Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems
Abstract
:1. Introduction
2. Various PLL-Driven PMUs
2.1. SR Frame—qPLL
2.2. DNαβPLL
2.3. HIHDO PLL
2.4. αβEPMAFPLL
3. Frequency Domain Analysis
4. Result and Discussion
4.1. Simulation Results
4.2. Experimental Results
5. Kundur’s Two-Area System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, L.; Chen, T.; Chen, X.; Ho, W.K.; Ling, K.; Tseng, K.; Amaratunga, G.A.J. Optimum placement of phasor measurement units in power systems. IEEE Trans. Instrum. Meas. 2019, 68, 421–429. [Google Scholar] [CrossRef]
- Hojabri, M.; Dersch, U.; Papaemmanouil, A.; Bosshart, P. A comprehensive survey on phasor measurement unit app.lications in distribution systems. Energies 2019, 12, 4552. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Christofides, N.; Hadjidemetriou, L.; Kyriakides, E.; Yang, Y.; Blaabjerg, F. Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review. Renew. Sustain. Energy Rev. 2018, 90, 434–452. [Google Scholar] [CrossRef] [Green Version]
- Costa, T.; Berriel, R.; Lima, A.C.S.; Dias, R. Evaluation of a phase-locked loop phasor measurement algorithm on a harmonic polluted environment in app.lications such as PMU. J. Control Autom. Electr. Syst. 2019, 30, 424–433. [Google Scholar] [CrossRef]
- de la O Serna, J.A. Synchrophasor measurement with polynomial phase-locked-loop taylor–fourier filters. IEEE Trans. Instrum. Meas. 2015, 64, 328–337. [Google Scholar] [CrossRef]
- Dey, M.; Rana, S.P.; Simmons, C.V.; Dudley, S. Solar farm voltage anomaly detection using high-resolution μPMU data-driven unsupervised machine learning. Appl. Energy 2021, 303, 117656. [Google Scholar] [CrossRef]
- Mai, R.K.; He, Z.Y.; Fu, L.; Kirby, B.; Bo, Z.Q.A. Dynamic Synchrophasor Estimation Algorithm for Online Application. IEEE Trans. Power Deliv. 2010, 25, 570–578. [Google Scholar] [CrossRef]
- Alqahtani, N.; Ganesan, S.; Zohdy, M.; Olawoyin, R. Optimal asynchrophasor in PMU using second order kalman filter. In Proceedings of the 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020; pp. 635–637. [Google Scholar]
- Rodrigues, R.N.; Cavalcante, L.H.; Zatta, J.K.; Schlichting, L.C.M. A phasor measurement unit based on discrete fourier transform using digital signal processor. In Proceedings of the 2016 12th IEEE International Conference on Industry Applications (INDUSCON), Curitiba, PR, Brazil, 20–23 November 2016; pp. 1–6. [Google Scholar]
- Vainio, O.; Ovaska, S.J.; Polla, M. Adaptive filtering using multiplicative general parameters for zero-crossing detection. IEEE Trans. Ind. Electron. 2003, 50, 1340–1342. [Google Scholar] [CrossRef]
- Belega, D.; Fontanelli, D.; Petri, D. Low-complexity least-squares dynamic synchrophasor estimation based on the discrete fourier transform. IEEE Trans. Instrum. Meas. 2015, 64, 3284–3296. [Google Scholar] [CrossRef]
- Muoz, A.; Serna, J.A. Measurement, shanks’ method for dynamic phasor estimation. IEEE Trans. Instrum. Meas. 2008, 57, 813–819. [Google Scholar]
- Maohai, W.; Yuanzhang, S. A practical method to improve phasor and power measurement accuracy of DFT algorithm. IEEE Trans. Power Deliv. 2006, 21, 1054–1062. [Google Scholar]
- Ferrari, P.; Flammini, A.; Rinaldi, S.; Prytz, G. Evaluation of time gateways for synchronization of substation automation systems. IEEE Trans. Instrum. Meas. 2012, 61, 2612–2621. [Google Scholar] [CrossRef]
- Akke, M.; Thorp, J.S. Sample value adjustment improves phasor estimation at off-nominal frequencies. IEEE Trans. Power Deliv. 2010, 25, 2255–2263. [Google Scholar] [CrossRef]
- Reza, S.; Ciobotaru, M.; Agelidis, V.G. Single-phase grid voltage frequency estimation using teager energy operator-based technique. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 1218–1227. [Google Scholar] [CrossRef]
- Saleem, K.; Ali, Z.; Mehran, K. A single-phase synchronization technique for grid-connected energy storage system under faulty grid conditions. IEEE Trans. Power Electron. 2021, 36, 12019–12032. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Mojiri, M.; Bakhshai, A.; Jain, P. A phasor measurement algorithm based on phase-locked loop. In Proceedings of the PES T&D 2012, Orlando, FL, USA, 7–10 May 2012; pp. 1–6. [Google Scholar]
- Mu, X.; Wang, Y.; Zhao, R.; Xu, H. Dual second-order generalized integrator based synchrophasor measurement and power-angle calculation under complicated grid conditions. In Proceedings of the IEEE ACDC, Online Conference, 2–3 July 2020; pp. 1604–1611. [Google Scholar]
- Hadjidemetriou, L.; Kyriakides, E.; Blaabjerg, F. A new hybrid PLL for interconnecting renewable energy systems to the grid. IEEE Trans. Ind. Appl. 2013, 49, 2709–2719. [Google Scholar] [CrossRef]
- Hadjidemetriou, L.; Kyriakides, E.; Blaabjerg, F. Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1887–1892. [Google Scholar]
- Rodriguez, P.; Pou, J.; Bergas, J.; Candela, J.I.; Burgos, R.P.; Boroyevich, D. Decoupled double synchronous reference frame PLL for power converters control. IEEE Trans. Power Electron. 2007, 22, 584–592. [Google Scholar] [CrossRef]
- Saleem, K.; Mehran, K.; Ali, Z. An improved pre-filtering moving average filter based synchronization algorithm for single-phase V2G application. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 4088–4093. [Google Scholar]
- Hadjidemetriou, L.; Kyriakides, E.; Blaabjerg, F. A robust synchronization to enhance the power quality of renewable energy systems. IEEE Trans. Ind. Electron. 2015, 62, 4858–4868. [Google Scholar] [CrossRef]
- Ali, Z.; Christofides, N.; Hadjidemetriou, L.; Kyriakides, E. Design of an advanced PLL for accurate phase angle extraction under grid voltage HIHs and DC offset. IET Power Electron. 2018, 11, 995–1008. [Google Scholar] [CrossRef]
- Ali, Z.; Christofides, N.; Hadjidemetriou, L.; Kyriakides, E. A new MAF based αβEPMAFPLL for grid connected RES with improved performance under grid faults. Electr. Power Syst. Res. 2018, 154, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Kundur, P. Power System Stability and Control; McGraw-Hill Professional: New York, NY, USA, 1994. [Google Scholar]
- Baltensperger, D.; Dobrowolski, J.; Obushevs, A.; Sevilla, F.R.S.; Korba, P. Scaling version of kundur’s two-areas system for electromechanical oscillations representation. In Proceedings of the IEEE SPEEDAM, Sorrento, Italy, 24–26 June 2020; pp. 243–249. [Google Scholar]
- Kontis, E.O.; Barzegkar-Ntovom, G.A.; Staios, K.A.; Papadopoulos, T.A.; Papagiannis, G.K. A toolbox for analyzing and testing mode identification techniques and network equivalent models. Energies 2019, 12, 2606. [Google Scholar] [CrossRef] [Green Version]
Figure 7 | Figure 8 | ||||||
---|---|---|---|---|---|---|---|
Fault Types | Phase Jump | Phase Jump + Sag | Phase Jump | H + DC Offset | |||
PLL’s types | dq-PMU | Overshoot | Frequency (Hz) | 2.59 | 1.71 | 2.594 | 0.26 |
Voltage magnitude (p.u.) | 0 | 0.628 | 0 | 0.051 | |||
θerror (deg) | 0 | 1.851 | 1.43 | 0 | |||
Settling time | Frequency (ms) | ** | * | 132 | * | ||
Voltage magnitude (ms) | 0 | * | 0 | * | |||
θerror (ms) | 91 | * | 0 | 0 | |||
DNαβ-PMU | Overshoot | Frequency (Hz) | 2.59 | 1.858 | 2.597 | 0.227 | |
Voltage magnitude (p.u.) | 0.095 | 0.23 | 0.1164 | 0.0455 | |||
θerror (deg) | 0.175 | 1.635 | 1.44 | 0 | |||
Settling time | Frequency (ms) | ** | 65 | 128 | 44 | ||
Voltage magnitude (ms) | 43 | 58 | 55 | 59.5 | |||
θerror (ms) | 95 | 36 | 0 | 0 | |||
HIHDO-PMU | Overshoot | Frequency (Hz) | 2.24 | 0.29 | 2.25 | 0.0345 | |
Voltage magnitude (p.u.) | 0.108 | 0.021 | 0.0604 | 0.0052 | |||
θerror (deg) | 1.24 | 1.22 | 1.54 | 0 | |||
Settling time | Frequency (ms) | ** | 54 | 110 | * | ||
Voltage magnitude (ms) | 69 | 41 | 92 | * | |||
θerror (ms) | ** | 50 | 0 | 0 | |||
αβEPMAF-PMU | Overshoot | Frequency (Hz) | 0.8572 | 0 | 0.857 | 0 | |
Voltage magnitude (p.u.) | 0.054 | 0 | 0.0323 | 0.0026 | |||
θerror (deg) | 5.93 | 5.86 | 6.102 | 0 | |||
Settling time | Frequency (ms) | ** | 76 | 196 | 0 | ||
Voltage magnitude (ms) | 21 | 25.1 | 20 | 23 | |||
θerror (ms) | ** | 135 | ** | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, Z.; Saleem, K.; Brown, R.; Christofides, N.; Dudley, S. Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems. Energies 2022, 15, 1867. https://doi.org/10.3390/en15051867
Ali Z, Saleem K, Brown R, Christofides N, Dudley S. Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems. Energies. 2022; 15(5):1867. https://doi.org/10.3390/en15051867
Chicago/Turabian StyleAli, Zunaib, Komal Saleem, Robert Brown, Nicholas Christofides, and Sandra Dudley. 2022. "Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems" Energies 15, no. 5: 1867. https://doi.org/10.3390/en15051867
APA StyleAli, Z., Saleem, K., Brown, R., Christofides, N., & Dudley, S. (2022). Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems. Energies, 15(5), 1867. https://doi.org/10.3390/en15051867