Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations
Abstract
:1. Introduction
1.1. Towards Sustainable Nuclear Energy
System Abbreviation | Coolant | Neutron Spectrum | Reactor Type Already Built | Power Reactors in Operation |
---|---|---|---|---|
SFR | Liquid sodium | Fast | Yes [31,32] | Yes [32] |
LFR | Liquid lead | Fast | No 1 | No |
GFR | Gas (He or other) | Fast | No | No |
SCWR | Super-critical water | Thermal or Fast | No | No |
MSR | Molten salt | Thermal or Fast | Yes [46] | No |
HTR | Gas (He or other) | Thermal | Yes [36,37,38] | Yes [40] |
VHTR | Gas (He or other) | Thermal | No | No |
ADS | Lead-bismuth eutectic | Fast | No 1 | No |
Fusion | Water/He/Pb-Li/… | (Very) fast | No | No |
1.2. Role of Materials and Materials Science for Sustainable Nuclear Energy
2. Materials for Current and Future Nuclear Systems
2.1. Structural and Fuel Materials for Current Generation Reactors and Relevant Issues
2.2. Structural Materials for Next Generation Nuclear Systems and Relevant Issues
2.3. Fuel Materials for Next Generation Nuclear Systems
2.4. General Materials-Related Issues for Improved Circularity and Economy of Any Type and Generation of Reactors
3. Nuclear Materials Science and Engineering Approaches: Towards a Paradigm Shift
3.1. Materials and Components’ Qualification
3.2. Advanced Modelling and Characterisation
3.3. Materials and Component Health Monitoring
3.4. Development of Optimised or New Material Solutions
3.5. Data Management
4. Discussion
- The creation of integrated test-beds dedicated to nuclear materials, and in general materials for harsh operating conditions, can be an effective pathway for accelerated materials qualification and industrial upscaling, based on coordinated exploitation of existing and future facilities and infrastructures at the service of both industry and research.
- Hybrid models that combine physics-based and data-driven approaches, e.g., making use of few-shot learning techniques, can be an effective methodology for nuclear materials, with the potential of optimally blending the capabilities of by now “traditional” multiscale tools and approaches (the development of which has absorbed much effort in the last few decades [165]) with recent data-driven empirical trends.
- Current NDE&T systems complement more traditional characterization methods to monitor the progressive change of material properties over the whole component lifecycle. Multi-parameter-based approaches combining different NDE techniques efficiently characterize materials’ properties (“material DNA”) similarly to having different human-senses, thanks to AI algorithms that remove irrelevant or spurious data, best blended in cognitive sensor systems, for advanced digital twin concepts.
- The development of MAPs dedicated to nuclear materials, or more generally materials for harsh operating conditions, is an ambitious, but extremely promising goal to apply a “design and control” paradigm for materials screening and perhaps discovery, with high potential to boost innovation in a field that needs it [226,227], allowing variables related with circularity and sustainability to be included from the start (“sustainability by design” [238]).
- The creation and, crucially, population with data of a modern, user-friendly, flexible, efficient, protected and especially attractive nuclear materials database, coupled with the consensual definition of materials examination protocols and relevant data format, is largely a prerequisite for the success of the above endeavours.
5. Conclusions
- NUGENIA (Nuclear GenII&III Alliance) [266]: It supports the R&D of nuclear fission technologies, with a focus on Gen II & III nuclear power plants, providing scientific and technical support to the community, through initiation and promotion of international R&D projects and programmes.
- ESNII (European Sustainable Nuclear Industrial Initiative) [267]: It promotes Generation IV Fast Neutron Reactor technology demonstrators and supporting research infrastructures, fuel facilities and R&D work. Designing, licensing, constructing, commissioning and putting into operation demonstrators for new reactor technologies is thus the main goal of ESNII.
- NC2I (Nuclear Co-generation Industrial Initiative) [268]: It promotes the demonstration of low-carbon cogeneration of heat and electricity based on nuclear energy, as an innovative and competitive energy solution. Its target is the commissioning of a nuclear cogeneration prototype within 10 years, to serve several energy-intensive industries using this low-carbon energy technology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statista. Electricity Generation in the European Union (EU) in 2020, by Fuel. Available online: https://www.statista.com/statistics/800217/eu-power-production-by-fuel/ (accessed on 14 December 2021).
- European Commission. National Energy and Climate Plans (NECPs). Available online: https://ec.europa.eu/energy/topics/energy-strategy/national-energy-climate-plans_en (accessed on 14 December 2021).
- International Atomic Energy Agency. Country Nuclear Profiles. Available online: https://cnpp.iaea.org/pages/index.htm (accessed on 14 December 2021).
- World Nuclear Association. Country Profiles. Available online: https://world-nuclear.org/information-library/country-profiles.aspx (accessed on 14 December 2021).
- Malerba, L. Summary of National Programmes on Nuclear Materials; H2020/ORIENT-NM Project, Deliverable D1.3; CIEMAT: Madrid, Spain, 2022; in preparation. [Google Scholar]
- International Energy Agency. Nuclear Power in a Clean Energy System. Available online: https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system (accessed on 14 December 2021).
- European Commission. Euratom Research and Training Programme. Available online: https://ec.europa.eu/info/research-and-innovation/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/euratom-research-and-training-programme_en (accessed on 14 December 2021).
- US Department of Energy. Nuclear Safety Research and Development (NSR&D) Program. Available online: https://www.energy.gov/ehss/nuclear-safety-research-and-development-nsrd-program (accessed on 14 December 2021).
- Levin, A.E. The Department of Energy’s Nuclear Safety Research and Development Program. Trans. Am. Nucl. Soc. 2015, 112, 489–491. Available online: http://b-dig.iie.org.mx/BibDig2/P15-0331/data/papers/158.pdf (accessed on 14 December 2021).
- Nuclear Energy Agency. Nuclear Safety Research. Available online: https://www.oecd-nea.org/jcms/pl_20439/nuclear-safety-research (accessed on 14 December 2021).
- World Nuclear Association. Storage and Disposal of Radioactive Waste. Available online: https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-waste/storage-and-disposal-of-radioactive-waste.aspx (accessed on 14 December 2021).
- EURAD Vision Document. Available online: https://www.ejp-eurad.eu/sites/default/files/2019-12/EURAD%20Vision.pdf (accessed on 14 December 2021).
- Nuclear Energy Agency. Small Modular Reactors: Challenges and Opportunities; 2021 NEA Report No. 7560; NEA: Issy-Les-Moulinaux, France, 2021. Available online: https://www.oecd-nea.org/upload/docs/application/pdf/2021-03/7560_smr_report.pdf (accessed on 14 December 2021).
- International Atomic Energy Agency. Advances in Small Modular Reactor Technology Developments—2020 Edition. Available online: https://aris.iaea.org/Publications/SMR_Book_2020.pdf (accessed on 14 December 2021).
- US Office of Nuclear Energy. What is a Nuclear Microreactor? 2021. Available online: https://www.energy.gov/ne/articles/what-nuclear-microreactor (accessed on 14 December 2021).
- Hanus, E. NUWARDTM. SNETP Forum 2021 (Online). Available online: https://snetp.eu/wp-content/uploads/2021/02/Presentation_Eric-HANUS.pdf (accessed on 14 December 2021).
- TEPLATOR. Available online: www.teplator.cz (accessed on 14 December 2021).
- Santinello, M.; Ricotti, M. Preliminary analysis of an integral Small Modular Reactor operating in a submerged containment. Prog. Nucl. Energy 2018, 107, 90–99. [Google Scholar] [CrossRef]
- Frick, K.; Talbot, P.; Wendt, D.; Boardman, R.; Rabiti, C.; Bragg-Sitton, S.; Ruth, M.; Levie, D.; Frew, B.; Elgowainy, A.; et al. Evaluation of Hydrogen Production Feasibility for a Light Water Reactor in the Midwest; Technical Report Nr. INL/EXT-19-55395-Rev000; Idaho National Lab INL: Idaho Falls, ID, USA, 2019. [CrossRef]
- International Atomic Energy Agency. Hydrogen Production Using Nuclear Energy; Technical Report No. NP-T-4.2; IAEA: Vienna, Austria, 2013; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1577_web.pdf (accessed on 14 December 2021).
- Al-Othman, A.; Darwish, N.N.; Qasim, M.; Tawalbeh, M.; Darwish, N.A.; Hilal, N. Nuclear desalination: A state-of-the-art review. Desalination 2019, 457, 39–61. [Google Scholar] [CrossRef]
- European Technical Safety Organisations Network. VTT Is Developing Reactor Technology for District Heating. 2021. Available online: https://www.etson.eu/node/181 (accessed on 14 December 2021).
- Lindroos, T.J.; Pursiheimo, E.; Sahlberg, V.; Tulkki, V. A techno-economic assessment of NuScale and DHR-400 reactors in a district heating and cooling grid. Energy Sources Part B Econ. Plan. Policy 2019, 14, 13–24. [Google Scholar] [CrossRef]
- Stanculescu, A. Worldwide status of advanced reactors (GEN IV) research and technology development. In Encyclopedia of Nuclear Energy; Elsevier: Amsterdam, The Netherlands, 2021; pp. 478–489. [Google Scholar] [CrossRef]
- Fast-Neutron Reactor. Available online: https://en.wikipedia.org/wiki/Fast-neutron_reactor (accessed on 14 December 2021).
- Gabaraev, A.; Cherepnin, Y.S. Proliferation resistance features in nuclear reactor designs for small-power plants. In Prevention, Detection and Response to Nuclear and Radiological Threats; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Åberg, L.M. Proliferation Resistances of Generation IV Recycling Facilities for Nuclear Fuel. Ph.D. Thesis, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, 2013. [Google Scholar]
- Delage, F.; Ramond, L.; Gallais-During, A.; Pillon, S. Actinide-bearing fuels and transmutation targets. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 19; Volume 5, pp. 645–683. [Google Scholar] [CrossRef]
- Aït Abderrahim, H.; Baeten, P.; de Bruyn, D.; Fernandez, R. MYRRHA—A multi-purpose fast spectrum research reactor. Energy Convers. Manag. 2012, 63, 4–10. [Google Scholar] [CrossRef]
- Shin, Y.H.; Choi, S.; Cho, J.; Kim, J.H.; Hwang, I.S. Advanced passive design of small modular reactor cooled by heavy liquid metal natural circulation. Prog. Nucl. Energy 2015, 83, 433–442. [Google Scholar] [CrossRef]
- Camplani, A.; Zambelli, A. Advanced nuclear power stations: Superphénix and fast-breeder reactors. Endeavour 1986, 10, 132–138. [Google Scholar] [CrossRef]
- Pakhomov, I. BN-600 and BN-800 Operating Experience. GenIV International Forum. 2018. Available online: https://www.gen-4.org/gif/upload/docs/application/pdf/2019-01/gifiv_webinar_pakhomov_19_dec_2018_final.pdf (accessed on 14 December 2021).
- Proctor, D. Nuclear First—Work Starts on Russian Fast Neutron Reactor. Power. Available online: https://www.powermag.com/nuclear-first-work-starts-on-russian-fast-neutron-reactor/ (accessed on 14 December 2021).
- Federici, G.; Boccaccini, L.; Cismondi, F.; Gasparotto, M.; Poitevin, Y.; Ricapito, I. An overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort. Fusion Eng. Des. 2019, 141, 30–42. [Google Scholar] [CrossRef]
- Advanced Gas-Cooled Reactor. Available online: https://en.wikipedia.org/wiki/Advanced_Gas-cooled_Reactor (accessed on 14 December 2021).
- Dietrich, G.; Neumann, W.; Roehl, N. Decommissioning of the Thorium High Temperature Reactor (THTR 300). IAEA-TECDOC—1043. 1998. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:29059899 (accessed on 14 December 2021).
- Everett, J.L., III; Kohler, E.J. Peach bottom unit no. 1: A high performance helium cooled nuclear power plant. Ann. Nucl. Energy 1978, 5, 321–335. [Google Scholar] [CrossRef]
- Copinger, D.A.; Moses, D.L. Fort Saint Vrain Gas Cooled Reactor Operational Experience. Oak Ridge National Laboratory Report ORNL/TM-2003/223. 2003. Available online: https://www.nrc.gov/docs/ML0403/ML040340070.pdf (accessed on 14 December 2021).
- Framatome HTGR. Available online: https://www.framatome.com/EN/us_platform-3225/framatome-htgr.html (accessed on 14 December 2021).
- China’s HTR-PM Reactor Achieves First Criticality. Available online: https://www.world-nuclear-news.org/Articles/Chinas-HTR-PM-reactor-achieves-first-criticality (accessed on 14 December 2021).
- Ding, H.; Tong, J.; Wang, Y.; Zhang, L. Development of emergency planning zone for high temperature gas-cooled reactor. Ann. Nucl. Energy 2018, 111, 347–353. [Google Scholar] [CrossRef]
- Hussein, E.M.A. Emerging small modular nuclear power reactors: A critical review. Phys. Open 2020, 5, 100038. [Google Scholar] [CrossRef]
- Gen IV International Forum. Very-High-Temperature-Reactor (VHTR). Available online: https://www.gen-4.org/gif/jcms/c_42153/very-high-temperature-reactor-vhtr (accessed on 14 December 2021).
- Gen IV International Forum. Gas-Fast-Reactor (GFR). Available online: https://www.gen-4.org/gif/jcms/c_9357/gfr (accessed on 14 December 2021).
- Gen IV International Forum. Supercritical-Water-Cooled Reactor (SCWR). Available online: https://www.gen-4.org/gif/jcms/c_42151/supercritical-water-cooled-reactor-scwr (accessed on 14 December 2021).
- Rosenthal, M.W.; Kasten, P.R.; Briggs, R.B. Molten-Salt Reactors—History, Status, and Potential. 1969. Available online: https://moltensalt.org/references/static/downloads/pdf/NAT_MSRintro.pdf (accessed on 14 December 2021).
- Gromov, B.; Belomitcev, Y.; Yefimov, E.; Leonchuk, M.; Martinov, P.; Orlov, Y.; Pankratov, D.; Pashkin, Y.; Toshinsky, G.; Chekunov, V.; et al. Use of lead-bismuth coolant in nuclear reactors and accelerator-driven systems. Nucl. Eng. Des. 1997, 173, 207–217. [Google Scholar] [CrossRef]
- Fazio, C.; Briceno, D.G.; Rieth, M.; Gessi, A.; Henry, J.; Malerba, L. Innovative materials for Gen IV systems and transmutation facilities: The cross-cutting research project GETMAT. Nucl. Eng. Des. 2011, 241, 3514–3520. [Google Scholar] [CrossRef]
- Zinkle, S.J. Advanced materials for fusion technology. Fusion Eng. Des. 2005, 74, 31–40. [Google Scholar] [CrossRef]
- Was, G.S.; Petti, D.; Ukai, S.; Zinkle, S.J. Materials for future nuclear energy systems. J. Nucl. Mater. 2019, 527, 151837. [Google Scholar] [CrossRef]
- Malerba, L.; Bertolus, M.; Nilsson, K.-F. Materials for Sustainable Nuclear Energy. Available online: https://www.semanticscholar.org/paper/Materials-for-Sustainable-Nuclear-Energy-The-Agenda-Lorenzo-Marjorie/60053358ec95eff389fec8bd22d6626f82129d23 (accessed on 15 December 2021).
- SNETP Strategic Research and Innovation Agenda. July 2021. Available online: https://snetp.eu/wp-content/uploads/2021/09/SRIA-SNETP-1.pdf (accessed on 15 December 2021).
- Organisation of the European Research Community on Nuclear Materials. ORIENT-NM Project. Available online: http://www.eera-jpnm.eu/orient-nm/ (accessed on 15 December 2021).
- Lefrançois, A. Aging of Materials During Plant Operation: Preventive Measures in the Design of the EPR™ Reactor. Available online: https://www.nuclear-exchange.com/pdf/TP_ArevaNp.pdf (accessed on 15 December 2021).
- Chen, S.-L.; He, X.-J.; Yuan, C.-X. Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors. Nucl. Sci. Tech. 2020, 31, 1–30. [Google Scholar] [CrossRef]
- Terrani, K.A. Accident tolerant fuel cladding development: Promise, status, and challenges. J. Nucl. Mater. 2018, 501, 13–30. [Google Scholar] [CrossRef]
- State-of-the-Art Report on Light Water Reactor Accident Tolerant Fuel, OECD-NEA, Nuclear Science Series, Nr. 7317. 2018. Available online: https://www.oecd-nea.org/jcms/pl_15020/state-of-the-art-report-on-light-water-reactor-accident-tolerant-fuels?details=true (accessed on 15 December 2021).
- Yun, D.; Lu, C.; Zhou, Z.; Wu, Y.; Liu, W.; Guo, S.; Shi, T.; Stubbins, J.F. Current state and prospect on the development of advanced nuclear fuel system materials: A review. Mater. Rep. Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Allen, T.; Busby, J.; Meyer, M.; Petti, D. Materials challenges for nuclear systems. Mater. Today 2010, 13, 14–23. [Google Scholar] [CrossRef]
- Van Rooijen, W.F.G. Gas-cooled fast reactor: A historical overview and future outlook. Sci. Technol. Nucl. Install. 2009, 2009, 965757. [Google Scholar] [CrossRef]
- Wang, K.; Yu, S.; Peng, W. Evaluation of thermophoretic effects on graphite dust coagulation in high-temperature gas-cooled reactors. Particuology 2020, 51, 45–52. [Google Scholar] [CrossRef]
- Martín-Muñoz, F.J.; Heizel, A.; Weisenburger, A.; Müller, G.; Gavrilov, S.; Lambrinou, K. Compatibility of structural materials with lead-bismuth eutectic and lead: Standardisation of data, corrosion mechanism and rate. In Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies—2015 Edition; OECD-NEA Report No. 7268; NEA: Issy-Les-Moulineaux, France, 2015; Chapter 6; pp. 431–486. Available online: https://www.oecd-nea.org/jcms/pl_14972/handbook-on-lead-bismuth-eutectic-alloy-and-lead-properties-materials-compatibility-thermal-hydraulics-and-technologies-2015-edition (accessed on 15 December 2021).
- Guo, S.; Zhang, J.; Wu, W.; Zhou, W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog. Mater. Sci. 2018, 97, 448–487. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C.; Wu, Y.; Lu, Y. Comparative review of different influence factors on molten salt corrosion characteristics for thermal energy storage. Sol. Energy Mater. Sol. Cells 2022, 235, 111485. [Google Scholar] [CrossRef]
- Was, G.S.; Allen, T.R. Corrosion issues in current and next-generation nuclear reactors. In Structural Alloys for Nuclear Energy Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Chapter 6; pp. 211–246. [Google Scholar] [CrossRef]
- Fazio, C.; Balbaud, F. Corrosion phenomena induced by liquid metals in Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 2; pp. 23–74. [Google Scholar] [CrossRef]
- Cabet, C.; Rouillard, F. Corrosion phenomena induced by gases in Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 3; pp. 75–104. [Google Scholar] [CrossRef]
- Guzonas, D.; Novotny, R.; Penttilä, S. Corrosion phenomena induced by supercritical water in Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 4; pp. 105–152. [Google Scholar] [CrossRef]
- Ignatiev, V.; Surenkov, A. Corrosion phenomena induced by molten salts in Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 5; pp. 153–189. [Google Scholar] [CrossRef]
- Gueneau, C.; Piron, J.-P.; Dumas, J.-C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J. Fuel-cladding chemical interaction . In State-of-the-Art Report on Multi-Scale Modelling of Nuclear Fuels; OECD-NEA Report NEA/NSC/R/(2015)5; Besmann, T., Valot, C., Eds.; NEA: Issy-les-Moulineaux, France, 2015; Chapter 3; pp. 80–90. [Google Scholar]
- Rondinella, V.V.; Wiss, T. The high burn-up structure in nuclear fuel. Mater. Today 2010, 13, 24–32. [Google Scholar] [CrossRef]
- Cheon, J.S.; Lee, C.B.; Lee, B.O.; Raison, J.P.; Mizuno, T.; Delage, F.; Carmack, J. Sodium fast reactor evaluation: Core materials. J. Nucl. Mater. 2009, 392, 324–330. [Google Scholar] [CrossRef]
- Small Modular Fast Reactor Design Description, ANL Report, ANL-SMFR-1. 2005. Available online: https://www.ne.anl.gov/eda/Small_Modular_Fast_Reactor_ANL_SMFR_1.pdf (accessed on 16 December 2021).
- Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; et al. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Comm. 2018, 9, 1084. [Google Scholar] [CrossRef] [PubMed]
- English, C.; Hyde, J. Radiation damage of reactor pressure vessel steels. In Comprehensive Nuclear Materials, 1st ed.; Konings, R.J.M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Chapter 5; Volume 4, pp. 151–180. [Google Scholar]
- Garner, F.A. Radiation-induced damage in austenitic structural steels used in nuclear reactors. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 2; Volume 3, pp. 57–168. [Google Scholar] [CrossRef]
- Griffiths, M. Effect of Neutron Irradiation on the Mechanical Properties, Swelling and Creep of Austenitic Stainless Steels. Materials 2021, 14, 2622. [Google Scholar] [CrossRef]
- Cabet, C.; Dalle, F.; Gaganidze, E.; Henry, J.; Tanigawa, H. Ferritic-martensitic steels for fission and fusion applications. J. Nucl. Mater. 2019, 523, 510–537. [Google Scholar] [CrossRef]
- Stopher, M.A. The effects of neutron radiation on nickel-based alloys. Mater. Sci. Technol. 2017, 33, 518–536. [Google Scholar] [CrossRef]
- Griffiths, M. The Effect of Irradiation on Ni-containing components in CANDU® Reactor Cores: A Review. AECL Nucl. Rev. 2013, 2, 16. [Google Scholar]
- Zinkle, S.J.; Busby, J.T. Structural materials for fission & fusion energy. Mater. Today 2009, 12, 12–19. [Google Scholar] [CrossRef]
- Garner, G.A.; Toloczko, M.B.; Sencer, B.H. Comparison of swelling and irradiation creep behaviour of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 2000, 276, 123–142. [Google Scholar] [CrossRef]
- Yvon, P. (Ed.) Structural Materials for Generation IV Nuclear Reactors; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- 4th Generation Sodium-Cooled Fast Reactors—The ASTRID Technological Demonstrator. Available online: https://www.cea.fr/english/Documents/corporate-publications/4th-generation-sodium-cooled-fast-reactors.pdf (accessed on 16 December 2021).
- Weisenburger, A.; Jianu, A.; Del Giacco, M.; Fetzer, R.; Heinzel, A.; Müller, G. Material Selection for Lead Cooled Fast Reactors. Revue Générale Nucléaire 2013, 3, 66–73. [Google Scholar] [CrossRef]
- Jayakumar, T.; Mathew, M.D.; Laha, K. High temperature materials for nuclear fast fission and fusion reactors and advanced fossil power plants. Procedia Eng. 2013, 55, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.; Maloy, S.A. Irradiation-resistant ferritic and martensitic steels as core materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 9; pp. 329–355. [Google Scholar] [CrossRef]
- Griffiths, M. Ni-based alloys for reactor internals and steam generator applications. In Structural Alloys for Nuclear Energy Applications; Odette, G.R., Zinkle, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 9; pp. 349–409. [Google Scholar]
- Čižek, J.; Kalivodová, J.; Janeček, M.; Stráský, J.; Srba, O.; Macková, A. Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review. Metals 2021, 11, 76. [Google Scholar] [CrossRef]
- Marsden, B.J.; Jones, A.N.; Hall, G.N.; Treifi, M.; Mummery, P.M. Graphite as a core material for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 14; pp. 495–532. [Google Scholar] [CrossRef]
- Asayama, T. Conventional ferritic and martensitic steels as out-of-core materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 18; pp. 635–649. [Google Scholar] [CrossRef]
- Ukai, S.; Ohtsuka, S.; Kaito, T.; de Carlan, Y.; Ribis, J.; Malaplate, J. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 10; pp. 357–414. [Google Scholar] [CrossRef]
- Le Flem, M.; Gavoille, P.; Courcelle, A.; Olier, P.; De Carlan, Y.; Blat-Yrieix, M.; Diano, P. Status of the French R&D on ASTRID core materials. Proceedings of 2014 International Congress on Advances in Nuclear Power Plants (ICAPP), Charlotte, NC, USA, 6–9 April 2014; Paper 14117; CD-ROM. ISBN 978-0-89448-776-7. [Google Scholar]
- Ren, W.; Swindeman, R. A Review of Alloy 800H for Applications in the Gen IV Nuclear Energy Systems. In Proceedings of the ASME 2010 Pressure Vessels & Piping Division/K-PVP Conference PVP2010, Bellevue, DC, USA, 18–22 July 2010; PVP2010-25278. pp. 821–836. [Google Scholar] [CrossRef]
- Leonard, K.J. Radiation Effects in Refractory Metals and Alloys. In Comprehensive Nuclear Materials, 1st ed.; Konings, R.J.M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Chapter 6; Volume 4, pp. 151–213. [Google Scholar]
- Muroga, T. Refractory metals as core materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 11; pp. 415–440. [Google Scholar] [CrossRef]
- Park, J.Y. SiCf/SiC composites as core materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 12; pp. 441–470. [Google Scholar] [CrossRef]
- Katoh, Y.; Snead, L.L.; Henager, C.H., Jr.; Nozawa, T.; Hinoki, T.; Ivekovic, A.; Novak, S.; Gonzalez de Vicente, S.M. Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 2014, 455, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Liu, F.; Wang, H.; Li, H.; Gou, Y. A review of third generation SiC fibers and SiCf/SiC composites. J. Mater. Sci. Technol. 2019, 35, 2743–2750. [Google Scholar] [CrossRef]
- Zinkle, S.J. Advanced irradiation-resistant materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 16; pp. 569–594. [Google Scholar] [CrossRef]
- Cockeram, B.V.; Byun, T.S.; Leonard, K.J.; Hollenbeck, J.L.; Snead, L.L. Post-irradiation fracture toughness of unalloyed molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244 °C to 507 °C. J. Nucl. Mater. 2013, 440, 382–413. [Google Scholar] [CrossRef]
- Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.E.; Armstrong, D.E.J.; Gandy, A.S. High-Entropy Alloys for Advanced Nuclear Applications. Entropy 2021, 23, 98. [Google Scholar] [CrossRef]
- Manzoni, A.M.; Glatzel, U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2019, 147, 512–532. [Google Scholar] [CrossRef]
- Lambrinou, K.; Lapauw, T.; Tunca, B.; Vleugels, J. Max Phase Materials for Nuclear Applications. In Developments in Strategic Ceramic Materials II: Ceramic Engineering and Science Proceedings, 7th ed.; Kriven, W.M., Wang, J., Zhou, Y., Zhu, D., Costa, G., Fukushima, M., Gyenkenyesi, A., Eds.; American Ceramic Society: Westerville, OH, USA, 2017; Volume 37, pp. 223–233. [Google Scholar] [CrossRef]
- Supko, E. Nuclear fuel fabrication. In Uranium for Nuclear Power; Woodhead Publishing: Cambridge, UK, 2016; Chapter 13; pp. 353–382. [Google Scholar] [CrossRef]
- Middleburgh, S.C.; Lee, W.E.; Rushton, M.J.D. Ceramics in the nuclear fuel cycle. In Advanced Ceramics for Energy Conversion and Storage; Series on Advanced Ceramic Materials; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 2; pp. 63–87. [Google Scholar] [CrossRef]
- Abe, T.; Asakura, K. Uranium Oxide and MOX Production. In Comprehensive Nuclear Materials, 1st ed.; Konings, R.J.M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Chapter 15; Volume 2, pp. 393–422. [Google Scholar] [CrossRef]
- Abram, T.; Ion, S. Generation-IV nuclear power: A review of the state of the science. Energy Policy 2008, 36, 4323–4330. [Google Scholar] [CrossRef]
- Sengupta, A.K.; Agarwal, R.; Kamath, H.S. Carbide fuel. In Comprehensive Nuclear Materials, 1st ed.; Konings, R.J.M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Chapter 3; Volume 3, pp. 55–86. [Google Scholar] [CrossRef]
- Wallenius, J. Nitride fuels. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 3; Volume 5, pp. 88–101. [Google Scholar] [CrossRef]
- Ekberg, C.; Ribeiro, C.D.; Hedberg, M.; Jolkkonen, M. Nitride fuel for Gen IV nuclear power systems. J. Radioanal. Nucl. Chem. 2018, 318, 1713–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leenaers, A.; Wight, J.; Van den Berghe, S.; Ryu, H.J.; Valery, J.-F. U-Si based fuel system. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 15; Volume 5, pp. 485–498. [Google Scholar] [CrossRef]
- Gonzales, A.; Watkins, J.K.; Wagner, A.R.; Jaques, B.J.; Sooby, E.S. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: Uranium silicide. J. Nucl. Mater. 2021, 553, 153026. [Google Scholar] [CrossRef]
- Ogata, T. Metal fuel. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 1; Volume 5, pp. 1–42. [Google Scholar] [CrossRef]
- Meyer, M.K.; O’Brien, R.C. Composite fuel (Cermet, Cercer). In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 6; Volume 5, pp. 169–189. [Google Scholar] [CrossRef]
- Beneš, O.; Konings, R.J.M. Molten salt reactor fuel and coolant. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 18; Volume 5, pp. 609–644. [Google Scholar] [CrossRef]
- Status and Advances in MOX Fuel Technology; Technical Reports Series No. 415; IAEA: Vienna, Austria, 2003; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TRS415_web.pdf (accessed on 20 December 2021).
- Portelette, L.; Vincent, P.-G.; Moulinec, H.; Gărăjeu, M. Viscoplastic behaviour of a porous polycrystal with similar pore and grain sizes: Application to nuclear MOX fuel materials. Int. J. Solids Struct. 2022, 236–237, 111316. [Google Scholar] [CrossRef]
- Status of Fast Reactor Research and Technology Development; IAEA-TECDOC-1691; IAEA: Vienna, Austria, 2013; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1691_web.pdf (accessed on 20 December 2021).
- Biarrotte, J.L.; Mueller, A.C.; Klein, H.; Pierini, P.; Vandeplassche, D. Accelerator reference design for the MYRRHA European ADS demonstrator. In Proceedings of the Linear Accelerator Conference LINAC2010, Tsukuba, Japan, 12–17 September 2010; pp. 440–442. Available online: https://accelconf.web.cern.ch/LINAC2010/papers/tup020.pdf (accessed on 20 December 2020).
- Ahmad, A.; Sheehy, S.L.; Parks, G.T. The effect of beam interruptions on the integrity of ADSR fuel pin cladding: A thermo-mechanical analysis. Ann. Nucl. Energy 2012, 46, 97–105. [Google Scholar] [CrossRef]
- Kooyman, T.; Buiron, L.; Rimpault, G. On the influence of the americium isotopic vector on the cooling time of minor actinides bearing blankets in fast reactors. EPJ Nucl. Sci. Technol. 2018, 4, 11. [Google Scholar] [CrossRef]
- Taiwo, T.; Wigeland, R. Fuel cycle considerations for uranium, plutonium and minor actinide partitioning and transmutation. Ann. Nucl. Energy 2021, 156, 108182. [Google Scholar] [CrossRef]
- Sundaram, C.V.; Mannan, L. Nuclear fuels and development of nuclear fuel elements. Sadhana 1989, 14, 21–57. [Google Scholar] [CrossRef]
- Somers, J. Minor actinide bearing fuels: Fabrication and irradiation experience in Europe. Energy Procedia 2011, 7, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Wallenius, J.; Bakker, K.; Ekberg, C.; Geist, A.; Hania, R.; Slooten, E.; de Visser-Tynova, E. Minor Actinide Bearing Fuels, 2nd ed.; Lead Cold Books: Stockholm, Sweden, 2015; ISBN 978-91-980272-1-1. [Google Scholar]
- Brown, N.R. A review of in-pile fuel safety tests of TRISO fuel forms and future testing opportunities in non-HTGR applications. J. Nucl. Mater. 2020, 534, 152139. [Google Scholar] [CrossRef]
- Al-Zahrani, Y.A.; Mehboob, K.; Mohamad, D.; Alhawsawi, A.; Abolaban, F.A. Neutronic performance of fully ceramic microencapsulated of uranium oxycarbide and uranium nitride composite fuel in SMR. Ann. Nucl. Energy 2021, 155, 108152. [Google Scholar] [CrossRef]
- Serp, J.; Allibert, M.; Benes, O.; Delpech, S.; Feynberg, O.; Ghetta, V.; Heuer, D.; Holcomb, D.; Ignatiev, V.; Kloosterman, J.L.; et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy 2014, 77, 308–319. [Google Scholar] [CrossRef]
- Beneš, O.; Souček, P. Molten salt reactor fuels. In Advances in Nuclear Fuel Chemistry; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2020; Chapter 6; pp. 249–271. [Google Scholar] [CrossRef]
- Leonov, V.P.; Oryshchenko, A.S.; Schastlivaya, I.A. Low-activated Radiation-Resistant Titanium Alloys for Nuclear Low-Power Reactor Pressure Vessels. Available online: https://fcpir.ru/upload/iblock/8ed/corebofs000080000kik6avj1pirju2o_presentation.pdf (accessed on 22 December 2021).
- The Most Abundant Elements in The Earth’s Crust. Available online: https://www.worldatlas.com/articles/the-most-abundant-elements-in-the-earth-s-crust.html (accessed on 10 February 2022).
- European Commission. Critical Raw Materials. Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en (accessed on 22 December 2021).
- International Atomic Energy Agency. Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels—IAEA Nuclear Energy Series No. NP-T-3.11. 2009. Available online: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1382_web.pdf (accessed on 22 December 2021).
- Zachariah, Z. Use of Non-Destructive Testing for Pressure Vessel Inspection. AZO Materials. 2021. Available online: https://www.azom.com/article.aspx?ArticleID=20433 (accessed on 22 December 2021).
- International Atomic Energy Agency. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants, Nuclear Energy Series NP-T-3.14. 2013. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1599_web.pdf (accessed on 22 December 2021).
- Dwivedi, S.K.; Vishwakarma, M.; Soni, A. Advances and Researches on Non-Destructive Testing: A Review. Mater. Today Proc. 2018, 5, 3690–3698. [Google Scholar] [CrossRef]
- Gupta, B.; Uchimoto, T.; Ducharne, B.; Sebald, G.; Miyazaki, T.; Takagia, T. Magnetic incremental permeability non-destructive evaluation of 12 Cr-Mo-W-V steel creep test samples with varied ageing levels and thermal treatments. NDT E Int. 2019, 104, 42–50. [Google Scholar] [CrossRef]
- Brown, M.; Ghadbeigi, H.; Crawforth, P.; M’Saoubi, R.; Mantle, A.; McGourlay, J.; Wright, D. Non-destructive detection of machining-induced white layers in ferromagnetic alloys. Procedia CIRP 2020, 87, 420–425. [Google Scholar] [CrossRef]
- Chassignole, B.; El Guerjouma, R.; Ploix, M.-A.; Fouquet, T. Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: Towards a higher reliability in ultrasonic non-destructive testing. NDT E Int. 2010, 43, 273–282. [Google Scholar] [CrossRef]
- Jarmulak, J.; Kerckhoffs, E.J.H.; van’t Veen, P.P. Case-based reasoning for interpretation of data from non-destructive testing. Eng. Appl. Artif. Intell. 2001, 14, 401–417. [Google Scholar] [CrossRef]
- Kochunas, B.; Huan, X. Digital Twin Concepts with Uncertainty for Nuclear Power Applications. Energies 2021, 14, 4235. [Google Scholar] [CrossRef]
- Lin, L.; Athe, P.; Rouxelin, P.; Avramova, M.; Gupta, A.; Youngblood, R.; Lane, J.; Dinh, N. Digital-twin-based improvements to diagnosis, prognosis, strategy assessment, and discrepancy checking in a nearly autonomous management and control system. Ann. Nucl. Energy 2022, 166, 108715. [Google Scholar] [CrossRef]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M.I. 3D printing—A review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, D.; Wang, P.; Yan, M.; Yang, C.; Chen, Z.; Lu, J.; Lu, Z. Additive manufacturing of metals: Microstructure evolution and multistage control. J. Mater. Sci. Technol. 2022, 100, 224–236. [Google Scholar] [CrossRef]
- Hot Isostatic Pressing: Improving Quality and Performance in AM Parts Production, Metal AM. Available online: https://www.metal-am.com/articles/hot-isostatic-pressing-improving-quality-and-performance-in-3d-printing/ (accessed on 22 December 2021).
- 3D-Printed Nuclear Reactor Promises Faster, More Economical Path to Nuclear Energy, ORNL News. Available online: https://www.ornl.gov/news/3d-printed-nuclear-reactor-promises-faster-more-economical-path-nuclear-energy (accessed on 22 December 2021).
- International Atomic Energy Agency. Ageing Management and Development of a Programme for Long Term Operation of Nuclear Power Plants, IAEA Safety Standards Series No. SSG-48, Vienna. 2018. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/P1814_web.pdf (accessed on 21 December 2021).
- The American Society of Mechanical Engineers. Boiler and Pressure Vessel Code 2021. Complete Set, ASME. 2021. Available online: https://www.asme.org/codes-standards/publications-information/performance-test-codes (accessed on 22 December 2021).
- Muñoz Garcia, J.E.; Pétesch, C.; Lebarbé, T.; Bonne, D.; Pascal, C.; Blat, M. Design and construction rules for mechanical components of high-temperature, experimental and fusion nuclear installations: The RCC-MRx Code last edition. Mech. Eng. J. 2020, 7, 20-00052. [Google Scholar] [CrossRef]
- Ding, M.; Zhou, X.; Zhang, H.; Bian, H.; Yan, Q. A review of the development of nuclear fuel performance analysis and codes for PWRs. Ann. Nucl. Energy 2021, 163, 108542. [Google Scholar] [CrossRef]
- Lainet, M.; Michel, B.; Dumas, J.-C.; Pelletier, M.; Ramiere, I. GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors. J. Nucl. Mater. 2019, 516, 30–53. [Google Scholar] [CrossRef]
- Magni, A.; Barani, T.; Bellon, F.; Boer, B.; Guizzardi, E.; Pizzocri, D.; Schubert, A.; Van Uffelen, P.; Luzzi, L. Extension and application of the TRANSURANUS code to the normal operating conditions of the MYRRHA reactor. Nucl. Eng. Des. 2022, in press. [Google Scholar] [CrossRef]
- Hensley, C.K.; Sisco, K.; Beauchamp, S.; Godfrey, A.; Rezayat, H.; McFalls, T.; Galicki, D.; List III, F.; Carver, K.; Stover, C. Qualification pathways for additively manufactured components for nuclear applications. J. Nucl. Mater. 2021, 548, 152846. [Google Scholar] [CrossRef]
- Zsákaia, A.; Muñoz, A.; Diez, A.; Román, R.; Marco, E.; García, A.; García, A.; Ibarra, A. IFMIF-DONES systems engineering approach. Fusion Eng. Des. 2019, 149, 111326. [Google Scholar] [CrossRef]
- European Commission. H2020 Programme, Work Programme 2018–2020: Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing, 2017—Explanatory Notes on Open Innovation Test Beds. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/other/guides_for_applicants/h2020-supp-info-innotestbeds-18-20_en.pdf (accessed on 22 December 2021).
- European Commission. Open Innovation Test Beds (OITBs): Exploiting the Huge Potential to Benefit Europe, Publications Office. 2021. Available online: https://data.europa.eu/doi/10.2777/161986 (accessed on 22 December 2021).
- Sustainable Nuclear Energy Technology Platform, Nuclear GenII/III Alliance—RPV Irradiation Embrittlement. 2015. Available online: https://snetp.eu/wp-content/uploads/2020/06/NUGENIA_position_paper_RPV_irradiation_embrittlement_May_2015.pdf (accessed on 26 December 2021).
- Hein, H. Position Paper on RPV Irradiation Embrittlement Issues Based on the Outcome of the Euratom FP7 Project LONGLIFE. in Transactions SMiRT-23, Manchester, UK, 2015, Division II, Paper ID 031. Available online: https://repository.lib.ncsu.edu/bitstream/handle/1840.20/34264/SMiRT-23_Paper_031.pdf?sequence=1 (accessed on 26 December 2021).
- English, C.A.; Hyde, J.M.; Robert Odette, G.; Lucas, G.E.; Tan, L. Research tools: Microstructure, mechanical properties, and computational thermodynamics. In Structural Alloys for Nuclear Energy Applications; Odette, G.R., Zinkle, S.J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Chapter 4; pp. 103–161. [Google Scholar] [CrossRef]
- Valot, C.; Bertolus, M.; Malerba, L.; Rachid, J.; Besmann, T.; Masson, R.; Phillpot, S.; Stan, M. Integrated multi-scale modelling and simulation of nuclear fuels. In State-of-the-Art Report on Multi-Scale Modelling of Nuclear Fuels; OECD-NEA Report NEA/NSC/R/(2015)5; Besmann, T., Valot, C., Eds.; OECD: Paris, France, 2015; Chapter 25; pp. 359–374. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/032/47032431.pdf (accessed on 26 December 2021).
- Malerba, L.; Bertolus, M. Multiscale modelling of radiation effects in nuclear materials. In Proceedings of the 8th FISA Conference on Euratom Research and Training in Reactor Systems, Vilnius, Lithuania, 14–17 October 2013; Available online: http://www.eera-jpnm.eu/events/47-11th_Steering_Committee_Meeting_br (accessed on 26 December 2021).
- Malerba, L.; Anento, N.; Balbuena, J.P.; Becquart, C.S.; Castin, N.; Caturla, M.J.; Domain, C.; Guerrero, C.; Ortiz, C.J. Physical mechanisms and parameters for models of microstructure evolution under irradiation in Fe alloys—Part I: Pure Fe. Nucl. Mater. Energy 2021, 29, 101069. [Google Scholar] [CrossRef]
- Malerba, L. Large Scale Integrated Materials Modeling Programs. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 28; Volume 1, pp. 881–916. [Google Scholar] [CrossRef]
- Permann, C.J.; Gaston, D.R.; Andrš, D.; Carlsen, R.W.; Kong, F.; Lindsay, A.D.; Miller, J.M.; Peterson, J.W.; Slaughter, A.E. MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX 2020, 11, 100430. [Google Scholar] [CrossRef]
- Malerba, L.; van Walle, E.; Domain, C.; Jumel, S.; Van Duysen, J.-C. State of Advancement of the International REVE Project: Computational Modelling of Irradiation-Induced Hardening in Reactor Pressure Vessel Steels and Relevant Experimental Validation Programme. In Proceedings of the 10th International Conference on Nuclear Engineering, Arlington, VA, USA, 14–18 April 2002; Volume 1, Paper No: ICONE10-22260. pp. 267–274. [Google Scholar] [CrossRef]
- Was, G.S. Challenges to the use of ion irradiation for emulating reactor irradiation. J. Mater. Res. 2015, 30, 1158–1182. [Google Scholar] [CrossRef]
- Leay, L.; Bower, W.; Horne, G.; Wady, P.; Baidak, A.; Pottinger, M.; Nancekievill, M.; Smith, A.D.; Watson, S.; Green, P.R.; et al. Development of irradiation capabilities to address the challenges of the nuclear industry. Nucl. Instrum. Methods Phys. Res. B 2015, 343, 62–69. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Snead, L.L. Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations. Scr. Mater. 2018, 143, 154–160. [Google Scholar] [CrossRef]
- Heintze, C.; Bergner, F.; Akhmadaliev, S.; Altstadt, E. Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening. J. Nucl. Mater. 2016, 472, 196–205. [Google Scholar] [CrossRef]
- Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv. Sci. 2019, 6, 1900808. [Google Scholar] [CrossRef]
- He, C.; Ge, D.; Yang, M.; Yong, N.; Wang, J.; Yu, J. A data-driven adaptive fault diagnosis methodology for nuclear power systems based on NSGAII-CNN. Ann. Nucl. Energy 2021, 159, 108326. [Google Scholar] [CrossRef]
- Castin, N.; Malerba, L.; Chaouadi, R. Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks. J. Nucl. Mater. 2011, 408, 30–39. [Google Scholar] [CrossRef]
- Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M.E. Reactor pressure vessel embrittlement: Insights from neural network modelling. J. Nucl. Mater. 2018, 502, 311–322. [Google Scholar] [CrossRef]
- Lee, G.G.; Kim, M.C.; Lee, B.S. Machine learning modeling of irradiation embrittlement in low alloy steel of nuclear power plants. Nucl. Eng. Technol. 2021, 53, 4022–4032. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a Few Examples: A Survey on Few-shot Learning. ACM Comput. Surv. 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Shen, C.; Wang, C.; Wei, X.; Li, Y.; van der Zwaag, S.; Xua, W. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel. Acta Mater. 2019, 179, 201–214. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review; Los Alamos Report LA-13070-MS; LANL: Los Alamos, NM, USA, 1996. [Google Scholar] [CrossRef] [Green Version]
- International Atomic Energy Agency. Non-destructive Testing: A Guidebook for Industrial Management and Quality Control Personnel, Training Course Series Report Nr. 9, Vienna. 1999. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/005/31005449.pdf (accessed on 27 December 2021).
- Höller, P.; Hauk, V.; Dobmann, G.; Ruud, C.O.; Green, R.E., Jr. (Eds.) Nondestructive Characterization of Materials III. In Proceedings of the 3rd International Symposium, Saarbrücken, Germany, 3–6 October 1988; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; London, UK; Paris, France, 1989; Available online: https://link.springer.com/book/10.1007/978-3-642-84003-6 (accessed on 27 December 2021).
- Leite, C.W.; Moutsompegka, E.; Tserpes, K.; Malinowski, P.H.; Ostachowicz, W.M.; Ecault, R.; Grundmann, N.; Tornow, C.; Noeske, M.; Schiffels, P.; et al. Integrating Extended Non-destructive Testing in the Life Cycle Management of Bonded Products—Some Perspectives. In Adhesive Bonding of Aircraft Composite Structures; Leite, C.W., Brune, K., Noeske, M., Tserpes, K., Ostachowicz, W.M., Schlag, M., Eds.; Springer: Berlin, Germany, 2021; Chapter 6; pp. 331–350. [Google Scholar] [CrossRef]
- Beyerer, J.; Hanke, R. Modern non-destructive testing. Tech. Mess. 2020, 87, 381–382. [Google Scholar] [CrossRef]
- Tkocz, J.; Greenshields, D.; Dixon, S. High power phased EMAT arrays for nondestructive testing of as-cast steel. NDT E Int. 2019, 102, 47–55. [Google Scholar] [CrossRef]
- Rabung, M.; Kopp, M.; Gasparics, A.; Vértesy, G.; Szenthe, I.; Uytdenhouwen, I.; Szielasko, K. Micromagnetic Characterization of Operation-Induced Damage in Charpy Specimens of RPV Steels. Appl. Sci. 2021, 11, 2917. [Google Scholar] [CrossRef]
- Sposito, G.; Ward, C.; Cawley, P.; Nagyac, P.B.; Scruby, C. A review of non-destructive techniques for the detection of creep damage in power plant steels. NDT E Int. 2010, 43, 555–567. [Google Scholar] [CrossRef]
- Tomáš, I.; Vértesy, G.; Pirfo, B.S.; Kobayashi, S. Comparison of four NDT methods for indication of reactor steel degradation by high fluences of neutron irradiation. Nucl. Eng. Des. 2013, 265, 201–209. [Google Scholar] [CrossRef]
- Niffenegger, M.; Reichlin, K.; Kalkhof, D. Application of the Seebeck effect for monitoring of neutron embrittlement and low-cycle fatigue in nuclear reactor steel. Nucl. Eng. Des. 2005, 235, 1777–1788. [Google Scholar] [CrossRef]
- Vértesy, G.; Gasparics, A.; Uytdenhouwen, I.; Szenthe, I.; Gillemot, F.; Chaouadi, R. Nondestructive Investigation of Neutron Irradiation Generated Structural Changes of Reactor Steel Material by Magnetic Hysteresis Method. Metals 2020, 10, 642. [Google Scholar] [CrossRef]
- Valeske, B.; Osman, A.; Römer, F.; Tschuncky, R. Next Generation NDE Sensor Systems as IIoT Elements of Industry 4.0. Res. Nondestruct. Eval. 2020, 31, 340–369. [Google Scholar] [CrossRef]
- Horn, D.; Mayo, W.R. NDE reliability gains from combining eddy-current and ultrasonic testing. NDT E Int. 2000, 33, 351–362. [Google Scholar] [CrossRef]
- Kaftandjian, V.; Francois, N. Use of Data Fusion Method to Improve Reliability of Inspection: Synthesis of the Work Done in the Frame of a European Thematic Network. NDT.net. 2003. Available online: http://www.ndt.net/article/ecndt02/163/163.htm (accessed on 27 December 2021).
- Szielasko, K.; Wolter, B.; Tschuncky, R.; Youssef, S. Micromagnetic materials characterization using machine learning: Progress in nondestructive prediction of mechanical properties of steel and iron. TM Tech. Mess. 2020, 87, 428–437. [Google Scholar] [CrossRef]
- Niccolai, A.; Caputo, D.; Chieco, L.; Grimaccia, F.; Mussetta, M. Machine Learning-Based Detection Technique for NDT in Industrial Manufacturing. Mathematics 2021, 9, 1251. [Google Scholar] [CrossRef]
- Chibani, S.; Coudert, F.-X. Machine learning approaches for the prediction of materials properties. APL Mater. 2020, 8, 080701. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.; Wang, Q. Fault identification in PCA method during sensor condition monitoring in a nuclear power plant. Ann. Nucl. Energy 2018, 121, 135–145. [Google Scholar] [CrossRef]
- Schumm, A.; Rabung, M.; Marque, G.; Hamalainen, J. Reactor performance, system reliability, instrumentation and control. EPJ Nucl. Sci. Technol. 2020, 6, 43. [Google Scholar] [CrossRef]
- Vogel, K.; Heintze, C.; Chekhonin, P.; Akhmadaliev, S.; Altstadt, E.; Bergne, F. Relationships between depth-resolved primary radiation damage, irradiation induced nanostructure and nanoindentation response of ion-irradiated Fe-Cr and ODS Fe-Cr alloys. Nucl. Mater. Energy 2020, 24, 100759. [Google Scholar] [CrossRef]
- Reese, E.R.; Almirall, N.; Yamamoto, T.; Tumey, S.; Robert Odette, G.; Marquis, E.A. Dose rate dependence of Cr precipitation in an ion-irradiated Fe single bond 18Cr alloy. Scr. Mater. 2018, 146, 213–217. [Google Scholar] [CrossRef]
- Tissot, O.; Pareige, C.; Meslin, E.; Décamps, B.; Henry, J. Influence of injected interstitials on α′ precipitation in Fe–Cr alloys under self-ion irradiation. Mater. Res. Lett. 2017, 5, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Gigax, J.G.; Aydogan, E.; Chen, T.; Chen, D.; Shao, L.; Wu, Y. The influence of ion beam rastering on the swelling of self-ion irradiated pure iron at 450 °C. J. Nucl. Mater. 2015, 465, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Getto, E.; Jiao, Z.; Monterrosa, A.M.; Sun, K.; Was, G.S. Effect of irradiation mode on the microstructure of self-ion irradiated ferritic-martensitic alloys. J. Nucl. Mater. 2015, 465, 116–126. [Google Scholar] [CrossRef]
- Ren, C.-L.; Yang, Y.; Li, Y.-G.; Huai, P.; Zhu, Z.-Y.; Li, J. Sample spinning to mitigate polarization artifact and interstitial-vacancy imbalance in ion-beam irradiation. NPJ Comput. Mater. 2020, 6, 189. [Google Scholar] [CrossRef]
- Was, G.S.; Taller, S.; Jiao, Z.; Monterrosa, A.M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E. Resolution of the carbon contamination problem in ion irradiation experiments. Nucl. Instrum. Methods B 2017, 412, 58–65. [Google Scholar] [CrossRef]
- Gigax, J.G.; Kim, H.; Aydogan, E.; Garner, F.A.; Maloy, S.; Shao, L. Beam contamination-induced compositional alteration and its neutron-atypical consequences in ion simulation of neutron-induced void swelling. Mater. Res. Lett. 2017, 5, 478–485. [Google Scholar] [CrossRef]
- Malerba, L.; Caturla, M.J.; Gaganidze, E.; Kaden, C.; Konstantinović, M.J.; Olsson, P.; Robertson, C.; Rodney, D.; Ruiz-Moreno, A.M.; Serrano, M.; et al. Multiscale modelling for fusion and fission materials: The M4F project. Nucl. Mater. Energy 2021, 29, 101051. [Google Scholar] [CrossRef]
- Chernoff, H.; Wade, K.C. Steam Generator Replacement Overview. Power Engineering. 1996. Available online: https://www.power-eng.com/nuclear/steam-generator-replacement-overview/#gref (accessed on 28 December 2021).
- Li, Y.; Jensen, K.E.; Liu, Y.; Liu, J.; Gong, P.; Scanley, B.E.; Broadbridge, C.C.; Schroers, J. Combinatorial Strategies for Synthesis and Characterization of Alloy Microstructures over Large Compositional Ranges. ACS Comb. Sci. 2016, 18, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, A.; Tancret, F.; Benrabah, I.-E.; De Geuser, F.; Van Landeghem, H.P. Combinatorial approaches for the design of metallic alloys. C. R. Phys. 2018, 19, 737–754. [Google Scholar] [CrossRef]
- Ludwig, A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. NPJ Comput. Mater. 2019, 5, 70. [Google Scholar] [CrossRef]
- Liu, P.; Guo, B.; An, T.; Fang, H.; Zhu, G.; Jiang, C.; Jiang, X. High throughput materials research and development for lithium ion batteries. J. Mater. 2017, 3, 202–208. [Google Scholar] [CrossRef]
- Wang, W.Y.; Li, J.; Liu, W.; Liu, Z. Integrated computational materials engineering for advanced materials: A brief review. Comput. Mater. Sci. 2019, 158, 42–48. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, C.; Wang, Z.; Gan, Y.; Zhu, Y.; Sun, S.; Shen, T. Machine learning in materials genome initiative: A review. J. Mater. Sci. Technol. 2020, 57, 113–122. [Google Scholar] [CrossRef]
- Sparks, T.D.; Kauwe, S.K.; Parry, M.E.; Mansouri Tehrani, A.; Brgoch, J. Machine Learning for Structural Materials. Annu. Rev. Mater. Res. 2020, 50, 27–48. [Google Scholar] [CrossRef]
- Wang, Z.L.; Adachi, Y. Property prediction and properties-to-microstructure inverse analysis of steels by a machine-learning approach. Mater. Sci. Eng. A 2019, 744, 661–670. [Google Scholar] [CrossRef]
- Perera, R.; Guzzetti, D.; Agrawal, V. Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Comput. Mater. Sci. 2021, 196, 110524. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 2016, 123, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.; Cherukara, M.; Loeffler, T.D.; Narayanan, B.; Sankaranarayanan, S.K.R.S. Machine learning enabled autonomous microstructural characterization in 3D samples. NPJ Comput. Mater. 2020, 6, 1. [Google Scholar] [CrossRef]
- Alberi, K.; Nardelli, M.B.; Zakutayev, A.; Mitas, L.; Curtarolo, S.; Jain, A.; Fornari, M.; Marzari, N.; Takeuchi, I.; Green, M.L. The 2019 materials by design roadmap. J. Phys. D Appl. Phys. 2019, 52, 013001. [Google Scholar] [CrossRef]
- Arróyave, R.; McDowell, D.L. Systems Approaches to Materials Design: Past, Present, and Future. Annu. Rev. Mater. Res. 2019, 49, 103–126. [Google Scholar] [CrossRef] [Green Version]
- Balbaud, F.; Cabet, C.; Cornet, S.; Dai, Y.; Gan, J.; Hernández Mayoral, M.; Hernández, R.; Jianu, A.; Malerba, L.; Maloy, S.A. A NEA review on innovative structural materials solutions, including advanced manufacturing processes for nuclear applications based on technology readiness assessment. Nucl. Mater. Energy 2021, 27, 101006. [Google Scholar] [CrossRef]
- Flores-Leonar, M.M.; Mejía-Mendoza, L.M.; Aguilar-Granda, A.; Sanchez-Lengeling, B.; Tribukait, H.; Amador-Bedolla, C.; Aspuru-Guzik, A. Materials Acceleration Platforms: On the way to autonomous experimentation. Curr. Opin. Green Sustain. Chem. 2020, 25, 100370. [Google Scholar] [CrossRef]
- Battery Interface Genome. Materials Acceleration Platform. Available online: https://cordis.europa.eu/project/id/957189 (accessed on 9 December 2021).
- Nikolaev, P.; Hooper, D.; Webber, F.; Rao, R.; Decker, K.; Krein, M.; Poleski, J.; Barto, R.; Maruyama, B. Autonomy in materials research: A case study in carbon nanotube growth. NPJ Comput. Mater. 2016, 2, 16031. [Google Scholar] [CrossRef]
- Tabor, D.P.; Roch, L.M.; Saikin, S.K.; Kreisbeck, C.; Sheberla, D.; Montoya, J.H.; Dwaraknath, S.; Aykol, M.; Ortiz, C.; Tribukait, H.; et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 2018, 3, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Nuclear Energy Agency. Nuclear Innovation 2050 (NI2050). Available online: https://www.oecd-nea.org/jcms/pl_21829/nuclear-innovation-2050-ni2050 (accessed on 29 December 2021).
- International Atomic Energy Agency. Nuclear Innovation 2050—An NEA Initiative to Accelerate R&D and Market Deployment of Innovative Nuclear Fission Technologies to Contribute to a Sustainable Energy Future. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/50/048/50048741.pdf?r=1 (accessed on 29 December 2021).
- European Commission. Data Management Online Manual H2020. Available online: https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-cutting-issues/open-access-data-management/data-management_en.htm (accessed on 29 December 2021).
- UK Digital Curation Center. Funders’ Data Plan Requirements. Available online: https://www.dcc.ac.uk/resources/data-management-plans/funders-requirements (accessed on 29 December 2021).
- Nature. Reporting Standards and Availability of Data, Materials, Code and Protocols. Available online: https://www.nature.com/authors/policies/availability.html (accessed on 29 December 2021).
- Institute Laue-Langevin. Neutrons for Society. Data Management. Available online: https://www.ill.eu/users/user-guide/afteryour-experiment/data-management (accessed on 10 February 2022).
- Data in Brief. Elsevier Journal. Available online: https://www.journals.elsevier.com/data-in-brief (accessed on 29 December 2021).
- International Fuel Performance Experiments (IFPE) Database. Available online: https://www.oecd-nea.org/jcms/pl_36358 (accessed on 29 December 2021).
- Online Data & Information Network for Energy (ODIN); MATDB Online Data & Information Network of the European Commission Joint Research Centre. Available online: https://odin.jrc.ec.europa.eu/odin/index.jsp (accessed on 29 December 2021).
- Hyde, J.M. Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data. Microsc. Microanal. 2017, 23, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- G20 Leaders’ Communique Hangzhou Summit. 4–5 September 2016. Available online: https://www.consilium.europa.eu/media/23621/leaders_communiquehangzhousummit-final.pdf (accessed on 29 December 2021).
- Wilkinson, M.D. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Why the EU Supports Advanced Materials. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/industrial-research-and-innovation/key-enabling-technologies/advanced-materials_en (accessed on 30 December 2021).
- Galea, A.; Hough, E.; Khan, I. Test Beds: The Story so Far. NHS England, London. 2017. Available online: https://www.england.nhs.uk/wp-content/uploads/2017/09/test-beds-the-story-so-far.pdf (accessed on 30 December 2021).
- A Multi-Purpose Real-World Testbed—Queen Elizabeth Olympic Park. November 2020. Available online: https://www.queenelizabetholympicpark.co.uk/-/media/real-world-testbed-summary-nov-2020.ashx?la=en (accessed on 30 December 2021).
- Northwood, D.O. The Development and Applications of Zirconium Alloys. Mater. Des. 1985, 6, 58–70. [Google Scholar] [CrossRef]
- Qin, W. Improvement and Application of Zirconium Alloys. Metals 2018, 8, 794. [Google Scholar] [CrossRef] [Green Version]
- Baldev, R.; Kamachi Mudali, U.; Vijayalakshmi, M.; Mathew, M.D.; Bhaduri, A.K.; Chellapandi, P.; Venugopal, S.; Sundar, C.S.; Rao, B.P.C.; Venkatraman, B. Development of Stainless Steels in Nuclear Industry: With Emphasis on Sodium Cooled Fast Spectrum Reactors History, Technology and Foresight. Adv. Mater. Res. 2013, 794, 3–25. [Google Scholar] [CrossRef]
- Stainless Steel Grade 316LN (UNS S31653), AZO Materials. 2013. Available online: https://www.azom.com/article.aspx?ArticleID=8261 (accessed on 30 December 2021).
- Kilburn, J. Handling Nine-Chrome Steel in HRSGs. Power Engineering. 2006. Available online: https://www.power-eng.com/news/handling-nine-chrome-steel-in-hrsgs/#gref (accessed on 30 December 2021).
- European Commission. European Database for Multiscale Modelling of Radiation Damage—Project Description. Available online: https://cordis.europa.eu/project/id/900018 (accessed on 10 February 2022).
- European Commission. European Green Deal. Available online: https://ec.europa.eu/clima/policies/eu-climate-action_en (accessed on 30 December 2021).
- Gauché, F. Generation IV reactors and the ASTRID prototype: Lessons from the Fukushima accident. C. R. Phys. 2012, 13, 365–371. [Google Scholar] [CrossRef]
- Frignani, M. ALFRED Project: Status and Next Activities. SNETP Forum 2021 (Online). Available online: https://snetp.eu/wp-content/uploads/2021/02/Presentation_Michele-Frignani.pdf (accessed on 15 December 2021).
- Tarantino, M.; Angiolini, M.; Bassini, S.; Cataldo, S.; Ciantelli, C.; Cristalli, C.; Del Nevo, A.; Di Piazza, I.; Diamanti, D.; Eboli, M.; et al. Overview on lead-cooled fast reactor design and related technologies development in ENEA. Energies 2021, 14, 5157. [Google Scholar] [CrossRef]
- Kvizda, B.; Mayer, G.; Vácha, P.; Malesa, J.; Siwiec, A.; Vasile, A.; Bebjak, S.; Hatala, B. ALLEGRO Gas-cooled Fast Reactor (GFR) demonstrator thermal hydraulic benchmark. Nucl. Eng. Des. 2019, 345, 47–61. [Google Scholar] [CrossRef]
- MYRRHA, Innovation in Belgium for Europe. Available online: https://cdn.eventscase.com/eventos.cdti.es/uploads/users/303505/uploads/fdc132739b041ee2940ed6b4443cbe6075b2fc75499b0e0a5883107e47c49220ffda06ecdb6542ee66217ca015812bea7afd.5f83df7dcf9dc.pdf (accessed on 15 December 2021).
- The ASTRID Nuclear Project: Even the Ghost Is Gone. Available online: https://www.europeanscientist.com/en/features/the-astrid-nuclear-project-event-the-ghost-is-gone (accessed on 15 December 2021).
- Preparation of ALLEGRO—Implementing Advanced Nuclear Fuel Cycle in Central Europe. Available online: https://cordis.europa.eu/project/id/323295/reporting/es (accessed on 15 December 2021).
- Generation IV and SMR. Committed to the Future of Nuclear Energy. Available online: https://www.ansaldoenergia.com/Pages/Generation-IV--SMR.aspx (accessed on 15 December 2021).
- LeadCold—Atomic Simplicity. Available online: https://www.leadcold.com (accessed on 15 December 2021).
- Samosafer Project. Available online: https://samosafer.eu (accessed on 15 December 2021).
- CVŘ Has Introduced the Energy Well Project on a Conference in Atlanta. Available online: http://cvrez.cz/en/cvr-has-introduced-the-energy-well-project-on-a-conference-in-atlanta/ (accessed on 15 December 2021).
- Rethinking Nuclear. Available online: https://www.seaborg.com (accessed on 15 December 2021).
- Engineering the Future of Energy. Available online: https://www.copenhagenatomics.com/ (accessed on 15 December 2021).
- NC2I Vision Paper. June 2018. Available online: https://snetp.eu/wp-content/uploads/2020/10/NC2I-VISION-PAPER_Final-version_Web.pdf (accessed on 15 December 2021).
- The Joint Programme on Nuclear Materials of the European Energy Research Alliance. Available online: www.eera-jpnm.eu (accessed on 30 December 2021).
- The European Energy Research Alliance. Available online: www.eera-set.eu (accessed on 30 December 2021).
- European Commission. Strategic Energy Technology Plan (SET-Plan). Available online: https://ec.europa.eu/energy/topics/technology-and-innovation/strategic-energy-technology-plan_en (accessed on 30 December 2021).
- Sustainable Nuclear Energy Technology Platform. Available online: https://snetp.eu/ (accessed on 30 December 2021).
- The Nuclear Generation II & III Alliance (NUGENIA). Available online: https://snetp.eu/nugenia/ (accessed on 30 December 2021).
- The European Sustainable Nuclear Industrial Initiative (ESNII). Available online: https://snetp.eu/esnii/ (accessed on 30 December 2021).
- The Nuclear Cogeneration Industrial Initiative (NC2I). Available online: https://snetp.eu/nc2i/ (accessed on 30 December 2021).
- Rouxel, B.; Bisor, C.; De Carlan, Y.; Courcelle, A.; Legris, A. Influence of the austenitic stainless steel microstructure on the void swelling under ion irradiation. EPJ Nucl. Sci. Technol. 2016, 2, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.; Blanc, V.; Escleine, J.-M.; Haubensack, D.; Pelletier, M.; Phelip, M.; Perrin, B.; Venard, C. Conceptual design of ASTRID fuel sub-assemblies. Nucl. Eng. Des. 2017, 315, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Yvon, P.; Le Flem, M.; Cabet, C.; Seran, J.L. Structural materials for next generation nuclear systems: Challenges and the path forward. Nucl. Eng. Des. 2015, 294, 161–169. [Google Scholar] [CrossRef]
- Deloffre, P.; Balbaud-Célérier, F.; Terlain, A. Corrosion behaviour of aluminized martensitic and austenitic steels in liquid Pb-Bi. J. Nucl. Mater. 2004, 335, 180–184. [Google Scholar] [CrossRef]
- Engelko, V.; Mueller, G.; Rusanov, A.; Markov, V.; Tkachenko, K.; Weisenburger, A.; Kashtanov, A.; Chikiryaka, A.; Jianu, A. Surface modification/alloying using intense pulsed electron beam as a tool for improving the corrosion resistance of steels exposed to heavy liquid metals. J. Nucl. Mater. 2011, 415/3, 270–275. [Google Scholar] [CrossRef]
- Andrei, V.A.; Radulescu, C.; Malinovschi, V.; Marin, A.; Coaca, E.; Mihalache, M.; Mihailescu, C.N.; Dulama, I.D.; Teodorescu, S.; Bucurica, I.A. Aluminum Oxide Ceramic Coatings on 316L Austenitic Steel Obtained by Plasma Electrolysis Oxidation Using a Pulsed Unipolar Power Supply. Coatings 2020, 10, 318. [Google Scholar] [CrossRef] [Green Version]
- Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; et al. Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 °C. Mater. Charact. 2021, 178, 111234. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, L.; Qiu, C.; He, B.; Zhou, J.; Zhao, J.; Li, Y. Influence of LBE Temperatures on the microstructure and properties of crystalline and amorphous multiphase ceramic coatings. Coatings 2019, 9, 543. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Brady, M.P.; Lu, Z.P.; Maziasz, P.J.; Liu, C.T.; Pint, B.A.; More, K.L.; Meyer, H.M.; Payzant, E.A. Creep-resistant Al2O3-forming austenitic stainless steels. Science 2007, 316, 433–436. [Google Scholar] [CrossRef]
- Ejenstam, J.; Szakalos, P. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead. J. Nucl. Mater. 2015, 461, 164–170. [Google Scholar] [CrossRef]
- Shi, H.; Jianu, A.; Weisenburger, A.; Tang, C.; Heinzel, A.; Fetzer, R.; Lang, F.; Sieglitz, R.; Mueller, G. Corrosion resistance and microstructural stability of austenitic Fe–Cr–Al–Ni model alloys exposed to oxygen-containing molten lead. J. Nucl. Mat. 2019, 524, 177–190. [Google Scholar] [CrossRef]
- Shi, H.; Fetzer, R.; Tang, C.; Szabó, D.V.; Schlachbach, S.; Weisenburger, A.; Jianu, A.; Mueller, G. The influence of Y and Nb addition on the corrosion resistance of Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten Pb. Corr. Sci. 2021, 179, 109152. [Google Scholar] [CrossRef]
- Bassini, S.; Cataldo, S.; Cristalli, C.; Fiore, A.; Sartorio, C.; Tarantino, M.; Utili, M.; Ferroni, P.; Ickes, M.; Alemberti, A.; et al. Material Performance in Lead and Lead-Bismuth Alloy. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 8; Volume 4, pp. 218–241. [Google Scholar] [CrossRef]
- Jianu, A.; Mueller, G.; Weisenburger, A.; Heinzel, A.; Fazio, C.; Markov, V.G.; Kashtanov, A.D. Creep-to-rupture tests of T91 steel in flowing Pb-Bi eutectic melt at 550 °C. J. Nucl. Mater. 2009, 394/1, 102–108. [Google Scholar] [CrossRef]
- Weisenburger, A.; Jianu, A.; An, W.; Fetzer, R.; DelGiacco, M.; Heinzel, A.; Müller, G.; Markov, V.G.; Kasthanov, A.D. Creep, creep-rupture tests of Al surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 °C. J. Nucl. Mater. 2012, 431/1–3, 77–84. [Google Scholar] [CrossRef]
- Petersen, C.; Povstyanko, A.; Prokhorov, V.; Fedoseev, A.; Makarov, O.; Dafferner, B. Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’. J. Nucl. Mater. 2007, 367–370, 544–549. [Google Scholar] [CrossRef]
- Henry, J.; Averty, X.; Alamo, A. Tensile and impact properties of 9Cr tempered martensitic steels and ODS-FeCr alloys irradiated in a fast reactor at 325 deg. C up to 78 dpa. J. Nucl. Mater. 2011, 417, 99–103. [Google Scholar] [CrossRef]
- Gaganidze, E.; Petersen, C.; Materna-Morris, E.; Dethloff, C.; Weiß, O.J.; Aktaa, J.; Povstyanko, A.; Fedoseev, A.; Makarov, O.; Prokhorov, V. Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60. J. Nucl. Mater. 2011, 417, 93–98. [Google Scholar] [CrossRef]
- Auger, T.; Lorang, G. Liquid metal embrittlement susceptibility of T91 steel by lead-bismuth. Scr. Mater. 2005, 52, 323–1328. [Google Scholar] [CrossRef] [Green Version]
- Van den Bosch, J.; Hosemann, P.; Al Mazouzi, A.; Maloy, S. Liquid metal embrittlement of silicon enriched steel for nuclear applications. J. Nucl. Mater. 2010, 398/1–3, 116–121. [Google Scholar] [CrossRef]
- Ersoy, F.; Gavrilov, S.; Verbeken, K. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests. J. Nucl. Mater. 2016, 472, 171–177. [Google Scholar] [CrossRef]
- Mazzone, G.; Aktaa, J.; Bachmann, C.; De Meis, D.; Frosi, P.; Gaganidze, E.; Di Gironimo, G.; Mariano, G.; Marzullo, D.; Porfiri, M.T.; et al. Choice of a low operating temperature for the DEMO EUROFER97divertor cassette. Fus. Eng. Des. 2017, 124, 655–658. [Google Scholar] [CrossRef]
- Aubert, J.; Aiello, G.; Arena, P.; Boullon, R.; Jaboulay, J.-C.; Morin, A. Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules. Fus. Eng. Des. 2017, 124, 473–477. [Google Scholar] [CrossRef]
- Pintsuk, G.; Diegele, E.; Dudarev, S.L.; Gorley, M.; Henry, J.; Reiser, J.; Rieth, M. European materials development: Results and perspective. Fus. Eng. Des. 2019, 146, 1300–1307. [Google Scholar] [CrossRef]
- Odette, G.R. On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science. Scr. Mater. 2018, 143, 142–148. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Boutard, J.L.; Hoelzer, D.T.; Kimura, A.; Lindau, R.; Odette, G.R.; Rieth, M.; Tan, L.; Tanigawa, H. Development of Next Generation Tempered and ODS Reduced Activation Ferritic/Martensitic Steels for Fusion Energy Applications. Nucl. Fusion 2017, 57, 092005. [Google Scholar] [CrossRef]
- Luzginova, N.V.; Nolles, H.S.; ten Pierick, P.; Bakker, T.; Mutnuru, R.K.; Jong, M.; Blagoeva, D.T. Irradiation response of ODS Eurofer97 steel. J. Nucl. Mater. 2012, 428/1–3, 192–196. [Google Scholar] [CrossRef]
- Song, P.; Morrall, D.; Zhang, Z.; Yabuuchi, K.; Kimura, A. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C. J. Nucl. Mater. 2018, 502, 76–85. [Google Scholar] [CrossRef]
- Unocic, K.A.; Hoelzer, D.T. Evaluation of Pb–17Li compatibility of ODS Fe-12Cr-5Al alloys. J. Nucl. Mater. 2016, 479, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Klueh, R.L.; Hashimoto, N.; Maziasz, P.J. New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment. J. Nucl. Mater. 2007, 367A–370A, 48–53. [Google Scholar] [CrossRef]
- Tan, L.; Snead, L.L.; Katoh, Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors. J. Nucl. Mater. 2016, 478, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Puype, A.; Malerba, L.; De Wispelaere, N.; Petrov, R.; Sietsma, J. Effect of processing on microstructural features and mechanical properties of a reduced activation ferritic/martensitic EUROFER steel grade. J. Nucl. Mater. 2017, 494, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rieth, M.; Simondon, E.; Pintsuk, G.; Aiello, G.; Henry, J.; Terentyev, D.; Puype, A.; Cristalli, C.; Pilloni, L.; Tassa, O.; et al. Technological aspects in blanket design: Effects of micro-alloying and thermo-mechanical treatments of EUROFER97 type steels after neutron irradiation. Fusion Eng. Des. 2021, 168, 112645. [Google Scholar] [CrossRef]
- Puype, A.; Malerba, L.; De Wispelaere, N.; Petrov, R.; Sietsma, J. Effect of W and N on mechanical properties of reduced activation ferritic/martensitic EUROFER-based steel grades. J. Nucl. Mater. 2018, 502, 282–288. [Google Scholar] [CrossRef]
- Bergner, F.; Hilger, I.; Virta, J.; Lagerbom, J.; Gerbeth, G.; Connolly, S.; Hong, Z.; Grant, P.S.; Weissgärber, T. Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys. Met. Mater. Trans. A 2016, 47, 5313–5324. [Google Scholar] [CrossRef]
- Wilms, M.B.; Streubel, R.; Frömel, F.; Weisheita, A.; Tenkamp, J.; Walther, F.; Barcikowski, S.; Schleifenbaum, J.H.; Gökce, B. Laser additive manufacturing of oxide dispersion strengthened steels using laser-generated nanoparticle-metal composite powders. Procedia CIRP 2018, 74, 196–200. [Google Scholar] [CrossRef]
- Sridharan, N.; Gussev, M.N.; Field, K.G. Performance of a ferritic/martensitic steel for nuclear reactor applications fabricated using additive manufacturing. J. Nucl. Mater. 2019, 521, 45–55. [Google Scholar] [CrossRef]
- Chaouadi, R.; Coen, G.; Lucon, E.; Massaut, V. Crack resistance behaviour of ODS and standard 9%Cr-containing steels at high temperature. J. Nucl. Mater. 2010, 403, 15–18. [Google Scholar] [CrossRef]
- García Ferré, F.; Ormellese, M.; Di Fonzo, F.; Beghi, M.G. Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: A preliminary study. Corros. Sci. 2013, 77, 375–378. [Google Scholar] [CrossRef]
- Vassallo, E.; Pedroni, M.; Spampinato, V.; Deambrosis, S.M.; Miorin, E.; Ricci, E.; Zin, V. Effect of alumina coatings on corrosion protection of steels in molten lead. J. Vac. Sci. Technol. B 2018, 36, 01A105. [Google Scholar] [CrossRef]
- Miorin, E.; Montagner, F.; Zin, V.; Giuranno, D.; Ricci, E.; Pedroni, M.; Spampinato, V.; Vassallo, E.; Deambrosis, S.M. Al rich PVD protective coatings: A promising approach to prevent T91 steel corrosion in stagnant liquid lead. Surf. Coat. Technol. 2019, 377, 124890. [Google Scholar] [CrossRef]
- Dai, Y.; Boutellier, V.; Gavillet, D.; Glasbrenner, H.; Weisenburger, A.; Wagner, W. FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE. J. Nucl. Mater. 2012, 431, 66–76. [Google Scholar] [CrossRef]
- Rebak, R.B.; Terrani, K.A.; Fawcett, R.M. FeCrAl Alloys for Accident Tolerant Fuel Cladding in Light Water Reactors. In Proceedings of the Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 17–21 July 2016; Paper No: PVP2016-63162, V06BT06A009. 2016. [Google Scholar] [CrossRef]
- Rebak, R.B. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants. EPJ Nucl. Sci. Technol. 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Li, X.; Fang, X.; Xiong, Z.; Peng, Y.; Wie, L. Research progress in FeCrAl alloys for accident-tolerant fuel cladding. J. Mater. Eng. 2020, 48, 19–33. [Google Scholar] [CrossRef]
- Guanyu, J.; Xu, D.; Feng, P.; Guo, S.; Yang, J.; Li, Y. Corrosion of FeCrAl alloys used as fuel cladding in nuclear reactors. J. Alloys Compd. 2021, 869, 159235. [Google Scholar] [CrossRef]
- Dömstedt, P.; Lundberg, M.; Szakalos, P. Corrosion Studies of Low-Alloyed FeCrAl Steels in Liquid Lead at 750 °C. Oxid. Met. 2019, 91, 511–524. [Google Scholar] [CrossRef] [Green Version]
- Takaya, S.; Furukawa, T.; Müller, G.; Heinzel, A.; Jianu, A.; Weisenburger, A.; Aoto, K.; Inoue, M.; Okuda, T.; Abe, F.; et al. Al-containing ODS steels with improved corrosion resistance to liquid lead-bismuth. J. Nucl. Mater. 2012, 428/1–3, 125–130. [Google Scholar] [CrossRef]
- Pint, B.A.; Dryepondt, S.; Unocic, K.A.; Hoelzer, D.T. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications. JOM 2014, 66, 2458–2466. [Google Scholar] [CrossRef]
- Dryepondt, S.; Unocic, K.A.; Hoelzer, D.T.; Massey, C.P.; Pint, B.A. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding. J. Nucl. Mater. 2018, 501, 59–71. [Google Scholar] [CrossRef]
- Greenwood, L.R.; Kneff, D.W.; Skowronski, R.P.; Mann, F.M. A comparison of measured and calculated helium production in nickel using newly evaluated neutron cross sections for 59Ni. J. Nucl. Mater. 1984, 123, 1002–1010. [Google Scholar] [CrossRef]
- Rowcliffe, A.F.; Mansur, L.K.; Hoelzer, D.T.; Nanstad, R.K. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater. 2009, 392/2, 341–352. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, H.; Liu, J.; Zhu, Z. Helium-induced damage behaviour in high temperature nickel-based alloys with different chemical composition. J. Nucl. Mater. 2020, 541, 152419. [Google Scholar] [CrossRef]
- Ignatiev, V.; Surenkov, A. Alloys compatibility in molten salt fluorides: Kurchatov Institute related experience. J. Nucl. Mater. 2013, 441, 592–603. [Google Scholar] [CrossRef]
- Ye, X.; Ai, H.; Guo, Z.; Huang, H.; Jiang, L.; Wang, J.; Li, Z.; Zhou, X. The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS. Corros. Sci. 2016, 106, 249–259. [Google Scholar] [CrossRef]
- Ouyang, F.; Chang, C.; Kai, J. Long-term corrosion behaviours of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments. J. Nucl. Mater. 2014, 446, 81–89. [Google Scholar] [CrossRef]
- Muránsky, O.; Yang, C.; Zhu, H.; Karatchevtseva, I.; Sláma, P.; Nový, Z.; Edwards, L. Molten salt corrosion of Ni-Mo-Cr candidate structural materials for Molten Salt Reactor (MSR) systems. Corr. Sci. 2019, 159, 108087. [Google Scholar] [CrossRef]
- Oono, N.; Ukai, S.; Kondo, S.; Hashitomi, O.; Kimura, A. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors. J. Nucl. Mater. 2015, 465, 835–839. [Google Scholar] [CrossRef]
- EPSRC Grant: Ni-Based ODS Alloys for Molten Salt Reactors. Available online: https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/T002441/1 (accessed on 22 October 2021).
- NEUP Project 19-17173: Ni-Based ODS Alloys for Molten Salt Reactors. Available online: https://neup.inl.gov/FY%202019%20Abstracts1/CFA-19-17173_TechnicalAbstract_2019CFATechnicalAbstract19-17173.pdf (accessed on 22 October 2021).
- Snead, L.; Hoelzer, D.; Rieth, M.; Nemith, A. Refractory alloys: Vanadium, niobium, molybdenum, tungsten. In Structural Alloys for Nuclear Energy Applications; Odette, G.R., Zinkle, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 13; pp. 585–640. [Google Scholar] [CrossRef]
- Hancock, D.; Homfray, D.; Porton, M.; Todd, I.; Wynne, B. Refractory metals as structural materials for fusion high heat flux components. J. Nucl. Mater. 2018, 512, 169–183. [Google Scholar] [CrossRef]
- Leonard, K.J.; Busby, J.T.; Hoelzer, D.T.; Zinkle, S.J. Nb-base FS-85 alloy as a candidate structural material for space reactor applications: Effects of thermal aging. Metall. Mater. Trans. A 2009, 40, 838–855. [Google Scholar] [CrossRef]
- Reiser, J.; Garrison, L.; Greuner, H.; Hoffmann, J.; Weingärtner, T.; Jäntsch, U.; Klimenkov, M.; Franke, P.; Bonk, S.; Bonnekoh, C. Ductilisation of tungsten (W): Tungsten laminated composites. Int. J. Refrac. Met. Hard Mater. 2017, 69, 66–109. [Google Scholar] [CrossRef]
- Nechaykina, T.; Nikulin, S.; Rozhnov, A.; Molotnikov, A.; Zavodchikov, S.; Estrin, Y. Proving the viability of manufacturing of multi-layer steel/vanadium alloy/steel composite tubes by numerical simulations and experiment. J. Nucl. Mater. 2018, 503, 178–190. [Google Scholar] [CrossRef]
- Shmelev, A.N.; Kozhahmet, B.K. Use of molybdenum as a structural material of fuel elements for improving the safety of nuclear reactors. J. Phys. Conf. Ser. 2016, 781, 012022. [Google Scholar] [CrossRef]
- Cheng, P.; Zhang, G.; Zhang, J.; Liu, G.; Sun, J. Coupling effect of intergranular and intragranular particles on ductile fracture of Mo–La2O3 alloys. Mater. Sci. Eng. A 2015, 640, 320–329. [Google Scholar] [CrossRef]
- Van den Berghe, S.; Lemoine, P. Review of 15 years of high-density low-enriched U-Mo dispersion fuel development for research reactors in Europe. Nucl. Eng. Technol. 2014, 46, 125–146. [Google Scholar] [CrossRef] [Green Version]
- Senkov, O.N.; Rao, S.I.; Butler, T.M.; Daboiku, T.I.; Chaput, V. Microstructure and properties of Nb-Mo-Zr based refractory alloys. Int. J. Refrac. Met. Hard Mater. 2020, 92, 105321. [Google Scholar] [CrossRef]
- Muroga, T. Vanadium for Nuclear Systems. In Comprehensive Nuclear Materials, 1st ed.; Konings, R.J.M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Chapter 12; Volume 4, pp. 391–406. [Google Scholar] [CrossRef]
- Muroga, T.; Chen, J.M.; Chernov, V.M.; Kurtz, R.J.; Le Flem, M. Present status of vanadium alloys for fusion applications. J. Nucl. Mater. 2014, 455/1–3, 263–268. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, H.-S.; Luo, G.-N.; Zheng, P.-F. The influence of deuterium ions on the deuterium permeation and retention behaviour in V-4Cr-4Ti alloy under plasma loading. J. Nucl. Mater. 2021, 554, 153071. [Google Scholar] [CrossRef]
- Wu, Y.C.; Hou, Q.Q.; Luo, L.M.; Zan, X.; Zhu, X.Y.; Li, P.; Xu, Q.; Cheng, J.-G.; Luo, G.-N.; Chen, J.-L. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview. J. Alloys Compd. 2019, 779, 926–941. [Google Scholar] [CrossRef]
- Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 2013, 432, 482–500. [Google Scholar] [CrossRef] [Green Version]
- Zinkle, S.J. Nuclear technology applications of ceramics, composites and other nonmetallic materials. In Proceedings of the IAEA/ICTP School on Physics of Radiation Effects and its Simulation for Non-metallic Condensed Matter, Trieste, Italy, 13–24 August 2012; Available online: https://indico.ictp.it/event/a11182/session/40/contribution/23/material/0/0.pdf (accessed on 4 January 2022).
- Steinbrück, M.; Angelici, A.V.; Markel, I.J.; Stegmaier, U.; Gerhards, U.; Seifert, H.J. Oxidation of SiCf-SiC CMC cladding tubes for GFR application in impure helium atmosphere and materials interactions with tantalum liner at high temperatures up to 1600°C. J. Nucl. Mater. 2019, 517, 337–348. [Google Scholar] [CrossRef]
- David, P. Carbon/carbon materials for Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 13; pp. 471–493. [Google Scholar] [CrossRef]
- García, F.F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; et al. Radiation endurance in Al2O3 nanoceramics. Sci. Rep. 2016, 6, 33478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyerlein, I.J.; Caro, A.; Demkowicz, M.J.; Mara, N.A.; Misra, A.; Uberuaga, B.P. Radiation damage tolerant nanomaterials. Mater. Today 2013, 16, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.W.; Tang, Y.P.; Lu, Z.M.; Zhang, J.; Liu, B. Nuclear graphite for high temperature gas-cooled reactors. New Carbon Mater. 2017, 32, 193–204. [Google Scholar] [CrossRef]
- Le Flem, M.; Canel, J.; Urvoy, S. Processing and characterization of Zr3Si2 for nuclear applications. J. Alloys Compd. 2008, 465, 269–273. [Google Scholar] [CrossRef]
- Pellegrino, S.; Thomé, L.; Debelle, A.; Miro, S.; Trocellier, P. Radiation effects in carbides: TiC and ZrC versus SiC. Nucl. Instrum. Methods Phys. Res. B 2014, 327, 103–107. [Google Scholar] [CrossRef]
- Weaver, K.D.; Totemeier, T.; Feldman, E.E.; Kulak, R.F.; Tzanos, C.P.; Cheng, L.-Y.; Jo, J.; Corwin, W.; Gale, W.F.; Allen, T.; et al. Gas-Cooled Fast Reactor (GFR) FY 05 Annual Report, Idaho National Laboratory Report INL/EXT-05-00799. 2005. Available online: https://inldigitallibrary.inl.gov/sites/sti/sti/3480236.pdf (accessed on 4 January 2022).
- Ahmed, F.; Abir, M.A.; Bhowmik, P.K.; Deshpande, V.; Mollah, A.S. Thermohydraulic performance of water mixed Al2O3, TiO2 and graphene-oxide nanoparticles for nuclear fuel triangular subchannel. Therm. Sci. Eng. Prog. 2021, 24, 100929. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Deluigi, O.R.; Pasianot, R.C.; Valencia, F.J.; Caro, A.; Farkas, D.; Bring, E.M. Simulations of primary damage in a High Entropy Alloy: Probing enhanced radiation resistance. Acta Mater. 2021, 213, 116951. [Google Scholar] [CrossRef]
- Shuang, S.; Yu, Q.; Gao, X.; He, Q.F.; Zhang, J.Y.; Shi, S.Q.; Yang, Y. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy. J. Mater. Sci. Technol. 2022, 109, 197–208. [Google Scholar] [CrossRef]
- Gorsse, S.; Couzini, J.-P.; Miracle, D.B. From high-entropy alloys to complex concentrated alloys. CR Phys. 2018, 19, 721–736. [Google Scholar] [CrossRef]
- Muftah, W.; Vishnyakov, V. Microstructure and properties of FeCrMnNiCx compositionally complex bulk alloys. Vacuum 2021, 188, 110181. [Google Scholar] [CrossRef]
- Lambrinou, K.; Lapauw, T.; Jianu, A.; Weisenburger, A.; Ejenstam, J.; Szakálos, P.; Wallenius, J.; Ström, E.; Vanmeensel, K.; Vleugels, J. Corrosion-Resistant ternary carbides for use in heavy liquid metal coolants. In Ceramic Materials for Energy Applications V: A Collection of Papers, Presented at the 39th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, USA, 25–30 January 2015; Matyáš, J., Katoh, Y., Lin, H.-T., Vomiero, A., Eds.; American Ceramic Society: Westerville, OH, USA, 2015; Volume 36, pp. 19–34. [Google Scholar] [CrossRef]
- Tallman, D.J.; Hoffman, E.N.; Caspi, E.N.; Garcia-Diaz, B.L.; Kohse, G.; Sindelar, R.L.; Barsoum, M.W. Effect of neutron irradiation on select MAX phases. Acta Mater. 2015, 85, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M. Neutron Damage and MAX Phase Ternary Compounds—NEUP Project 09-790. Available online: https://neup.inl.gov/Lists/RandD%20Final%20Project%20Reports/DispForm.aspx?ID=106&ContentTypeId=0x01000C31D8AEAA046C45B7E029BD4B6B42F8 (accessed on 24 October 2021).
- Galvin, T.; Hyatt, N.C.; Rainforth, W.M.; Reaney, I.M.; Shepherd, D. Slipcasting of MAX phase tubes for nuclear fuel cladding applications. Nucl. Mater. Energ. 2020, 22, 100725. [Google Scholar] [CrossRef]
- Tunes, M.A.; Imtyazuddin, M.; Kainz, C.; Pogatscher, S.; Vishnyakov, V.M. Deviating from the pure MAX phase concept: Radiation-tolerant nanostructured dual-phase Cr. Sci. Adv. 2021, 7, eabf6771. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.M.; Alfano, J.P.; Martens, R.L.; Weaver, M.L. High-temperature oxidation behaviour of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. JOM 2015, 67, 246–259. [Google Scholar] [CrossRef]
- Daoud, H.M.; Manzoni, A.M.; Volkl, R.; Wanderka, N.; Glatzel, U. Oxidation Behaviour of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 Compositionally Complex Alloys (High-Entropy Alloys) at Elevated Temperatures in Air. Adv. Eng. Mater. 2015, 17, 1134–1141. [Google Scholar] [CrossRef]
- Shi, H.; Fetzer, R.; Jianu, A.; Weisenburger, A.; Heinzel, A.; Lang, F.; Müller, G. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb. Corr. Sci. 2021, 190, 109659. [Google Scholar] [CrossRef]
- Tang, C.; Shi, H.; Jianu, A.; Weisenburger, A.; Victor, G.; Grosse, M.; Müller, G.; Seifert, H.-J.; Steinbrück, M. High-temperature oxidation of AlCrFeNi-(Mn or Co) high-entropy alloys: Effect of atmosphere and reactive element addition. Corr. Sci. 2021, 192, 109809. [Google Scholar] [CrossRef]
- Kiran Kumar, N.A.P.; Li, C.; Leonard, K.J.; Bei, H.; Zinkle, S.J. Microstructural stability and mechanical behaviour of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016, 113, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, D. Radiation Resistant High Entropy Alloys for Fast Reactor Cladding Applications, EPSRC Grant No. EP/R006245/1 2018. Available online: https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/R006245/1 (accessed on 24 October 2021).
- Zhang, Z.J.; Han, E.-H.; Xiang, C. Irradiation behaviours of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding. J. Mater. Sci. Techn. 2021, 84, 230–238. [Google Scholar] [CrossRef]
- Kareer, A.; Waite, J.C.; Li, B.; Couet, A.; Armstrong, D.E.J.; Wilkinson, A.J. Low activation, refractory, high entropy alloys for nuclear applications. J. Nucl. Mater. 2019, 526, 151744. [Google Scholar] [CrossRef]
- Culham Centre for Fusion Energy. News—New Discovery in Resistance of Tungsten-Based Alloy to Radiation Damage. 17 April 2019. Available online: https://ccfe.ukaea.uk/new-discovery-in-resistance-of-tungsten-based-alloy-to-radiation-damage/ (accessed on 4 October 2021).
- El-Atwani, O.; Li, N.; Li, M.; Devaraj, A.; Baldwin, J.K.S.; Schneider, M.M.; Sobieraj, D.; Wróbel, J.S.; Nguyen-Manh, D.; Maloy, S.A.; et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 2019, 5, eaav2002. [Google Scholar] [CrossRef] [Green Version]
- Tuček, K.; Tsige-Tamirat, H.; Ammirabile, L.; Lázaro, A.; Grah, A.; Carlsson, J.; Döderlein, C.; Oettingen, M.; Fütterer, M.A.; D’Agata, E.; et al. Generation IV Reactor Safety and Materials Research by the Institute for Energy and Transport at the European Commission’s Joint Research Centre. Nucl. Eng. Des. 2013, 265, 1181–1193. [Google Scholar] [CrossRef]
Class of Materials | Use in GenII/III | Use in GenIV | Notes |
---|---|---|---|
Low alloy bainitic steels | Pressure vessel, pressuriser, steam generator shell, turbine, condenser | None | Upper limit of operation temperature window <400 °C |
Austenitic steels | Core components (except cladding), liner RPV | Vessel, core components including cladding | Experience from use in thermal and also fast reactors. Improved swelling resistance (e.g., Ti stabilization) and corrosion protection in heavy liquid metals (e.g., coatings or Al-containing alloys) needed—see Annex 3. |
Zr alloys | Cladding, power channels in heavy-water reactors | None | Historical example of material development specific for nuclear [54] |
F/M steels | None (but improved versions considered for ATF cladding) | Cladding and core components where swelling must be low | Swelling-resistant, good thermal physical properties. Creep (e.g., ODS), and corrosion resistance (e.g., coatings or Al-containing alloys) need improvement—see Annex 3. |
Ni-base alloys | Steam generator tubes | Steam generators, in the longer term core components for high temperature operation | Good corrosion and temperature resistance. Susceptible to embrittlement due to He and H production via transmutation when irradiated: improvement needed (e.g., ODS)—see Annex 3. |
Refractory alloys | None (but some are considered for ATF cladding) | In-core and out-of-core components (also vessels) where operation temperatures round 800 °C are expected | Wide spectrum of possibilities: Ni-base and Ti-base alloys may enter this category, composed by Mo-, Nb-, Ta- and V-alloys (W-alloys for fusion)—see Annex 3. |
Graphite | Still used as moderator only in the core of UK AGR | Moderator with structural functions as well in (V)HTR concepts | Vast experience on its use. Very high thermal stability. Since it is a moderator, its use is limited to thermal spectrum reactors—see Annex 3. |
Ceramic materials (SiCf/SiC, other) | None (but SiCf/SiC considered for ATF cladding) | Cladding and core components in VHTR and GFR | Composites and other ceramics have been long studied, but are still far from being fully qualified and codified. Design rules need to account for brittleness. Often costly—see Annex 3. |
Prospective materials (HEA/CCA, Max phases, …) | None (but speculation of use for ATF cladding) | Mainly cladding and coatings, but not clearly identified | These materials are investigated because of their promising properties, but even more because of the possibility of applying modern materials development techniques based on combinatorial fabrication—see Annex 3. |
Type of Fuel | Use in GenII/III | Use in GenIV | Notes |
---|---|---|---|
UO2/MOX pellets | All reactors | Mainly liquid metal (or supercritical water) cooled reactors, certainly in prototypes, including GFR prototype | Vast experience on their use [107], but modifications needed for GenIV (geometry, architecture, microstructure, …) [108,109,118,119]. Qualification needed for different coolants. |
MA-bearing oxide fuel | None | Prospectively in all fast reactors | Homogeneous vs. heterogeneous modes studied almost exclusively for liquid metal (sodium) cooled reactors [28,124]. |
MX | None | Long term use (with or without MA) in all fast reactors for higher efficiency and safety margins | Fabrication not trivial [112]. Potential issues in connection with Pu multirecycling [126,127]. Qualification open. |
TRISO concept | None (but used in formerly built HTRs) | (V)HTR, GFR | Inherently accident tolerant fuel (see text) |
Liquid (molten salt) fuel | None (but used in early prototypes and experimental reactors) | MSR | Totally different type of fuel. Offers possibility of online processing [117,130,131]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malerba, L.; Al Mazouzi, A.; Bertolus, M.; Cologna, M.; Efsing, P.; Jianu, A.; Kinnunen, P.; Nilsson, K.-F.; Rabung, M.; Tarantino, M. Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations. Energies 2022, 15, 1845. https://doi.org/10.3390/en15051845
Malerba L, Al Mazouzi A, Bertolus M, Cologna M, Efsing P, Jianu A, Kinnunen P, Nilsson K-F, Rabung M, Tarantino M. Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations. Energies. 2022; 15(5):1845. https://doi.org/10.3390/en15051845
Chicago/Turabian StyleMalerba, Lorenzo, Abderrahim Al Mazouzi, Marjorie Bertolus, Marco Cologna, Pål Efsing, Adrian Jianu, Petri Kinnunen, Karl-Fredrik Nilsson, Madalina Rabung, and Mariano Tarantino. 2022. "Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations" Energies 15, no. 5: 1845. https://doi.org/10.3390/en15051845
APA StyleMalerba, L., Al Mazouzi, A., Bertolus, M., Cologna, M., Efsing, P., Jianu, A., Kinnunen, P., Nilsson, K. -F., Rabung, M., & Tarantino, M. (2022). Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations. Energies, 15(5), 1845. https://doi.org/10.3390/en15051845