar] [CrossRef]
- Fountas, N.A.; Kanarachos, S.; Stergiou, C.I. A Visual Contrast–Based Fruit Fly Algorithm for Optimizing Conventional and Nonconventional Machining Processes. Int. J. Adv. Manuf. Technol. 2020, 109, 2901–2914. [Google Scholar] [CrossRef]
- Fountas, N.A.; Benhadj-Djilali, R.; Stergiou, C.I.; Vaxevanidis, N.M. An integrated framework for optimizing sculptured surface CNC tool paths based on direct software object evaluation and viral intelligence. J. Intell. Manuf. 2019, 30, 1581–1599. [Google Scholar] [CrossRef]
- Fountas, N.; Koutsomichalis, A.; Kechagias, J.; Vaxevanidis, N. Multi-response optimization of CuZn39Pb3 brass alloy turning by implementing Grey Wolf algorithm. Frattura ed Integrità Strutturale 2019, 50, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Verij Kazemi, M.; Veysari, E.F. A new optimization algorithm inspired by the quest for the evolution of human society: Human felicity algorithm. Expert Syst. Appl. 2022, 193, 116468. [Google Scholar] [CrossRef]
Name of Parameter | Parameter Values |
---|---|
Turns of solenoid coils | 200 |
Diameter of solenoid coil air | 100 mm |
Air gap of iron core | 0.3 mm |
Revolver pair series | 1 pole-pair |
Pressure sensor range | 0~2000 N |
The Number of Probe Tracing Zones—N | RMSE |
---|---|
10 | 61.01 |
15 | 27.85 |
40 | 22.89 |
72 | 25.16 |
180 | 25.81 |
360 | 25.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, X.; Shi, Y.; Cai, J. Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor. Energies 2022, 15, 1693. https://doi.org/10.3390/en15051693
Qu X, Shi Y, Cai J. Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor. Energies. 2022; 15(5):1693. https://doi.org/10.3390/en15051693
Chicago/Turabian StyleQu, Xiao, Yantao Shi, and Jiongjiong Cai. 2022. "Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor" Energies 15, no. 5: 1693. https://doi.org/10.3390/en15051693
APA StyleQu, X., Shi, Y., & Cai, J. (2022). Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor. Energies, 15(5), 1693. https://doi.org/10.3390/en15051693