A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Hg0 Adsorption Activity Tests
3. Description of Sorption Kinetic Models
3.1. Pseudo-First-Order Model
3.2. Pseudo-Second-Order Model
3.3. Elovich Model
3.4. Intra-Particle Diffusion Model
4. Results and Discussion
4.1. Preparation and Characterization of Samples
4.2. Hg0 Adsorption Capacity Tests
4.3. Impact of Operation Conditions on Hg0 Adsorption Capacity
4.4. Reaction Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landrigan, P.J.; Wright, R.O.; Birnbaum, L.S. Mercury toxicity in children. Science 2013, 342, 1447. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.B.; Moore, L. A tale of three cities: Mercury in urban deciduous foliage and soils across land-uses in Poughkeepsie NY, Hartford CT, and Springfield MA USA. Sci. Total Environ. 2020, 715, 136869. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, H.E.; Lu, H.; Wu, T.; Zhou, D.; Liu, Y. Investigation into the Classification of Tight Sandstone Reservoirs via Imbibition Characteristics. Energies 2018, 11, 2619. [Google Scholar] [CrossRef] [Green Version]
- Masoomi, I.; Kamata, H.; Yukimura, A.; Ohtsubo, K.; Schmid, M.O.; Scheffknecht, G. Investigation on the behavior of mercury across the flue gas treatment of coal combustion power plants using a lab-scale firing system. Fuel Process. Technol. 2020, 201, 106340. [Google Scholar] [CrossRef]
- Lee, S.S.; Wilcox, J. Behavior of mercury emitted from the combustion of coal and dried sewage sludge: The effect of unburned carbon, Cl, Cu and Fe. Fuel 2017, 203, 749–756. [Google Scholar] [CrossRef]
- Yang, S.; Liu, C.; Wang, P.; Yi, H.; Shen, F.; Liu, H. Co9S8 nanoparticles-embedded porous carbon: A highly efficient sorbent for mercury capture from nonferrous smelting flue gas. J. Hazard. Mater. 2021, 412, 124970. [Google Scholar] [CrossRef]
- Fernández-Miranda, N.; Rodríguez, E.; Lopez-Anton, M.; García, R.; Martínez-Tarazona, M. A New Approach for Retaining Mercury in Energy Generation Processes: Regenerable Carbonaceous Sorbents. Energies 2017, 10, 1311. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Liao, Y.; Qin, R.; Sun, P.; Wang, C.; Ma, Y.; Qu, Z.; Yan, N.; Yang, S. Acceleration of Hg0 adsorption onto natural sphalerite by Cu2+ activation during flotation: Mechanism and applications in Hg0 recovery. Environ. Sci. Technol. 2020, 54, 7687–7696. [Google Scholar] [CrossRef]
- Yu, M.Y.; Luo, G.Q.; Sun, R.Z.; Zou, R.J.; Li, X.; Yao, H. A mechanism study on effects of bromide ion on mercury re-emission in WFGD slurry. Chem. Eng. J. 2021, 406, 127010. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Yu, X.; Sun, P.; Zhao, Y.; Zhang, J.; Chen, G.; Yao, H.; Zheng, C. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices. Fuel Process. Technol. 2017, 158, 272–280. [Google Scholar] [CrossRef]
- Wen, M.; Wu, Q.; Li, G.; Wang, S.; Li, Z.; Tang, Y.; Xu, L.; Liu, T. Impact of ultra-low emission technology retrofit on the mercury emissions and cross-media transfer in coal-fired power plants. J. Hazard. Mater. 2020, 396, 122729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cui, L.; Li, Y.; Zhao, Y.; Dong, Y.; Cao, S. Adsorption and oxidation of mercury by montmorillonite powder modified with different copper compounds. Energy Fuels 2019, 33, 7852–7860. [Google Scholar] [CrossRef]
- Heidel, B.; Klein, B. Reemission of elemental mercury and mercury halides in wet flue gas desulfurization. Int. J. Coal. Geol. 2017, 170, 28–34. [Google Scholar] [CrossRef]
- Jia, T.; Ji, Z.; Wu, J.; Zhao, X.; Wang, F.; Xiao, Y.; Qi, X.; He, P.; Li, F. Nanosized ZnIn2S4 supported on facet-engineered CeO2 nanorods for efficient gaseous elemental mercury immobilization. J. Hazard. Mater. 2021, 419, 126436. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qu, Z.; Zong, C.; Quan, F.; Mei, J.; Yan, N. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas. Appl. Catal. B 2016, 186, 30–40. [Google Scholar] [CrossRef]
- Choi, S.; Lee, S.S. Mercury adsorption characteristics of Cl-impregnated activated carbons in simulated flue gases. Fuel 2021, 299, 120822. [Google Scholar] [CrossRef]
- Dastgheib, S.A.; Mock, J.; Ilangovan, T. Evaluation of modified activated carbons for mercury reemission control during neutralization of a simulated wastewater from the direct contact cooler of a pressurized oxy-combustion process. Ind. Eng. Chem. Res. 2021, 60, 947–954. [Google Scholar] [CrossRef]
- Huang, T.F.; Duan, Y.F.; Luo, Z.K.; Zhao, S.L.; Geng, X.Z.; Xu, Y.F.; Huang, Y.J.; Wei, H.Q.; Ren, S.J.; Wang, H.; et al. Influence of flue gas conditions on mercury removal by activated carbon injection in a pilot-scale circulating fluidized bed combustion system. Ind. Eng. Chem. Res. 2019, 58, 15553–15561. [Google Scholar] [CrossRef]
- Zhao, W.M.; Geng, X.Z.; Lu, J.C.; Duan, Y.F.; Liu, S.; Hu, P.; Xu, Y.F.; Huang, Y.J.; Tao, J.; Gu, X.B. Mercury removal performance of brominated biomass activated carbon injection in simulated and coal-fired flue gas. Fuel 2021, 285, 119131. [Google Scholar] [CrossRef]
- Liu, D.J.; Li, B.; Liu, Y.X.; Wu, J. Copper sulfide-loaded boron nitride nanosheets for elemental mercury removal from simulated flue gas. Energy Fuel 2021, 35, 2234–2242. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.S. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas. J. Air Waste Manag. Assoc. 2018, 68, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Li, H.; Liao, C.; Zhao, J.; Feng, S.; Li, P.; Liu, X.; Yang, J.; Shih, K. Magnetic rattle-type Fe3O4@CuS nanoparticles as recyclable sorbents for mercury capture from coal combustion flue gas. ACS Appl. Nano Mater. 2018, 1, 4726–4736. [Google Scholar] [CrossRef]
- Oliveira, L.C.A.; Rios, R.V.R.A.; Fabris, J.D.; Garg, V.; Sapag, K.; Lago, R.M. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 2002, 40, 2177–2183. [Google Scholar] [CrossRef]
- Padak, B.; Wilcox, J. Understanding mercury binding on activated carbon. Carbon 2009, 47, 2855–2864. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Wang, J.; Li, L.; Shih, K. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. Environ. Sci. Technol. 2016, 50, 9551–9557. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Liu, L.; Hao, X.; Zheng, J.; Liu, W.; Gao, J.; Zhang, C.C.; Wang, Q. Signal transduction from small particles: Sulfur nanodots featuring mercury sensing, cell entry mechanism and in vitro tracking performance. Chem. Eng. J. 2020, 382, 122907. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Y.-W.; Han, J.; Wang, H.-X.; Liu, D.-J.; Lu, Q.; Yang, Y.-P. Density Functional Theory Study on Mechanism of Mercury Removal by CeO2 Modified Activated Carbon. Energies 2018, 11, 2872. [Google Scholar] [CrossRef] [Green Version]
- Manceau, A.; Merkulova, M.; Murdzek, M.; Batanova, V.; Baran, R.; Glatzel, P.; Saikia, B.K.; Paktunc, D.; Lefticariu, L. Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings. Environ. Sci. Technol. 2018, 52, 10286–10296. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Li, M.; Wang, Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion. Green Chem. 2016, 18, 4824–4854. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y.C.; Huang, H.; Wang, A.J.; Chen, J.R.; Feng, J.J. Solvent-free synthesis of sulfur- and nitrogen-co-doped fluorescent carbon nanoparticles from glutathione for highly selective and sensitive detection of mercury(II) ions. Sens. Actuators B Chem. 2014, 202, 741–747. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, B.; Zhang, H.; Zhang, W. Fe/S modified sludge-based biochar for tetracycline removal from water. Powd. Technol. 2020, 364, 889–900. [Google Scholar] [CrossRef]
- Shin, Y.; Fryxell, G.E.; Um, W.; Parker, K.; Mattigod, S.V.; Skaggs, R. Sulfur-Functionalized Mesoporous Carbon. Adv. Funct. Mater. 2007, 17, 2897–2901. [Google Scholar] [CrossRef]
- Marczak-Grzesik, M.; Budzyn, S.; Tora, B.; Szufa, S.; Kogut, K.; Burmistrz, P. Low-cost organic adsorbents for elemental mercury removal from lignite flue gas. Energies 2021, 14, 2174. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Wenga, T.; Mtisi, M. Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. Sci. Total Environ. 2021, 753, 142249. [Google Scholar] [CrossRef]
- Shen, B.; Li, G.; Wang, F.; Wang, Y.; He, C.; Zhang, M.; Singh, S. Elemental mercury removal by the modified bio-char from medicinal residues. Chem. Eng. J. 2015, 272, 28–37. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Wang, F.; Wu, Q.; Tang, Y.; Shen, B. Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. Chem. Eng. J. 2017, 307, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, M.X.; Yan, Q.Q.; Xu, S.L.; Chu, S.Q.; Chen, P.; Lin, Y.; Liang, H.W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 2019, 5, 6322. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.Y.; Xu, S.L.; Yan, Q.Q.; Chen, Z.Q.; Ding, Y.W.; Li, C.; Liang, H.W.; Yu, S.H. Transition metal–assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, 0788. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Luo, G.; Zhang, Q.; Li, Z.; Zhang, S.; Cui, W. Cost-effective sulfurized sorbents derived from one-step pyrolysis of wood and scrap tire for elemental mercury removal from flue gas. Fuel 2021, 285, 119221. [Google Scholar] [CrossRef]
- Shen, B.; Liu, Z.; Xu, H.; Wang, F. Enhancing the absorption of elemental mercury using hydrogen peroxide modified bamboo carbons. Fuel 2019, 235, 878–885. [Google Scholar] [CrossRef]
- Yang, J.; Xu, H.; Zhao, Y.; Li, H.; Zhang, J. Mercury Removal from Flue Gas by Noncarbon Sorbents. Energy Fuel 2021, 35, 3581–3610. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Zu, H.; Yang, Z.; Qu, W.; Li, M.; Li, H. Surface-engineered sponge decorated with copper selenide for highly efficient gas-phase mercury Immobilization. Environ. Sci. Technol. 2020, 54, 16195–16203. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, J.; Li, H.; Qu, W.; Leng, L.; Zhao, J.; Feng, Y.; Xu, Z.; Liu, H.; Shih, K. Advances in magnetically recyclable remediators for elemental mercury degradation in coal combustion flue gas. J. Mater. Chem. A 2020, 8, 18624–18650. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Ma, S.; Zhu, B.; Zhang, J.; Zheng, C. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ. Sci. Technol. 2016, 50, 12040–12047. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Pichler, C.; Lackner, R. Post-peak decelerating reaction of Portland cement: Monitoring by heat flow calorimetry, modelling by Elovich-Landsberg model and reaction-order model. Constr. Build. Mater. 2020, 231, 117107. [Google Scholar] [CrossRef]
- Cabooter, D.; Song, H.; Makey, D.; Sadriaj, D.; Dittmann, M.; Stoll, D.; Desmet, G. Measurement and modelling of the intra-particle diffusion and b-term in reversed-phase liquid chromatography. J. Chromatogr. A 2021, 1637, 461852. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Zhu, W.; Qu, W.; Li, M.; Xu, Z.; Yang, Z.; Liu, H.; Li, H. Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas. Fuel 2021, 290, 120049. [Google Scholar] [CrossRef]
- Cheng, F.; Zhou, P.; Huo, X.; Liu, Y.; Liu, Y.; Zhang, Y. Enhancement of bisphenol A degradation by accelerating the Fe(III)/Fe(II) cycle in graphene oxide modified Fe(III)/peroxymonosulfate system under visible light irradiation. J. Colloid Interf. Sci. 2020, 580, 1021. [Google Scholar] [CrossRef]
- Feng, P.; Wang, W.; Wang, K.; Cheng, S.; Jiang, K. A high-performance carbon with sulfur doped between interlayers and its sodium storage mechanism as anode material for sodium ion batteries. J. Alloys Compd. 2019, 795, 223–232. [Google Scholar] [CrossRef]
- Yu, H.; Qian, C.; Ren, H.; Chen, M.; Tang, D.; Wu, H.; Lv, R. Enhanced catalytic properties of bimetallic sulfides with the assistance of graphene oxide for accelerating triiodide reduction in dye-sensitized solar cells. Sol. Energy 2020, 207, 1037–1044. [Google Scholar] [CrossRef]
- Wen, X.; Zhao, Z.; Zhai, S.; Wang, X.; Li, Y. Stable nitrogen and sulfur co-doped carbon dots for selective folate sensing, in vivo imaging and drug delivery. Diam. Relat. Mater. 2020, 105, 107791. [Google Scholar] [CrossRef]
- Asasian, N.; Kaghazchi, T.; Faramarzi, A.; Hakimi-Siboni, A.; Asadi-Kesheh, R.; Kavand, M.; Mohtashami, S.-A. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor. J. Taiwan Inst. Chem. E. 2014, 45, 1588–1596. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, J.; Zhang, H.; Cheng, F.; Wu, H.; Jin, D. Enhanced SO2 and Rhodamine B Removal by Blending Coke-Making Waste Benzene Residue (BR) for Pelletized Activated Coke (PAC) Production and Mechanisms. Energy Fuel 2019, 33, 5173–5181. [Google Scholar] [CrossRef]
- Liu, H.; Xie, X.; Chen, H.; Yang, S.; Liu, C.; Liu, Z.; Yang, Z.; Li, Q.; Yan, X. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. Fuel 2020, 261, 116367. [Google Scholar] [CrossRef]
- Zhou, M.; Xie, X.; Liu, Q.; Zhang, M.; Peng, C.; Li, F.; Liu, Q.; Song, Y.; Wu, J.; Qiao, Z. Spherical In2S3 anchored on g-C3N4 nanosheets for efficient elemental mercury removal in the wide temperature range. Chem. Eng. J. 2022, 430, 132857. [Google Scholar] [CrossRef]
- Alegre, C.; Sebastián, D.; Lázaro, M.J. Carbon xerogels electrochemical oxidation and correlation with their physico-chemical properties. Carbon 2019, 144, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.J.; Chiou, H.J.; Chen, Y.H.; Lin, K.S.; Rood, M.J.; Hsi, H.C. Mercury adsorption and re-emission inhibition from actual WFGD wastewater using sulfur-containing activated carbon. Environ. Res. 2019, 168, 319–328. [Google Scholar] [CrossRef]
- Zhao, S.; Luo, H.; Ma, A.; Sun, Z.; Zheng, R. Experimental study on mercury removal from coal-fired flue gas by sulfur modified biomass coke with mechanochemical method. Fuel 2022, 309, 122201. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Li, H.; Zhao, J.; Yang, J.; Qu, W.; Shih, K. Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas. Chem. Eng. J. 2020, 398, 125611. [Google Scholar] [CrossRef]
HF Etching Time (h) | Total Surface Area (m2·g−1) | Surface Area of Micropores (m2·g−1) | Pore Volume (cm3·g−1) | Pore Diameter (nm) |
---|---|---|---|---|
0 | 180.92 | 143.33 | 0.29 | 6.32 |
5 | 267.66 | 263.68 | 0.50 | 7.43 |
10 | 318.50 | 335.88 | 0.58 | 7.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Xu, H.; Meng, F.; Guo, Q.; He, T.; Yang, Z.; Qu, W.; Li, H. A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas. Energies 2022, 15, 1840. https://doi.org/10.3390/en15051840
Yang J, Xu H, Meng F, Guo Q, He T, Yang Z, Qu W, Li H. A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas. Energies. 2022; 15(5):1840. https://doi.org/10.3390/en15051840
Chicago/Turabian StyleYang, Jianping, Hong Xu, Fanyue Meng, Qingjie Guo, Tao He, Zequn Yang, Wenqi Qu, and Hailong Li. 2022. "A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas" Energies 15, no. 5: 1840. https://doi.org/10.3390/en15051840
APA StyleYang, J., Xu, H., Meng, F., Guo, Q., He, T., Yang, Z., Qu, W., & Li, H. (2022). A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas. Energies, 15(5), 1840. https://doi.org/10.3390/en15051840