Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review
Abstract
:1. Introduction
2. Electrical Machines and Energy Efficiency
3. Techniques for Power Quality Detection, Identification, and Mitigation
4. Techniques for Power Quality Related to Electrical Machines and Electrical Drives
5. Analysis of Techniques Trends
5.1. Overview on the Proposed Solutions regarding Power Quality Issues on Motors and Its Drives
5.2. Techniques That Could Be Possible Potential Solutions to the Existing Problems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
FT | Fourier transform |
ST | S-Transform |
SVM | Support vector machines |
QC | Quadratic classifier |
RQA | Recurrence quantification analysis |
KNN | K-nearest neighbor |
RBFNN | Radial basis function neural network |
DL | Deep learning |
PSR | Phase space reconstruction |
KF | Kalman filter |
FFT | Fast Fourier transform |
TQWT | Tunable-Q wavelet transform |
IAF | Inductive active filtering |
PEOM | Post event overload mitigation |
BPF | Band-pass filter |
STFT | Short time Fourier transform |
DWT | Discrete wavelet transform |
DT | Decision trees |
SC | Symetric components |
EMD | Empirical mode decomposition |
EWT | Empirical wavelet transform |
1DST | 1-dinemsional S-transform |
MOGWO | Multi-objective grey wolf optimizer |
PCA | Principal component analysis |
PSSAE | Parallel stacked sparse autoencoder |
SMNN | SoftMax neural network |
MSVM | Multiclass support vector machine |
SVG | Static VAR generator |
RSC | Resonant controller |
STATCOM | Static synchronous compensator |
HHT | Hilbert–Huang transform |
ANN | Artificial neural networks |
HOC | Higher-Order cumulants |
PLL | Phase locked loop |
VMD | Variable mode decomposition |
RKRR | Reduced kernel ridge regression |
2DRT | 2-dimensional Riesz transform |
CNN | Convolutional neural network |
NT | Nutro tree |
MST | Modified S-transform |
SAE | Sparse autoencoder |
HPF | High-pass filter |
SVC | Static VAR compensator |
MPC | Model predictive controller |
References
- Ghosh, P.K.; Sadhu, P.K.; Basak, R.; Sanyal, A. Energy Efficient Design of Three Phase Induction Motor by Water Cycle Algorithm. Ain Shams Eng. J. 2020, 11, 1139–1147. [Google Scholar] [CrossRef]
- Boteler, R.; Malinowski, J. Review of Upcoming Changes to Global Motor Efficiency Regulations. In Proceedings of the Conference Record of 2009 Annual Pulp and Paper Industry Technical Conference, Birmingham, AL, USA, 21–26 June 2009; pp. 26–30. [Google Scholar] [CrossRef]
- Moro Franchi, C. Electrical Machine Drives Fundamental Basics and Practice; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781138099395. [Google Scholar]
- De Capua, C.; Landi, C. Quality Assessment of Electrical Drives with Strongly Deformed Supply Waveform. Meas. J. Int. Meas. Confed. 2001, 30, 269–278. [Google Scholar] [CrossRef]
- LeDoux, K.; Visser, P.W.; Hulin, J.D.; Nguyen, H. Starting Large Synchronous Motors in Weak Power Systems. IEEE Trans. Ind. Appl. 2015, 51, 2676–2682. [Google Scholar] [CrossRef]
- Giannoutsos, S.V.; Manias, S.N. A Systematic Power-Quality Assessment and Harmonic Filter Design Methodology for Variable-Frequency Drive Application in Marine Vessels. IEEE Trans. Ind. Appl. 2015, 51, 1909–1919. [Google Scholar] [CrossRef]
- Alimi, O.A.; Ouahada, K.; Abu-Mahfouz, A.M. A Review of Machine Learning Approaches to Power System Security and Stability. IEEE Access 2020, 8, 113512–113531. [Google Scholar] [CrossRef]
- Ferreira, F.J.T.E.; Baoming, G.; De Almeida, A.T. Reliability and Operation of High-Efficiency Induction Motors. In Proceedings of the 2015 IEEE/IAS 51st Industrial & Commercial Power Systems Technical Conference (I&CPS), Calgary, AB, Canada, 5–8 May 2015; pp. 1–13. [Google Scholar] [CrossRef]
- Donolo, P.D.; Pezzani, C.M.; Bossio, G.R.; De Angelo, C.H.; Donolo, M.A. Derating of Induction Motors Due to Power Quality Issues Considering the Motor Efficiency Class. IEEE Trans. Ind. Appl. 2020, 56, 961–969. [Google Scholar] [CrossRef]
- Alberti, L.; Troncon, D. Design of Electric Motors and Power Drive Systems According to Efficiency Standards. IEEE Trans. Ind. Electron. 2021, 68, 9287–9296. [Google Scholar] [CrossRef]
- Fernandez-Cavero, V.; Morinigo-Sotelo, D.; Duque-Perez, O.; Pons-Llinares, J. A Comparison of Techniques for Fault Detection in Inverter-Fed Induction Motors in Transient Regime. IEEE Access 2017, 5, 8048–8063. [Google Scholar] [CrossRef]
- Donolo, P.D.; Chiacchiera, E.; Pezzani, C.M.; Lifschitz, A.S.; De Angelo, C. Economic Barriers to the Application of Energy Efficient Motors in Industry. IEEE Latin Am. Trans. 2020, 18, 1817–1825. [Google Scholar] [CrossRef]
- Hubbi, W.; Goldberg, O. A New Method for Quality Monitoring of Induction Motors. IEEE Trans. Energy Convers. 1993, 8, 726–731. [Google Scholar] [CrossRef]
- Bíscaro, A.A.P.; Pereira, R.A.F.; Kezunovic, M.; Mantovani, J.R.S. Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems. IEEE Trans. Power Deliv. 2016, 31, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Bakshi, U.A.; Bakshi, M.V. Electrical Machines—I, 1st ed.; Technical Publications: Pune, India, 2020. [Google Scholar]
- Mojlish, S.; Erdogan, N.; Levine, D.; Davoudi, A. Review of Hardware Platforms for Real-Time Simulation of Electric Machines. IEEE Trans. Transp. Electrif. 2017, 3, 130–146. [Google Scholar] [CrossRef]
- Leonhard, W. Control of Electrical Drives, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 9783642626098. [Google Scholar]
- Liu, C.; Chau, K.T.; Lee, C.H.T.; Song, Z. A Critical Review of Advanced Electric Machines and Control Strategies for Electric Vehicles. Proc. IEEE 2021, 109, 1004–1028. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Z.; Wei, S.; Bo, Y.; Pu, S. Recent Developments of Modulation and Control for High-Power Current-Source-Converters Fed Electric Machine Systems. CES Trans. Electr. Mach. Syst. 2020, 4, 215–226. [Google Scholar] [CrossRef]
- Cao, R.; Lu, M.; Jiang, N.; Cheng, M. Comparison between Linear Induction Motor and Linear Flux-Switching Permanent-Magnet Motor for Railway Transportation. IEEE Trans. Ind. Electron. 2019, 66, 9394–9405. [Google Scholar] [CrossRef]
- Abdollahi, S.E.; Mirzayee, M.; Mirsalim, M. Design and Analysis of a Double-Sided Linear Induction Motor for Transportation. IEEE Trans. Magn. 2015, 51, 1–7. [Google Scholar] [CrossRef]
- Safaeian, M.; Jalilvand, A.; Taheri, A. A MRAS Based Model Predictive Control for Multi-Leg Based Multi-Drive System Used in Hot Rolling Mill Applications. IEEE Access 2020, 8, 215493–215504. [Google Scholar] [CrossRef]
- Ramírez, G.; Valenzuela, M.A.; Pittman, S.; Lorenz, R.D. Modeling and Evaluation of Paper Machine Coater Sections Part 1: 1-Coater Section and Tension Setpoints. IEEE Trans. Ind. Appl. 2019, 55, 2144–2154. [Google Scholar] [CrossRef]
- Bhavana., M.B.; Hegde, V. Energy conservation using variable frequency drives of a humidification plant in a textile mill. In Proceedings of the 2015 International Conference on Power and Advanced Control Engineering (ICPACE), Bengaluru, India, 12–14 August 2015; pp. 90–94. [Google Scholar] [CrossRef]
- Lin, F.J.; Shieh, H.J.; Shieh, P.H.; Shen, P.H. An adaptive recurrent-neural-network motion controller for X-Y table in CNC Machine. IEEE Trans. Syst. Man Cybern. Part B 2006, 36, 286–299. [Google Scholar] [CrossRef]
- Gedıkpinar, M. Design and Implementation of a Self-Starting Permanent Magnet Hysteresis Synchronous Motor for Pump Applications. IEEE Access 2019, 7, 186211–186216. [Google Scholar] [CrossRef]
- Torres, F.J.; Ramírez-Paredes, J.P.; García-Murillo, M.A.; Martínez-Ramírez, I.; Capilla-González, G.; Ramírez, V.A. A Tracking Control of a Flexible-Robot Including the Dynamics of the Induction Motor as Actuator. IEEE Access 2021, 9, 82373–82379. [Google Scholar] [CrossRef]
- Sharma, U.; Singh, B. Design and Development of Energy Efficient Single Phase Induction Motor for Ceiling Fan Using Taguchi’s Orthogonal Arrays. IEEE Trans. Ind. Appl. 2021, 57, 3562–3572. [Google Scholar] [CrossRef]
- Jurkovic, S.; Rahman, K.M.; Morgante, J.C.; Savagian, P.J. Induction Machine Design and Analysis for General Motors e-Assist Electrification Technology. IEEE Trans. Ind. Appl. 2015, 51, 631–639. [Google Scholar] [CrossRef]
- Singh, B.; Bhuvaneswari, G.; Garg, V. Power-Quality Improvements in Vector-Controlled Induction Motor Drive Employing Pulse Multiplication in AC–DC Converters. IEEE Trans. Power Deliv. 2006, 21, 1578–1586. [Google Scholar] [CrossRef]
- Nair, R.; Narayanan, G. Emulation of Wind Turbine System Using Vector Controlled Induction Motor Drive. IEEE Trans. Ind. Appl. 2020, 56, 4124–4133. [Google Scholar] [CrossRef]
- Shang, Z.; Gao, D.; Jiang, Z.; Lu, Y. Towards Less Energy Intensive Heavy-Duty Machine Tools: Power Consumption Characteristics and Energy-Saving Strategies. Energy 2019, 178, 263–276. [Google Scholar] [CrossRef]
- Bayindir, R.; Demirbas, S.; Irmak, E.; Cetinkaya, U.; Ova, A.; Yesil, M. Effects of Renewable Energy Sources on the Power System. In Proceedings of the 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria, 25–28 September 2016; pp. 388–393. [Google Scholar] [CrossRef]
- Shao, L.; Karci, A.E.H.; Tavernini, D.; Sorniotti, A.; Cheng, M. Design Approaches and Control Strategies for Energy-Efficient Electric Machines for Electric Vehicles—A Review. IEEE Access 2020, 8, 116900–116913. [Google Scholar] [CrossRef]
- Gerada, D.; Mebarki, A.; Brown, N.L.; Gerada, C.; Cavagnino, A.; Boglietti, A. High-Speed Electrical Machines: Technologies, Trends, and Developments. IEEE Trans. Ind. Electron. 2014, 61, 2946–2959. [Google Scholar] [CrossRef]
- Tleis, N.D. Power Systems Modelling and Fault Analysis—Theory and Practice, 2nd ed.; Academic Press (Elsevier): London Wall, UK, 2008; ISBN 9780750680745. [Google Scholar]
- Tarasiuk, T.; Jayasinghe, S.G.; Gorniak, M.; Pilat, A.; Shagar, V.; Liu, W.; Guerrero, J.M. Review of Power Quality Issues in Maritime Microgrids. IEEE Access 2021, 9, 81798–81817. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Yan, Z. Energy Quality: A Definition. IEEE Open Access J. Power Energy 2020, 7, 430–440. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Wu, H.; Zhu, J.; Xing, Y.; Li, Y. Hybrid Connected Unified Power Quality Conditioner Integrating Distributed Generation with Reduced Power Capacity and Enhanced Conversion Efficiency. IEEE Trans. Ind. Electron. 2021, 68, 12340–12352. [Google Scholar] [CrossRef]
- Madonna, V.; Giangrande, P.; Migliazza, G.; Buticchi, G.; Galea, M. A Time-Saving Approach for the Thermal Lifetime Evaluation of Low-Voltage Electrical Machines. IEEE Trans. Ind. Electron. 2020, 67, 9195–9205. [Google Scholar] [CrossRef]
- Jaen-Cuellar, A.Y.; Morales-Velazquez, L.; Romero-Troncoso, R.D.; Moriñigo-Sotelo, D.; Osornio-Rios, R.A. Micro-genetic algorithms for detecting and classifying electric power disturbances. Neural. Comput. Appl. 2017, 28, 379–392. [Google Scholar] [CrossRef]
- Tabora, J.M.; De Lima Tostes, M.E.; Bezerra, U.H.; De Matos, E.O.; Filho, C.L.P.; Soares, T.M.; Rodrigues, C.E.M. Assessing Energy Efficiency and Power Quality Impacts Due to High-Efficiency Motors Operating Under Nonideal Energy Supply. IEEE Access 2021, 9, 121871–121882. [Google Scholar] [CrossRef]
- Kumar, D.; Zare, F. A Comprehensive Review of Maritime Microgrids: System Architectures, Energy Efficiency, Power Quality, and Regulations. IEEE Access 2019, 7, 67249–67277. [Google Scholar] [CrossRef]
- Ali, S.; Wu, K.; Weston, K.; Marinakis, D. A Machine Learning Approach to Meter Placement for Power Quality Estimation in Smart Grid. IEEE Trans. Smart Grid 2016, 7, 1552–1561. [Google Scholar] [CrossRef]
- Li, C.; Xu, W.; Tayjasanant, T. Interharmonics: Basic Concepts and Techniques for Their Detection and Measurement. Electr. Power Syst. Res. 2003, 66, 39–48. [Google Scholar] [CrossRef]
- Bolshev, V.; Vinogradov, A.; Jasinski, M.; Sikorski, T.; Leonowicz, Z.; Gono, R. Monitoring the Number and Duration of Power Outages and Voltage Deviations at Both Sides of Switching Devices. IEEE Access 2020, 8, 137174–137184. [Google Scholar] [CrossRef]
- Albertelli, P. Energy Saving Opportunities in Direct Drive Machine Tool Spindles. J. Clean. Prod. 2017, 165, 855–873. [Google Scholar] [CrossRef]
- Alahmad, M.; Wheeler, P.; Schwer, A.; Eiden, J.; Brumbaugh, A. A comparative study of three feedback devices for residential real-time energy monitoring. IEEE Trans. Ind. Electron. 2012, 59, 2002–2013. [Google Scholar] [CrossRef] [Green Version]
- Cherkassky, V.; Chowdhury, S.; Landenberg, V.; Tewari, S.; Bursch, P. Prediction of electric power consumption for commercial buildings. In Proceedings of the International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011. [Google Scholar] [CrossRef]
- Anees, A.; Chen, Y.-P. True real time pricing and combined power scheduling of electric appliances in residential energy management system. Appl. Energy 2016, 165, 592–600. [Google Scholar] [CrossRef]
- Christiansen, N.; Kaltschmit, M.; Dzukowski, F.; Isensee, F. Electricity consumption of medical plug loads in hospital laboratories: Identification, evaluation, prediction and verification. Energy Build. 2015, 107, 392–406. [Google Scholar] [CrossRef]
- Wang, X.; Yong, J.; Xu, W.; Freitas, W. Practical Power Quality Charts for Motor Starting Assessment. IEEE Trans. Power Deliv. 2011, 26, 799–808. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T. Effects of Voltage Sag on the Performance of Induction Motor Based on a New Transient Sequence Component Method. CES Trans. Electr. Mach. Syst. 2019, 3, 316–324. [Google Scholar] [CrossRef]
- Agamloh, E.B.; Nagorny, A.S. An Overview of Efficiency and Loss Characterization of Fractional Horsepower Motors. IEEE Trans. Ind. Electron. 2018, 60, 3072–3080. [Google Scholar] [CrossRef]
- Santos, V.S.; Felipe, P.R.V.; Sarduy, J.R.G.; Lemozy, N.A.; Jurado, A.; Quispe, E.C. Procedure for Determining Induction Motor Efficiency Working under Distorted Grid Voltages. IEEE Trans. Energy Convers. 2015, 30, 331–339. [Google Scholar] [CrossRef]
- Sousa, V.; Viego, P.R.; Gómez, J.R.; Quispe, E.C.; Balbis, M. Shaft Power Estimation in Induction Motor Operating under Unbalanced and Harmonics Voltages. IEEE Lat. Am. Trans. 2016, 14, 2309–2315. [Google Scholar] [CrossRef]
- Committee, D.; Power, I.; Society, E. IEEE 519 Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE Power and Energy Society; IEEE: Piscataway, NJ, USA, 2014; Volume 2014. [Google Scholar]
- Su, C.L.; Chen, C.J.; Lee, C.C. Fast Evaluation Methods for Voltage Sags in Ship Electrical Power Systems. IEEE Trans. Ind. Appl. 2013, 49, 233–241. [Google Scholar] [CrossRef]
- Refoufi, L.; Pillay, P. Harmonic Analysis of Slip Energy Recovery Induction Motor Drives. IEEE Trans. Energy Convers. 1994, 9, 665–672. [Google Scholar] [CrossRef]
- Singh, B.; Bhuvaneswari, G.; Garg, V.; Gairola, S. Pulse Multiplication in AC-DC Converters for Harmonic Mitigation in Vector-Controlled Induction Motor Drives. IEEE Trans. Energy Convers. 2006, 21, 342–352. [Google Scholar] [CrossRef]
- Singh, B.; Kant, P. A 40-Pulse Multiphase Staggering Modular Transformer with Power Quality Improvement in Multilevel Inverter Fed Medium-Voltage Induction Motor Drives. IEEE Trans. Ind. Appl. 2019, 55, 7822–7832. [Google Scholar] [CrossRef]
- De Almeida, A.T.; Ferreira, F.J.T.E.; Baoming, G. Beyond Induction Motors-Technology Trends to Move up Efficiency. IEEE Trans. Ind. Appl. 2014, 50, 2103–2114. [Google Scholar] [CrossRef]
- Tabora, J.M.; Tostes, M.E.; De Matos, E.O.; Bezerra, U.H.; Soares, T.M.; De Albuquerque, B.S. Assessing Voltage Unbalance Conditions in IE2, IE3 and IE4 Classes Induction Motors. IEEE Access 2020, 8, 186725–186739. [Google Scholar] [CrossRef]
- Xie, F.; Liang, K.; Wu, W.; Hong, W.; Qiu, C. Multiple Harmonic Suppression Method for Induction Motor Based on Hybrid Morphological Filters. IEEE Access 2019, 7, 151618–151627. [Google Scholar] [CrossRef]
- Steimer, P.K. Enabled by high power electronics—Energy efficiency, renewables and smart grids. In Proceedings of the 2010 International Power Electronics Conference—ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 11–15. [Google Scholar] [CrossRef]
- Milanovic, J.V.; Aung, M.T.; Vegunta, S.C. The Influence of Induction Motors on Voltage Sag Propagation—Part I: Accounting for the Change in Sag Characteristics. IEEE Trans. Power Deliv. 2008, 23, 1063–1071. [Google Scholar] [CrossRef]
- Duarte, S.X.; Kagan, N. A Power-Quality Index to Assess the Impact of Voltage Harmonic Distortions and Unbalance to Three-Phase Induction Motors. IEEE Trans. Power Deliv. 2010, 25, 1846–1854. [Google Scholar] [CrossRef]
- European Standard, EN 50160; Voltage Characteristics of Electricity Supplied by Public Electricity Networks. CENELEC: Brussels, Belgium, 2011.
- Bollen, M.H.J.; Gu, I.Y.-H. Signal Processing of Power Quality Disturbances; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 9780471931317. [Google Scholar]
- Singh, B.; Chandra, A.; Al-Haddad, K. Power Quality: Problems and Mitigation Techniques, 1st ed.; John Wiley and Sons Ltd.: Chichester, UK, 2015; ISBN 9781118922057. [Google Scholar]
- IEEE Standard 1159-2009 (Revision IEEE Std 1159-2009); IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Power and Energy Society: New York, NY, USA, 2019; Volume 2019, ISBN 9780738159393.
- Ma, Y.; Li, Q.; Chen, H.; Li, H.; Lei, Y. Voltage Transient Disturbance Detection Based on the RMS Values of Segmented Differential Waveforms. IEEE Access 2021, 9, 144514–144529. [Google Scholar] [CrossRef]
- Kahingala, T.D.; Perera, S.; Jayatunga, U.; Agalgaonkar, A.P. Network-Wide Influence of a STATCOM Configured for Voltage Unbalance Mitigation. IEEE Trans. Power Deliv. 2020, 35, 1602–16053. [Google Scholar] [CrossRef]
- Rodriguez-Guerrero, M.A.; Jaen-Cuellar, A.Y.; Carranza-Lopez-Padilla, R.D.; Osornio-Rios, R.A.; Herrera-Ruiz, G.; Romero-Troncoso, R.d.J. Hybrid Approach Based on GA and PSO for Parameter Estimation of a Full Power Quality Disturbance Parameterized Model. IEEE Trans. Ind. Inform. 2018, 14, 1016–1028. [Google Scholar] [CrossRef]
- Saadat, A.; Hooshmand, R.-A.; Tadayon, M. Flicker Propagation Pricing in Power Systems Using a New Short-Circuit-Based Method for Determining the Flicker Transfer Coefficient. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Xu, L. Parameter Estimation of Hybrid Linear Frequency Modulation-Sinusoidal Frequency Modulation Signal. IEEE Signal Process. Lett. 2017, 24, 1238–1241. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; He, C.; Wu, T. A New 2-D Multi-Slice Time-Stepping Finite Element Method and Its Application in Analyzing the Transient Characteristics of Induction Motors under Symmetrical Sag Conditions. IEEE Access 2018, 6, 47036–47046. [Google Scholar] [CrossRef]
- Gomez, J.C.; Morcos, M.M.; Reineri, C.A.; Campetelli, G.N. Behavior of Induction Motor Due to Voltage Sags and Short Interruptions. IEEE Trans. Power Deliv. 2002, 17, 434–440. [Google Scholar] [CrossRef]
- Quispe, E.C.; Lopez-Fernandez, X.M.; Mendes, A.M.S.; Marques Cardoso, A.J.; Palacios, J.A. Influence of the Positive Sequence Voltage on the Derating of Three-Phase Induction Motors under Voltage Unbalance. In Proceedings of the 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, 12–15 May 2013; pp. 100–105. [Google Scholar] [CrossRef]
- Gnacinski, P.; Tarasiuk, T.; Mindykowski, J.; Peplinski, M.; Gorniak, M.; Hallmann, D.; Pillat, A. Power Quality and Energy-Efficient Operation of Marine Induction Motors. IEEE Access 2020, 8, 152193–152203. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, K.; Wang, X. An Analytical Method to Calculate Critical Clearance Time of Symmetrical Voltage Sags for Induction Motors. Dianwang Jishu/Power Syst. Technol. 2014, 38, 509–514. [Google Scholar] [CrossRef]
- Ukil, A.; Bloch, R.; Andenna, A. Estimation of Induction Motor Operating Power Factor from Measured Current and Manufacturer Data. IEEE Trans. Energy Convers. 2011, 26, 699–706. [Google Scholar] [CrossRef]
- Sampath Kumar, P.; Xie, L.; Soong, B.H.; Lee, M.Y. Feasibility for Utilizing IEEE 802.15.4 Compliant Radios inside Rotating Electrical Machines for Wireless Condition Monitoring Applications. IEEE Sens. J. 2018, 18, 4293–4302. [Google Scholar] [CrossRef]
- Dugan, R.C.; McGranaghan, M.F.; Santoso, S.; Beaty, H.W. Electrical Power Systems Quality, 3rd ed.; McGraw-Hill: New York, NY, USA, 2012; ISBN 9780071761550. [Google Scholar]
- Kanirajan, P.; Suresh Kumar, V. Power Quality Disturbance Detection and Classification Using Wavelet and RBFNN. Appl. Soft Comput. J. 2015, 35, 470–481. [Google Scholar] [CrossRef]
- Huang, N.; Wang, D.; Lin, L.; Cai, G.; Huang, G.; Du, J.; Zheng, J. Power Quality Disturbances Classification Using Rotation Forest and Multi-resolution Fast S-transform with Data Compression in Time Domain. IET Gener. Transm. Distrib. 2019, 13, 5091–5101. [Google Scholar] [CrossRef]
- Kapisch, E.B.; Filho, L.M.A.; Silva, L.R.M.; Duque, C.A. Novelty Detection in Power Quality Signals with Surrogates: A Time-Frequency Technique. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 373–378. [Google Scholar] [CrossRef]
- Qiu, W.; Tang, Q.; Liu, J.; Teng, Z.; Yao, W. Power Quality Disturbances Recognition Using Modified S Transform and Parallel Stack Sparse Auto-Encoder. Electr. Power Syst. Res. 2019, 174, 105876. [Google Scholar] [CrossRef]
- Costa, B.; De Souza, B.A.; Brito, D. Detection and Classification of Transient Disturbances in Power Systems. IEEJ Trans. Power Energy 2010, 130, 910–916. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, B.; Shahani, D.T. Symmetrical Components-Based Modified Technique for Power-Quality Disturbances Detection and Classification. IEEE Trans. Ind. Appl. 2016, 52, 3443–3450. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Che, Y. Power Quality Disturbance Classification Based on DWT and Multilayer Perceptron Extreme Learning Machine. Appl. Sci. 2019, 9, 2315. [Google Scholar] [CrossRef] [Green Version]
- Olshausen, B.A.; Field, D.J. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef] [Green Version]
- Sahani, M.; Dash, P.K. FPGA-Based Online Power Quality Disturbances Monitoring Using Reduced-Sample HHT and Class-Specific Weighted RVFLN. IEEE Trans. Ind. Inform. 2019, 15, 4614–4623. [Google Scholar] [CrossRef]
- Sahani, M.; Dash, P.K. Automatic Power Quality Events Recognition Based on Hilbert Huang Transform and Weighted Bidirectional Extreme Learning Machine. IEEE Trans. Ind. Inform. 2018, 14, 3849–3858. [Google Scholar] [CrossRef]
- LI, P.; GAO, J.; XU, D.; WANG, C.; YANG, X. Hilbert-Huang Transform with Adaptive Waveform Matching Extension and Its Application in Power Quality Disturbance Detection for Microgrid. J. Mod. Power Syst. Clean Energy 2016, 4, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Zhong, T.; Zhang, S.; Cai, G.; Li, Y.; Yang, B.; Chen, Y. Power Quality Disturbance Recognition Based on Multiresolution S-Transform and Decision Tree. IEEE Access 2019, 7, 88380–88392. [Google Scholar] [CrossRef]
- Li, J.; Teng, Z.; Tang, Q.; Song, J. Detection and Classification of Power Quality Disturbances Using Double Resolution S-Transform and DAG-SVMs. IEEE Trans. Instrum. Meas. 2016, 65, 2302–2312. [Google Scholar] [CrossRef]
- Cortes-Robles, O.; Barocio, E.; Segundo, J.; Guillen, D.; Olivares-Galvan, J.C. A Qualitative-Quantitative Hybrid Approach for Power Quality Disturbance Monitoring on Microgrid Systems. Measurement 2020, 154, 107453. [Google Scholar] [CrossRef]
- Ray, P.K.; Mohanty, S.R.; Kishor, N. Classification of Power Quality Disturbances Due to Environmental Characteristics in Distributed Generation System. IEEE Trans. Sustain. Energy 2013, 4, 302–313. [Google Scholar] [CrossRef]
- Lopez-Ramirez, M.; Cabal-Yepez, E.; Ledesma-Carrillo, L.; Miranda-Vidales, H.; Rodriguez-Donate, C.; Lizarraga-Morales, R. FPGA-Based Online PQD Detection and Classification through DWT, Mathematical Morphology and SVD. Energies 2018, 11, 769. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hussain, F.; Shen, Y.; Arif, S.; Nazir, A.; Abubakar, M. Complex Power Quality Disturbances Classification via Curvelet Transform and Deep Learning. Electr. Power Syst. Res. 2018, 163, 1–9. [Google Scholar] [CrossRef]
- Cortes-Robles, O.; Barocio, E.; Obushevs, A.; Korba, P.; Sevilla, F.R.S. Fast-Training Feedforward Neural Network for Multi-Scale Power Quality Monitoring in Power Systems with Distributed Generation Sources. Meas. J. Int. Meas. Confed. 2021, 170, 108690. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H. A Novel Deep Learning Method for the Classification of Power Quality Disturbances Using Deep Convolutional Neural Network. Appl. Energy 2019, 235, 1126–1140. [Google Scholar] [CrossRef]
- Gonzalez-Abreu, A.-D.; Delgado-Prieto, M.; Osornio-Rios, R.-A.; Saucedo-Dorantes, J.-J.; Romero-Troncoso, R.-J. A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances. Energies 2021, 14, 2839. [Google Scholar] [CrossRef]
- Zhang, L.; Bollen, M.H.J. Characteristic of Voltage Dips (Sags) in Power Systems. In Proceedings of the 8th International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.98EX227), Athens, Greece, 14–16 October 1998; Vloume 1, pp. 555–560. [Google Scholar] [CrossRef]
- Khetarpal, P.; Tripathi, M.M. A Critical and Comprehensive Review on Power Quality Disturbance Detection and Classification. Sustain. Comput. Inform. Syst. 2020, 28, 100417. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Taghipour-Gorjikolaie, M.; Song, W.; Zhang, M.; Yuan, W. Prediction of Nonsinusoidal AC Loss of Superconducting Tapes Using Artificial Intelligence-Based Models. IEEE Access 2020, 8, 207287–207297. [Google Scholar] [CrossRef]
- Elvira-Ortiz, D.A.; Jaen-Cuellar, A.Y.; Morinigo-Sotelo, D.; Morales-Velazquez, L.; Osornio-Rios, R.A.; Romero-Troncoso, R.d.J. Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation. Appl. Sci. 2020, 10, 542. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, R.A.; Ravindran, V.; Rönnberg, S.K.; Bollen, M.H.J. Deep Learning Method with Manual Post-Processing for Identification of Spectral Patterns of Waveform Distortion in PV Installations. IEEE Trans. Smart Grid 2021, 12, 5444–5456. [Google Scholar] [CrossRef]
- Minh Khoa, N.; Van Dai, L. Detection and Classification of Power Quality Disturbances in Power System Using Modified-Combination between the Stockwell Transform and Decision Tree Methods. Energies 2020, 13, 3623. [Google Scholar] [CrossRef]
- Jamali, S.; Farsa, A.R.; Ghaffarzadeh, N. Identification of Optimal Features for Fast and Accurate Classification of Power Quality Disturbances. Measurement 2018, 116, 565–574. [Google Scholar] [CrossRef]
- Gerek, Ö.N.; Ece, D.G. Power-Quality Event Analysis Using Higher Order Cumulants and Quadratic Classifiers. IEEE Trans. Power Deliv. 2006, 21, 883–889. [Google Scholar] [CrossRef]
- Manikandan, M.S.; Samantaray, S.R. Detection and Classification of Power Quality Disturbances Using Signal Sparse Signal Decomposition on Hybrid Dictionares. IEEE Trans. Instrum. Meas. 2015, 64, 27–38. [Google Scholar] [CrossRef]
- Abdelsalam, A.A.; Abdelaziz, A.Y.; Kamh, M.Z. A Generalized Approach for Power Quality Disturbances Recognition Based on Kalman Filter. IEEE Access 2021, 9, 93614–93628. [Google Scholar] [CrossRef]
- Chakravorti, T.; Nayak, N.R.; Bisoi, R.; Dash, P.K.; Tripathy, L. A New Robust Kernel Ridge Regression Classifier for Islanding and Power Quality Disturbances in a Multi Distributed Generation Based Microgrid. Renew. Energy Focus 2019, 28, 78–99. [Google Scholar] [CrossRef]
- Mishra, M. Power Quality Disturbance Detection and Classification Using Signal Processing and Soft Computing Techniques: A Comprehensive Review. Int. Trans. Electr. Energy Syst. 2019, 29, e12008. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Song, H.; Sun, H.; Zhao, H. High-Precision Identification of Power Quality Disturbances Under Strong Noise Environment Based on FastICA and Random Forest. IEEE Trans. Ind. Inform. 2021, 17, 377–387. [Google Scholar] [CrossRef]
- Singh, U.; Singh, S.N. A New Optimal Feature Selection Scheme for Classification of Power Quality Disturbances Based on Ant Colony Framework. Appl. Soft Comput. 2019, 74, 216–225. [Google Scholar] [CrossRef]
- Karasu, S.; Saraç, Z. Classification of Power Quality Disturbances by 2D-Riesz Transform, Multi-Objective Grey Wolf Optimizer and Machine Learning Methods. Digit. Signal Process. 2020, 101, 102711. [Google Scholar] [CrossRef]
- Kumar, P.K.A.; Vijayalakshmi, V.J.; Karpagam, J.; Hemapriya, C.K. Classification of Power Quality Events Using Support Vector Machine and S-Transform. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 7, pp. 279–284. [Google Scholar] [CrossRef]
- Zhu, R.; Gong, X.; Hu, S.; Wang, Y. Power Quality Disturbances Classification via Fully-Convolutional Siamese Network and k-Nearest Neighbor. Energies 2019, 12, 4732. [Google Scholar] [CrossRef] [Green Version]
- Khodayar, M.; Liu, G.; Wang, J.; Khodayar, M.E. Deep learning in power systems research: A review. CSEE J. Power Energy Syst. 2021, 7, 209–220. [Google Scholar] [CrossRef]
- Cai, K.; Hu, T.; Cao, W.; Li, G. Classifying Power Quality Disturbances Based on Phase Space Reconstruction and a Convolutional Neural Network. Appl. Sci. 2019, 9, 3681. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hussain, F.; Yue, S.; Yildirim, O.; Yawar, S.J. Classification of Multiple Power Quality Events via Compressed Deep Learning. Int. Trans. Electr. Energy Syst. 2019, 29, e12010. [Google Scholar] [CrossRef]
- Shen, Y.; Abubakar, M.; Liu, H.; Hussain, F. Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems. Energies 2019, 12, 1280. [Google Scholar] [CrossRef] [Green Version]
- Thirumala, K.; Prasad, M.S.; Jain, T.; Umarikar, A.C. Tunable-Q Wavelet Transform and Dual Multiclass SVM for Online Automatic Detection of Power Quality Disturbances. IEEE Trans. Smart Grid 2018, 9, 3018–3028. [Google Scholar] [CrossRef]
- Dalai, S.; Dey, D.; Chatterjee, B.; Chakravorti, S.; Bhattacharya, K. Cross-Spectrum Analysis-Based Scheme for Multiple Power Quality Disturbance Sensing Device. IEEE Sens. J. 2014, 15, 3989–3997. [Google Scholar] [CrossRef]
- Thirumala, K.; Pal, S.; Jain, T.; Umarikar, A.C. A Classification Method for Multiple Power Quality Disturbances Using EWT Based Adaptive Filtering and Multiclass SVM. Neurocomputing 2019, 334, 265–274. [Google Scholar] [CrossRef]
- Mahela, O.P.; Shaik, A.G. Recognition of Power Quality Disturbances Using S-Transform Based Ruled Decision Tree and Fuzzy C-Means Clustering Classifiers. Appl. Soft Comput. 2017, 59, 243–257. [Google Scholar] [CrossRef]
- Bravo-Rodríguez, J.C.; Torres, F.J.; Borrás, M.D. Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study. Energies 2020, 13, 2761. [Google Scholar] [CrossRef]
- Li, Y.; Saha, T.K.; Krause, O.; Cao, Y.; Rehtanz, C. An Inductively Active Filtering Method for Power-Quality Improvement of Distribution Networks with Nonlinear Loads. IEEE Trans. Power Deliv. 2013, 28, 2465–2473. [Google Scholar] [CrossRef]
- Che, L.; Liu, X.; Shuai, Z. Optimal Transmission Overloads Mitigation Following Disturbances in Power Systems. IEEE Trans. Ind. Inform. 2019, 15, 2592–2604. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Z.; Komurcugil, H.; Lee, C.H.T. Controller-Based Periodic Disturbance Mitigation Techniques for Three-Phase Two-Level Voltage-Source Converters. IEEE Trans. Ind. Inform. 2021, 17, 6553–6568. [Google Scholar] [CrossRef]
- Alkahtani, A.A.; Alfalahi, S.T.; Athamneh, A.A.; Al-Shetwi, A.Q.; Mansor, M.B.; Hannan, M.A.; Agelidis, V.G. Power Quality in Microgrids Including Supraharmonics: Issues, Standards, and Mitigations. IEEE Access 2020, 8, 127104–127122. [Google Scholar] [CrossRef]
- Tennakoon, S.; Perera, S.; Robinson, D. Flicker Attenuation—Part II: Transfer Coefficients for Regular Voltage Fluctuations in Radial Power Systems with Induction Motor Loads. IEEE Trans. Power Deliv. 2008, 23, 1215–1221. [Google Scholar] [CrossRef]
- Bollen, M.H.J. The Influence of Motor Reacceleration on Voltage Sags. IEEE Trans. Ind. Appl. 1995, 31, 667–674. [Google Scholar] [CrossRef]
- Gnacinski, P.; Peplinski, M.; Murawski, L.; Szelezinski, A. Vibration of Induction Machine Supplied with Voltage Containing Subharmonics and Interharmonics. IEEE Trans. Energy Convers. 2019, 34, 1928–1937. [Google Scholar] [CrossRef]
- Hasan, S.; Nair, A.R.; Bhattarai, R.; Kamalasadan, S.; Muttaqi, K.M. A Coordinated Optimal Feedback Control of Distributed Generators for Mitigation of Motor Starting Voltage Sags in Distribution Networks. IEEE Trans. Ind. Appl. 2020, 56, 864–875. [Google Scholar] [CrossRef]
- Wang, Y.J. Analysis of Effects of Three-Phase Voltage Unbalance on Induction Motors with Emphasis on the Angle of the Complex Voltage Unbalance Factor. IEEE Trans. Energy Convers. 2001, 16, 270–275. [Google Scholar] [CrossRef]
- Gnacinski, P.; Mindykowski, J.; Peplinski, M.; Tarasiuk, T.; Costa, J.D.; Assuncao, M.; Silveira, L.; Zakharchenko, V.; Drankova, A.; Mukha, M.; et al. Coefficient of Voltage Energy Efficiency. IEEE Access 2020, 8, 75043–75059. [Google Scholar] [CrossRef]
- Liu, J.; Pillay, P.; Douglas, H. Wavelet Modeling of Motor Drives Applied to the Calculation of Motor Terminal Overvoltages. IEEE Trans. Ind. Electron. 2004, 51, 61–66. [Google Scholar] [CrossRef]
- Hasan, S.; Muttaqi, K.M.; Bhattarai, R.; Kamalasadan, S. A Coordinated Control Approach for Mitigation of Motor Starting Voltage Dip in Distribution Feeders. 2018 IEEE Ind. Appl. Soc. Annu. Meet. IAS 2018 2018, 1–6. [Google Scholar] [CrossRef]
- Anwari, M.; Hiendro, A. New Unbalance Factor for Estimating Performance of a Three-Phase Induction Motor with Under- and Overvoltage Unbalance. IEEE Trans. Energy Convers. 2010, 25, 619–625. [Google Scholar] [CrossRef]
- Hasan, S.; Gurung, N.; Muttaqi, K.M.; Kamalasadan, S. Electromagnetic Field-Based Control of Distributed Generator Units to Mitigate Motor Starting Voltage Dips in Power Grids. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Mohammadi-Ghazi, R.; Marzouk, Y.M.; Büyüköztürk, O. Conditional classifiers and boosted conditional Gaussian mixture model for novelty detection. Pattern Recognit. 2018, 81, 601–614. [Google Scholar] [CrossRef]
- Gu, X.; Yang, S.; Sui, Y.; Papatheou, E.; Ball, A.D.; Gu, F. Real-time novelty detection of an industrial gas turbine using performance deviation model and extreme function theory. Measurement 2021, 178, 109339. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, K.; Shahidehpour, M.; He, B. Reduced-Order State Space Model for Dynamic Phasors in Active Distribution Networks. IEEE Trans. Smart Grid 2020, 11, 1928–1941. [Google Scholar] [CrossRef]
- Fink, O.; Zio, E.; Weidmann, U. Novelty detection by multivariate kernel density estimation and growing neural gas algorithm. Mech. Syst. Signal Process. 2015, 50–51, 427–436. [Google Scholar] [CrossRef]
- Surace, C.; Worden, K. Novelty detection in a changing environment: A negative selection approach. Mech. Syst. Signal Process. 2010, 24, 1114–1128. [Google Scholar] [CrossRef]
- Naghavi-Nozad, S.A.; Amir-Haeri, M.; Folino, G. SDCOR: Scalable density-based clustering for local outlier detection in massive-scale datasets. Knowl.-Based Syst. 2021, 228, 107256. [Google Scholar] [CrossRef]
- Shah, A.; Azam, N.; Ali, B.; Khan, M.T.; Yao, J. A three-way clustering approach for novelty detection. Inf. Sci. 2021, 569, 650–668. [Google Scholar] [CrossRef]
- Salehi, M.; Arya, A.; Pajoum, B.; Otoofi, M.; Shaeiri, A.; Rohban, M.H.; Rabiee, H.R. ARAE: Adversarially robust training of autoencoders improves novelty detection. Neural Netw. 2021, 144, 726–736. [Google Scholar] [CrossRef] [PubMed]
- La-Grassa, R.; Gallo, I.; Landro, N. OCmst: One-class novelty detection using convolutional neural network and minimum spanning trees. Pattern Recognit. Lett. 2021, in press. [Google Scholar] [CrossRef]
- Hu, W.; Hu, T.; Wei, Y.; Lou, J.; Wang, S. Global Plus Local Jointly Regularized Support Vector Data Description for Novelty Detection, IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–13, in press. [Google Scholar] [CrossRef]
- Martinez-Viol, V.; Urbano, E.M.; Kampouropoulos, K.; Delgado-Prieto, M.; Romeral, L. Support vector machine based novelty detection and FDD framework applied to building AHU systems. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 1749–1754. [Google Scholar] [CrossRef]
- Mataifa, H.; Krishnamurthy, S.; Kriger, C. Volt/VAR Optimization: A Survey of Classical and Heuristic Optimization Methods. IEEE Access 2022, 10, 13379–13399. [Google Scholar] [CrossRef]
- Guirguis, D.; Aulig, N.; Picelli, R.; Zhu, B.; Zhou, Y.; Vicente, W.; Iorio, F.; Olhofer, M.; Matusik, W.; Coello, C.A.; et al. Evolutionary Black-Box Topology Optimization: Challenges and Promises. IEEE Trans. Evol. Comput. 2020, 24, 613–633. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, C. Two-Stage Multi-Swarm Particle Swarm Optimizer for Unconstrained and Constrained Global Optimization. IEEE Access 2 0220, 8, 124905–124927. [Google Scholar] [CrossRef]
- Xu, X.; Yan, X.; Sheng, C.; Yuan, C.; Xu, D.; Yang, J. A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 656–672. [Google Scholar] [CrossRef]
- Choi, K.; Jang, D.; Kang, S.; Lee, J.; Chung, T.; Kim, H. Hybrid Algorithm Combing Genetic Algorithm with Evolution Strategy for Antenna Design. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
Parameter | Relationship |
---|---|
Electric Active Power | |
Mechanical Power | |
Efficiency |
Efficiency Levels | Classes | |
---|---|---|
IEC (International) | NEMA (USA) | |
Standard | IE1 | - |
High | IE2 | Energy Efficient EPACT |
Premium | IE3 | Premium |
Super-Premium | IE4 | Super-Premium |
Ultra-Premium | IE5 | Ultra-Premium |
Type of Disturbance | Categories | Causes | Effects |
---|---|---|---|
Transients [72] | Impulsive | Lightning strikes, transformer energization, capacitor switching | Power system resonance |
Oscillatory | Line, capacitor or load switching | System resonance | |
Short duration voltage variation [41] | Sag | Motor starting, single line to ground faults | Protection malfunction, loss of production |
Swell | Capacitor switching, large load switching, faults | Protection malfunction, stress on computers and home appliances | |
Interruption | Temporary faults | Loss of production, malfunction of fire alarms | |
Long duration voltage variation [41] | Sustained interruption | Faults | Loss of production |
Undervoltage | Switching on loads, capacitor de-energization | Increased losses, heating | |
Overvoltage | Switching offloads, capacitor energization | Damage to household appliances | |
Power imbalance [73] | Single-phase load, single phasing | Heating of motors | |
Waveform distortion [74] | D.C. offset | Geomagnetic disturbance, rectification | Saturation in transformers |
Harmonics | ASDs, nonlinear loads | Increased losses, poor power factor | |
Interharmonics | ASDs, nonlinear loads | Acoustic noise in power equipment | |
Notching | Power Electronic converters | Damage to capacitive components | |
Noise | Arc furnaces, arc lamps, power converters | Capacitor overloading, disturbances to appliances | |
Voltage fluctuations [75] | Load changes | Protection malfunction, light intensity changes | |
Power frequency variation [76] | Faults, disturbances in isolated customer-owned systems, and islanding operations | Damage to generator and turbine shafts. |
Ref. | PQD Issue Addressed | Detection Technique | Classification Technique | Mitigation Technique | Number of PQD Handled | Accuracy Reported |
---|---|---|---|---|---|---|
[90] | Detection | SC-PLL | - | - | 8 | - |
[114] | Detection | KF | - | - | 14 | 98.8–100% |
[88] | Detection and classification | MST | PSSAE | - | 12 | 99.46% |
[98] | Detection and classification | VMD-RQA | SVM | -- | 7 | 99.03% |
[111] | Detection and classification | FT, STFT, HHT, ST, DWT | ANN, SVM, DT, KNN | - | 16 | 99.31–100% |
[112] | Detection and classification | HOC | QC | - | 2 | 98–100% |
[113] | Detection and classification | EMD | SVM | - | 4 | 98% |
[115] | Detection and classification | VMD-EWT | RKRR | - | 12 | 99% |
[85] | Detection and classification | DWT | RBFNN | - | 20 | 96.3% |
[118] | Detection and classification | 1DST | DT | -- | 14 | 99.93% |
[119] | Detection and classification | 2DRT-MOGWO | KNN | - | 18 | 99.26% |
[122] | Detection and classification | DL | CNN | - | 16 | 98.13–99.96% |
[123] | Detection and classification | PSR | CNN | - | 10 | 99.8% |
[128] | Detection and classification | EWT | SVM | -- | 15 | 95.56% |
[86] | Detection and classification | ST | DT | -- | 16 | 99.47% |
[125] | Detection and classification | PCA | CNN | -- | 11 | 99.92% |
[104] | Detection and classification | FFT, EMD, SAE | SMNN | - | 17 | 98.06% |
[119] | Detection and classification | 2DRT | KNN | -- | 17 | 99.26% |
[126] | Detection and classification | TQWT | MSVM | - | 14 | 96.42–98.78% |
[135] | Detection and classification | HOS | NT | - | 19 | 97.8% |
[131] | Mitigation | HPF | - | IAF | 2 | - |
[95] | Mitigation | HHT | ANN | SVG | 4 | - |
[132] | Mitigation | - | - | PEOM | 2 | - |
[133] | Mitigation | KF | - | RSC, MPC | 4 | - |
[134] | Mitigation | BPF-FFT | - | DVR, STATCOM+SVC | 6 | - |
Reference | Electrical Machine | PQD | Method | Year |
---|---|---|---|---|
[36] | Induction motors | Voltage sags | System modelling | 2008 |
[66] | Induction motors | Voltage sags | Analytical tool for sag description | 2008 |
[81] | Induction motors | Voltage sags | Analysis of critical clearance time of symmetrical voltage sags | 2014 |
[136] | Induction motors | Voltage sags | Voltage supporting distributed generation | 2019 |
[137] | Induction motors | Voltage sags | Voltage supporting distributed generation | 1995 |
[138] | Induction motors | Voltage sags | Coordinated control for distribution feeders | 2018 |
[139] | Induction motors | Voltage sags | Coordinated optimal feedback control for distributed generators | 2020 |
[140] | Induction drives | Voltage sags | Wavelet modelling of motor drives | 2004 |
[93] | Induction motors | Voltage sags | Reduced-Sample Hilbert–Huang transform | 2019 |
[97] | Induction motors | Voltage sags | S-Transform with double resolution and SVM | 2016 |
[98] | Induction motors | Voltage sags | Qualitative-quantitative hybrid approach | 2020 |
[56] | Induction motors | Voltage unbalance | Estimation of shaft power | 2016 |
[141] | Induction motors | Voltage unbalance | Analysis on the angles of complex voltage unbalance, Index CVUF | 2001 |
[100] | Induction motors | Voltage unbalance | Discrete wavelet transform, mathematical morphology and speed variation drive | 2018 |
[67] | Induction motors | Harmonic content | New power quality index | 2010 |
[61] | Induction motors | Harmonic content | Adjustable speed drive with a multiphase staggering modular transformer | 2019 |
[30] | Induction motors | Harmonic content | Pulse Multiplication in AC–DC Converters | 2006 |
[79] | Induction motors | Harmonic content | Analysis of positive sequence voltage on derating 3-phase induction motors | 2013 |
[142] | Induction motors | Harmonics, subharmonics and interharmonics | Vibration Analysis | 2019 |
[8] | Induction motors | Voltage unbalance and harmonic content | Comparison between classes efficiency with driver metrics | 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Abreu, A.-D.; Osornio-Rios, R.-A.; Jaen-Cuellar, A.-Y.; Delgado-Prieto, M.; Antonino-Daviu, J.-A.; Karlis, A. Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review. Energies 2022, 15, 1909. https://doi.org/10.3390/en15051909
Gonzalez-Abreu A-D, Osornio-Rios R-A, Jaen-Cuellar A-Y, Delgado-Prieto M, Antonino-Daviu J-A, Karlis A. Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review. Energies. 2022; 15(5):1909. https://doi.org/10.3390/en15051909
Chicago/Turabian StyleGonzalez-Abreu, Artvin-Darien, Roque-Alfredo Osornio-Rios, Arturo-Yosimar Jaen-Cuellar, Miguel Delgado-Prieto, Jose-Alfonso Antonino-Daviu, and Athanasios Karlis. 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review" Energies 15, no. 5: 1909. https://doi.org/10.3390/en15051909
APA StyleGonzalez-Abreu, A. -D., Osornio-Rios, R. -A., Jaen-Cuellar, A. -Y., Delgado-Prieto, M., Antonino-Daviu, J. -A., & Karlis, A. (2022). Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review. Energies, 15(5), 1909. https://doi.org/10.3390/en15051909