On the Crystal Chemistry of Photochromic Yttrium Oxyhydride
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mongstad, T.; Platzer-Björkman, C.; Maehlen, J.P.; Mooij, L.P.A.; Pivak, Y.; Dam, B.; Marstein, E.S.; Hauback, B.; Karazhanov, S.Z. A new thin film photochromic material: Oxygen-containing yttrium hydride. Sol. Energy Mater. Sol. Cells 2011, 95, 3596–3599. [Google Scholar] [CrossRef] [Green Version]
- Mongstad, T.T. Thin-Film Metal Hydrides for Solar Energy Applications. Ph.D. Thesis, The University of Oslo, Oslo, Norway, 2012. [Google Scholar]
- You, C.C.; Mongstad, T.; Maehlen, J.P.; Karazhanov, S. Engineering of the band gap and optical properties of thin films of yttrium hydride. Appl. Phys. Lett. 2014, 105, 031910. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.F.T.; Roy, A.S.; Rosenbaum, T.F.; Griessen, R.; Wijngaarden, R.J.; Koeman, N.J. Light-Induced Metal-Insulator Transition in a Switchable Mirror. Phys. Rev. Lett. 2001, 86, 5349–5352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, A.F.T.; Roy, A.S.; Rosenbaum, T.F. Scaling at the Mott-Hubbard metal-insulator transition in yttrium hydride. J. Phys.-Condens. Matter 2003, 15, 1405–1413. [Google Scholar] [CrossRef]
- Pishtshev, A.; Karazhanov, S.Z. Role of oxygen in materials properties of yttrium trihydride. Solid State Commun. 2014, 194, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Montero, J.; Martinsen, F.A.; Garcia-Tecedor, M.; Karazhanov, S.Z.; Maestre, D.; Hauback, B.; Marstein, E.S. Photochromic mechanism in oxygen-containing yttrium hydride thin films: An optical perspective. Phys. Rev. B 2017, 95, 201301. [Google Scholar] [CrossRef]
- Moldarev, D.; Moro, M.V.; You, C.C.; Baba, E.M.; Karazhanov, S.Z.; Wolff, M.; Primetzhofer, D. Yttrium oxyhydrides for photochromic applications: Correlating composition and optical response. Phys. Rev. Mater. 2018, 2, 115203. [Google Scholar] [CrossRef] [Green Version]
- Cornelius, S.; Colombi, G.; Nafezarefi, F.; Schreuders, H.; Heller, R.; Munnik, F.; Dam, B. Oxyhydride Nature of Rare-Earth-Based Photochromic Thin Films. J. Phys. Chem. Lett. 2019, 10, 1342–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pishtshev, A.; Strugovshchikov, E.; Karazhanov, S. Conceptual Design of Yttrium Oxyhydrides: Phase Diagram, Structure, and Properties. Cryst. Growth Des. 2019, 19, 2574–2582. [Google Scholar] [CrossRef]
- Dyadkin, V.; Pattison, P.; Dmitriev, V.; Chernyshov, D. A new multipurpose diffractometer PILATUS@SNBL. J. Synchrotron Radiat. 2016, 23, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Hauback, B.C.; Fjellvåg, H.; Steinsvoll, O.; Johansson, K.; Buset, O.T.; Jørgensen, J. The high resolution Powder Neutron Diffractometer PUS at the JEEP II reactor at Kjeller in Norway. J. Neutron Res. 2000, 8, 215–232. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C plus. J. Appl. Cryst. 2018, 51, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Vajda, P.; Daou, J.N. Semiconductor-Metal-Semiconductor Transitions in the Superstoichiometric Dihydride Yh2.10. Phys. Rev. Lett. 1991, 66, 3176–3178. [Google Scholar] [CrossRef] [PubMed]
- Uhrich, D.L. Measurement of the Lattice Constant in the Dihydrides of Gadolinium—Yttrium Alloys. J. Chem. Phys. 1966, 44, 2202–2203. [Google Scholar] [CrossRef]
- Khatamian, D.; Kamitakahara, W.A.; Barnes, R.G.; Peterson, D.T. Crystal structure of YD1.96 and YH1.98 by neutron diffraction. Phys. Rev. B 1980, 21, 2622–2624. [Google Scholar] [CrossRef]
- Baba, E.M.; Montero, J.; Strugovshchikov, E.; Zayim, E.Ö.; Karazhanov, S. Light-induced breathing in photochromic yttrium oxyhydrides. Phys. Rev. Mater. 2020, 4, 025201. [Google Scholar] [CrossRef] [Green Version]
Site | Wyckoff Position; Coordinates | Element | Occupation | Biso |
---|---|---|---|---|
Y | 4a; 0, 0, 0 | Y | 1 | 1.27(1) |
Tetrahedral site | 8c; ¼, ¼, ¼ | O | 0.334(7) | 4.0(1) |
D | 0.311(4) | |||
H | 0.354(5) | |||
Octahedral site | 4b; ½, ½, ½ | D | 0.16(1) | 4.0(1) |
H | 0.18(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sørby, M.H.; Martinsen, F.; Karazhanov, S.Z.; Hauback, B.C.; Marstein, E.S. On the Crystal Chemistry of Photochromic Yttrium Oxyhydride. Energies 2022, 15, 1903. https://doi.org/10.3390/en15051903
Sørby MH, Martinsen F, Karazhanov SZ, Hauback BC, Marstein ES. On the Crystal Chemistry of Photochromic Yttrium Oxyhydride. Energies. 2022; 15(5):1903. https://doi.org/10.3390/en15051903
Chicago/Turabian StyleSørby, Magnus H., Fredrik Martinsen, Smagul Zh. Karazhanov, Bjørn C. Hauback, and Erik S. Marstein. 2022. "On the Crystal Chemistry of Photochromic Yttrium Oxyhydride" Energies 15, no. 5: 1903. https://doi.org/10.3390/en15051903
APA StyleSørby, M. H., Martinsen, F., Karazhanov, S. Z., Hauback, B. C., & Marstein, E. S. (2022). On the Crystal Chemistry of Photochromic Yttrium Oxyhydride. Energies, 15(5), 1903. https://doi.org/10.3390/en15051903