Uncertainty Study of the In-Vessel Phase of a Severe Accident in a Pressurized Water Reactor
Abstract
:1. Introduction
- Development of the nuclear power plant computation model for the steady state and the transient calculation;
- Selection, identification and ranking of the relevant phenomena based on the safety criteria;
- Selection of uncertain code parameters to represent those phenomena and determination of applicable probability density function (PDF);
- Random sampling of uncertain parameters based on their PDFs and performing multiple code calculations determined by the percentile and confidence level using the Wilks formula;
- Post-processing of results, determination of uncertainty bands, quantification of dispersion of output values and determining the relationship between input and output variables using influence measures.
2. Computation Model, Initial and Boundary Conditions
2.1. Nuclear Power Plant Nodalization
2.2. Selection of Uncertain Parameters
2.3. Determination of the Sample Size
- For the 1st order there are 59 code runs required;
- For the 2nd order there are 93 code runs required;
- For the 3rd order there are 124 code runs required;
- For the 4th order there are 153 code runs required;
- For the 5th order there are 181 code runs required, etc.
3. Severe Accident Analysis
3.1. Description of the SBO Accident
3.2. Calculation Results
4. Statistical Analysis and Discussion of Results
4.1. Dispersion of Output Values
4.2. Correlation between Input Uncertain Parameters and Output Data
4.3. Comparison of Scenarios with Smaller and Larger Sample Sizes
Variable | Relative Standard Deviation | Coefficient of Range | ||||||
---|---|---|---|---|---|---|---|---|
Mean Value (59) | Mean Value (124) | Maximum Value (59) | Maximum Value (124) | Mean Value (59) | Mean Value (124) | Maximum Value (59) | Maximum Value (124) | |
Pressurizer pressure | 0.22 | 0.17 | 0.42 | 0.40 | 0.38 | 0.34 | 0.76 | 0.82 |
Collapsed core water level | 0.75 | 0.60 | 7.75 | 8.05 | 0.58 | 0.64 | 1.0 | 1.0 |
RCS fluid mass | 0.31 | 0.29 | 0.73 | 0.72 | 0.43 | 0.45 | 0.92 | 0.93 |
Integral break flow | 0.02 | 0.02 | 0.04 | 0.04 | 0.04 | 0.04 | 0.09 | 0.10 |
Accumulator pressure | 0.16 | 0.11 | 0.24 | 0.23 | 0.26 | 0.29 | 0.43 | 0.44 |
Production of hydrogen | 0.08 | 0.23 | 1.68 | 5.78 | 0.19 | 0.24 | 1.0 | 1.0 |
Maximum core temperature | 0.02 | 0.03 | 0.16 | 0.27 | 0.05 | 0.07 | 0.29 | 0.36 |
Radius of the in-core molten pool | 0.62 | 0.67 | 7.75 | 6.51 | 0.98 | 0.99 | 1.0 | 1.0 |
Corium height in the lower head | 0.65 | 0.71 | 7.75 | 11.18 | 0.77 | 0.78 | 1.0 | 1.0 |
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazin, P.; de Crécy, A.; Glaeser, H.; Skorek, T.; Joucla, J.; Probst, P.; Chung, B.; Oh, D.-Y.; Kyncl, M.; Pernica, R.; et al. BEMUSE Phase III Report–Uncertainty and Sensitivity Analysis of the LOFT L2-5 Test, NEA/CSNI/R(2007)4; OECD NEA: 2007. Available online: https://www.oecd-nea.org/jcms/pl_18442/bemuse-phase-iii-report-uncertainty-and-sensitivity-analysis-of-the-loft-l2-5-test?details=true (accessed on 25 February 2022).
- Reventós, F.; Batet, L.; Pérez, M. BEMUSE Phase V Report–Uncertainty and Sensitivity Analysis of a LB-LOCA in ZION Nuclear Power Plant. NEA/CSNI/R(2009)13; OECD NEA: 2009. Available online: https://www.oecd-nea.org/jcms/pl_18866/bemuse-phase-v-report-uncertainty-and-sensitivity-analysis-of-a-lb-loca-in-zion-nuclear-power-plant?details=true (accessed on 25 February 2022).
- Frepoli, C. An Overview of Westinghouse Realistic Large Break LOCA Evaluation Model. Sci. Technol. Nucl. Install. 2008, 498737, 15. [Google Scholar] [CrossRef]
- Jaeger, W.; Sanchez Espinoza, V.H.; Montero Mayorga, F.J.; Queral, C. Uncertainty and Sensitivity Investigations with TRACE-SUSA and TRACE-DAKOTA by Means of Post-Test Calculations of NUPEC BFBT Experiments. NUREG/IA-0462. U.S. NRC. 2017. Available online: https://www.nrc.gov/reading-rm/doc-collections/nuregs/agreement/ia0462/index.html (accessed on 25 February 2022).
- Gosh, T. State-of-the-Art Reactor Consequence Analyses (SOARCA) Project Sequoyah Integrated Deterministic and Uncertainty Analyses; Prepared by: Severe Accident Analysis Department Sandia National Laboratories: NUREG/CR-7245, U.S. NRC. 2019. Available online: https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7245/index.html (accessed on 25 February 2022).
- Ang, M.L.; Grindon, E.; Dutton, L.M.C.; Garcia-Sedano, P.; Santamaria, C.S.; Centner, B.; Auglaire, M.; Routamo, T.; Outa, S.; Jokiniemi, J.; et al. A risk-based evaluation of the impact of key uncertainties on the prediction of severe accident source terms—STU. Nucl. Eng. Des. 2001, 209, 183–192. [Google Scholar] [CrossRef]
- Elsalamouny, N.; Kaliatka, T. Uncertainty Quantification of the PHEBUS FPT-1 Test Modelling Results. Energies 2021, 14, 7320. [Google Scholar] [CrossRef]
- Darnowski, P.; Mazgaj, P.; Włostowski, M. Uncertainty and Sensitivity Analysis of the In-Vessel Hydrogen Generation for Gen-III PWR and Phebus FPT-1 with MELCOR 2.2. Energies 2021, 14, 4884. [Google Scholar] [CrossRef]
- Sonnenkalb, M. Application of the Integral Code MELCOR for German NPPs and use within Accident Management and PSA Projects. In Proceedings of the Technical Meeting on Severe Accident and Accident Management, Tokyo, Japan, 14–16 March 2006. [Google Scholar]
- Nowack, H.; Chatelard, P.; Chailan, L.; Hermsmeyer, S.; Sanchez, V.; Herranz, L. CESAM–Code for European severe accident management, EURATOM project on ASTEC improvement. Ann. Nucl. Energy 2018, 116, 128–136. [Google Scholar] [CrossRef]
- Šadek, S.; Grgić, D.; Šimić, Z. Application of ASTEC, MELCOR, and MAAP Computer Codes for Thermal Hydraulic Analysis of a PWR Containment Equipped with the PCFV and PAR Systems. Sci. Technol. Nucl. Install. 2017, 2017, 8431934. [Google Scholar] [CrossRef] [Green Version]
- Magallon, D.; Mailliat, A.; Seiler, J.-M.; Atkhen, K.; Sjövall, H.; Dickinson, S.; Jakab, J.; Meyer, L.; Buerger, M.; Trambauer, K.; et al. European expert network for the reduction of uncertainties in severe accident safety issues (EURSAFE). Nucl. Eng. Des. 2005, 235, 309–346. [Google Scholar] [CrossRef]
- Wilson, G.E.; Boyack, B.E. The role of the PIRT process in experiments, code development and code applications associated with reactor safety analysis. Nucl. Eng. Des. 1998, 186, 23–37. [Google Scholar] [CrossRef]
- Shaw, R.A.; Larson, T.K.; Dimenna, R.K. Development of a Phenomena Identification and Ranking Table (PIRT) for Thermal-Hydraulic Phenomena during a PWR Large-Break LOCA; NUREG/CR-5074, EGG-2524; EG&G Idaho, Inc.: Gaithersburg, MD, USA, 1988. [Google Scholar]
- Boyack, B.E.; Motta, A.T.; Peddicord, K.L.; Alexander, C.A.; Andersen, J.G.M.; Blaisdell, J.A.; Dunn, B.M.; Ebeling-Koning, D.; Fuketa, T.; Hache, G.; et al. Phenomena Identification and Ranking Tables (PIRTs) for Loss of Coolant Accidents in Pressurized and Boiling Water Reactors Containing High Burnup Fuel; NUREG/CR-6744, LA-UR-00-5079, U.S. NRC. 2001. Available online: https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6744/index.html (accessed on 25 February 2022).
- IAEA. Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation; Reports Series No. 52. 2008. Available online: https://www.iaea.org/publications/7768/best-estimate-safety-analysis-for-nuclear-power-plants-uncertainty-evaluation (accessed on 25 February 2022).
- Boyack, B.; Duffey, R.; Griffith, P.; Lellouche, G.; Levy, S.; Rohatgi, U.; Wilson, G.; Wulff, W.; Zuber, N. Quantifying Reactor Safety Margins–Application of Code Scaling, Applicability and Uncertainty Evaluation Methodology to a Large-Break, Loss-of-Coolant Accident; NUREG/CR-5249, EGG-2552; U.S. NRC: Washington, DC, USA, 1989.
- Glaeser, H. GRS Method for Uncertainty and Sensitivity Evaluation of Code Results and Applications. Sci. Technol. Nucl. Install. 2008, 2008, 798901. [Google Scholar] [CrossRef] [Green Version]
- Wickett, T.; Sweet, D.; Neill, A.; D’ Auria, F.; Galassi, G.; Belsito, S.; Ingegneri, M.; Gatta, P.; Glaeser, H.; Skorek, T.; et al. Report of the Uncertainty Methods Study for Advanced Best Estimate Thermal Hydraulic Code Applications; NEA/CSNI/R(97)35, OECD NEA: 1998; Volumes 1–2. Available online: https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/csni-r1997-35-vol2.pdf (accessed on 25 February 2022).
- Perez Ferragut, M. Integration of a Quantitative-Based Selection Procedure in an Uncertainty Analysis Methodology for NPP Safety Analysis. Ph.D. Thesis, UPC-Universitat Politècnica de Catalunya, Barcelona, Spain, September 2011. [Google Scholar]
- Ludmann, M.; Sauvage, J.-Y. LB LOCA analysis using the deterministic realistic methodology—Application to the 3-loop plant. In Proceedings of the 7th International Conference on Nuclear Engineering (ICONE-7), Tokyo, Japan, 19–23 April 1999; Japan Society of Mechanical Engineers: Tokyo, Japan, 1999. [Google Scholar]
- D’Auria, F.; Giannotti, W. Development of a Code with the Capability of Internal Assessment of Uncertainty. Nucl. Technol. 2000, 131, 159–196. [Google Scholar] [CrossRef]
- D’Auria, F.; Debrecin, N.; Galassi, G.M. Outline of the Uncertainty Methodology Based on Accuracy Extrapolation. Nucl. Technol. 1995, 109, 21–38. [Google Scholar] [CrossRef]
- ASYST VER 3 User Reference Manuals; SDTP/ADTP; Innovative Systems Software: Ammon, ID, USA, 2020.
- Allison, C.M.; Hohorst, J.K. Role of RELAP/SCDAPSIM in Nuclear Safety. Sci. Technol. Nucl. Install. 2010, 2010, 425658. [Google Scholar] [CrossRef]
- Nakata, A.; Naitoh, M.; Allison, C.M. Need of a Next Generation Severe Accident Code. J. Nucl. React. Technol. Tri Dasa Mega 2019, 21, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Nakata, A.; Allison, C.M.; Hohorst, J.K.; Naitoh, M.; Matsubara, K.; Pericas, R. Development and Preliminary Assessment of the new ASYST Integral Analysis BEPU Code using the PBF SFD-ST Bundle Heating and Melting Experiment, a Typical BWR Under Fukushima-Daiichi-Accident-Like Thermal Hydraulic Conditions and PWR for a Steam Line Break in the Containment. In Proceedings of the ICAPP 2020, Abu Dhabi, United Arab Emirates, 15-19 March 2020. [Google Scholar]
- Trivedi, A.K.; Novog, D.R.; Allison, C.M. Implementation of Solar Salt as Fluid in ASYST4.1 and Validation for a Natural Circulation Loop. In Proceedings of the ICONE 28, Online, 4–6 August 2021. [Google Scholar]
- Trivedi, A.K.; Perez-Ferragut, M.; Hohorst, J.K.; Allison, C. Integrated uncertainty analysis of LBLOCA in AP1000 using RELAP/SCDAPSIM. In Proceedings of the 12th International Conference of the Croatian Nuclear Society, Zadar, Croatia, 3–6 June 2018. [Google Scholar]
- Trambauer, K.; Haste, T.J.; Adroguer, B.; Hozer, Z.; Magallon, D.; Zurita, A. In-vessel Core Degradation Code Validation Matrix, Update 1996–1999; NEA/CSNI/R(2000)21, OECD NEA: 2001. Available online: https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/csni-r2000-21.pdf (accessed on 25 February 2022).
- Sehgal, B.R. (Ed.) Nuclear Safety in Light Water Reactors-Severe Accident Phenomenology, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; ISBN 9780123884466. [Google Scholar]
- Perez, M.; Reventos, F.; Wagner, R.; Allison, C. Integrated Uncertainty Analysis using RELAP/SCDAPSIM/MOD4.0. In Proceedings of the 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13), Kanazawa City, Japan, 27 September–2 October 2009. [Google Scholar]
- Benčik, V.; Grgić, D.; Šadek, S.; Vlahović, Š. NEK RELAP5/MOD3.3 Steady State Qualification Report for Cycle 29; NEK ESD-TR-13/16, FER-ZVNE/SA/DA-TR02/16-0; Faculty of Electrical Engineering and Computing: Zagreb, Croatia, 2016. [Google Scholar]
- Grgić, D.; Benčik, V.; Šadek, S. NEK RELAP5/MOD3.3 Post-RTDBE Nodalization Notebook; NEK ESD-TR-02/13, FER-ZVNE/SA/DA-TR03/13-0; Faculty of Electrical Engineering and Computing: Zagreb, Croatia, 2013. [Google Scholar]
- Šadek, S.; Grgić, D.; Benčik, V.; Vlahović, Š. Analysis of the upflow conversion modification and influence on selected LOCA accidents in a PWR plant. Nucl. Eng. Des. 2020, 369, 110854. [Google Scholar] [CrossRef]
- SCDAP/RELAP5/MOD3.2 Code Manual, Volume 1–5; Prepared by: SCDAP/RELAP5 Development Team. NUREG/CR-6150, INEL-96/0422, U.S. NRC. 1998. Available online: https://www.nrc.gov/docs/ML0103/ML010310397.pdf (accessed on 25 February 2022).
- Hermann, O.W.; Parks, C.V.; Renier, J.P. Technical Support for a Proposed Decay Heat Guide Using SAS2H/ORIGEN-S Data; NUREG/CR-5625, ORNL-6698. U.S. NRC. 1994. Available online: https://www.osti.gov/servlets/purl/43752 (accessed on 25 February 2022).
- Schrock, V.E. A Revised ANS Standard for Decay Heat from Fission Products. Nucl. Technol. 1979, 46, 323–331. [Google Scholar] [CrossRef]
- Wilks, S.S. Determination of sample sizes for setting tolerance limits. Ann. Math. Stat. 1941, 12, 91–96. [Google Scholar] [CrossRef]
- Nutt, W.T.; Wallis, G.B. Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties. Reliab. Eng. Syst. Saf. 2004, 83, 57–77. [Google Scholar] [CrossRef]
- Code of Federal Regulations 10 CFR 50.46: Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Nuclear Power Reactors. U.S. NRC. 1988. Available online: https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0046.html (accessed on 25 February 2022).
- Guba, A.; Makai, M.; Pál, L. Statistical aspects of best estimate method—I. Reliab. Eng. Syst. Saf. 2003, 80, 217–232. [Google Scholar] [CrossRef]
- Wallis, G.B. Uncertainties and probabilities in nuclear reactor regulation. Nucl. Eng. Des. 2007, 237, 1586–1592. [Google Scholar] [CrossRef]
- Broughton, J.M.; Kuan, P.; Petti, D.A.; Tolman, E.L. A Scenario of the Three Mile Island Unit 2 Accident. Nucl. Technol. 1989, 87, 34–53. [Google Scholar] [CrossRef]
Phenomenon | No. | Description | Reference Value | Probability Density Function |
---|---|---|---|---|
Severe accident core behaviour (CORE) | 1 | Temperature for failure of the oxide layer on the outer cladding surface | 2500 K | Normal (1.00, 10−4) |
2 | Fraction of oxidation of the fuel rod cladding for the stable oxide layer | 0.2 | Normal (1.00, 10−4) | |
3 | Cladding hoop strain threshold for double-sided oxidation | 0.07 | Normal (1.00, 10−4) | |
4 | Fraction of cladding surface area covered with drops that results in the blockage that stops local oxidation | 0.2 | Normal (1.00, 10−4) | |
5 | Surface temperature for freezing of drops of liquefied fuel rod cladding | 1750 K | Normal (1.00, 10−4) | |
6 | Velocity of drops of cladding material slumping down outside the surface of the fuel rod | 0.5 m/s | Normal (1.00, 10−4) | |
7 | Multiplication factor on fuel pellet diameter that defines minimum thickness that the crust must have in order to support the molten pool | 1.0 | Normal (1.00, 10−4) | |
8 | Temperature above saturation at which rod fragmentation occurs during quench | 100 K | Normal (1.00, 10−4) | |
9 | Gamma heating fraction | 0.026 | Normal (1.00, 10−4) | |
10 | Rupture strain for the fuel rod cladding | 0.18 | Uniform (0.99, 1.01) | |
11 | Strain for transition from the sausage type cladding deformation to the localized deformation | 0.2 | Uniform (0.99, 1.01) | |
12 | Strain limit for the rod-to-rod contact | 0.22 | Uniform (0.99, 1.01) | |
13 | Mass of the grid spacer per the fuel rod | 3.23·10−3 kg | Normal (1.00, 10−4) | |
14 | Height of the grid spacer | 0.0336 m | Normal (1.00, 10−4) | |
15 | Plate thickness of the grid spacer | 4·10−4 m | Normal (1.00, 10−4) | |
16 | Radius of the contact area between the grid spacer and the fuel rod cladding | 3.39·10−3 m | Normal (1.00, 10−4) | |
17 | Fuel rod plenum length | 0.186 m | Normal (1.00, 10−4) | |
18 | Fuel rod plenum void volume | 9.56·10−6 m3 | Normal (1.00, 10−4) | |
19 | Fuel rod pellet radius | 4.096·10−3 m | Uniform (1.00, 1.005) | |
20 | Fuel rod inner cladding radius | 4.178·10−3 m | Uniform (1.00, 1.005) | |
21 | Fuel rod outer cladding radius | 4.75·10−3 m | Uniform (1.00, 1.005) | |
22 | Fraction of fuel theoretical density | 0.95 | Uniform (0.99, 1.01) | |
23 | Helium inventory in the fuel rod | 6.2·10−5 kg | Normal (1.00, 10−4) | |
Thermal hydraulic system behaviour (THA) | 1 | Break junction friction coefficient | 1.0 | Uniform (0.80, 1.20) |
2 | Steam generator safety valve friction coefficient | 1.0 | Uniform (0.80, 1.20) | |
3 | Accumulator initial water volume | 35.94 m3 | Uniform (0.98, 1.02) | |
4 | Accumulator initial pressure | 4.928 MPa | Uniform (0.98, 1.02) | |
5 | Accumulator initial temperature | 322 K | Uniform (0.98, 1.02) | |
6 | RCP moment of inertia | 2.697·103 kgm2 | Uniform (0.98, 1.02) | |
7, 8 | RCP friction torque (RFT) coefficients (TFC1, TFC2): RFT = TFC1∙S + TFC2∙S2, where S is the ratio of the current pump rotational velocity to the rated pump rotational velocity | 3556.61 Nm, −715.41 Nm | Uniform (0.98, 1.02), Uniform (0.98, 1.02) | |
Decay heat | Power | Core decay heat vs. time | ANS79-1 standard data | Uniform (0.98, 1.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šadek, S.; Grgić, D.; Allison, C.; Perez-Ferragut, M. Uncertainty Study of the In-Vessel Phase of a Severe Accident in a Pressurized Water Reactor. Energies 2022, 15, 1842. https://doi.org/10.3390/en15051842
Šadek S, Grgić D, Allison C, Perez-Ferragut M. Uncertainty Study of the In-Vessel Phase of a Severe Accident in a Pressurized Water Reactor. Energies. 2022; 15(5):1842. https://doi.org/10.3390/en15051842
Chicago/Turabian StyleŠadek, Siniša, Davor Grgić, Chris Allison, and Marina Perez-Ferragut. 2022. "Uncertainty Study of the In-Vessel Phase of a Severe Accident in a Pressurized Water Reactor" Energies 15, no. 5: 1842. https://doi.org/10.3390/en15051842
APA StyleŠadek, S., Grgić, D., Allison, C., & Perez-Ferragut, M. (2022). Uncertainty Study of the In-Vessel Phase of a Severe Accident in a Pressurized Water Reactor. Energies, 15(5), 1842. https://doi.org/10.3390/en15051842