Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Ash Samples
2.2. Mechanochemical Treatment of Fly Ash
2.3. Fly Ash Cement Mortar Preparation
2.4. Characterization and Analysis
3. Results and Discussion
3.1. Characterization of the Raw and Treated Fly Ash
3.2. PCDD/Fs and Heavy Metal Concentrations before and after MC Treatment
3.3. Compressive Strength of the Fly Ash Cement Mortar
3.4. Leaching Concentration of Heavy Metals in the Fly Ash Cement Mortar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NBSC. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D.C.W. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. J. Hazard. Mater. 2021, 411, 125132. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Chang, C. Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. J. Hazard. Mater. 2006, 135, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Fang, Y.; Chen, D.; Chen, G.; Xu, Y.; Sheng, H.; Zhou, Z. Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace. Fuel 2017, 210, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Saqib, N.; Bäckström, M. Chemical association and mobility of trace elements in 13 different fuel incineration bottom ashes. Fuel 2016, 172, 105–117. [Google Scholar] [CrossRef]
- Chen, T.; Yan, J.; Lu, S.; Li, X.; Gu, Y.; Dai, H.; Ni, M.; Cen, K. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China. J. Hazard. Mater. 2008, 150, 510–514. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Fan, W.-P.; Dai, W.-C.; Hsi, H.-C.; Wu, C.-H.; Chen, C.-H. Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators. J. Hazard. Mater. 2011, 192, 521–529. [Google Scholar] [CrossRef]
- Trinh, M.M.; Chang, M.B. Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash. Chem. Eng. J. 2021, 405, 126718. [Google Scholar] [CrossRef]
- Zhang, Y.; Cetin, B.; Likos, W.; Edil, T. Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel 2016, 184, 815–825. [Google Scholar] [CrossRef]
- Xin-gang, Z.; Gui-wu, J.; Ang, L.; Yun, L. Technology, cost, a performance of waste-to-energy incineration industry in China. Renew. Sustain. Energy Rev. 2016, 55, 115–130. [Google Scholar] [CrossRef]
- Lin, D.-F.; Luo, H.-L.; Zhang, S.-W. Effects of Nano-SiO 2 on tiles manufactured with clay and incinerated sewage sludge ash. J. Mater. Civ. Eng. 2007, 19, 801–808. [Google Scholar] [CrossRef]
- Liu, J.; Yan, K.; Liu, J. Rheological characteristics of polyphosphoric acid–modified asphalt mastic. J. Mater. Civ. Eng. 2018, 30, 06018021. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Perram, D.; Hand, D.; Ahmed, Z.; Wei, W.; Luo, S. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. J. Hazard. Mater. 2019, 365, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Bie, R.; Chen, P.; Song, X.; Ji, X. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J. Energy Inst. 2016, 89, 704–712. [Google Scholar] [CrossRef]
- Kalinowska-Wichrowska, K.; Pawluczuk, E.; Bołtryk, M.; Jimenez, J.R.; Fernandez-Rodriguez, J.M.; Suescum Morales, D. The Performance of Concrete Made with Secondary Products—Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix. Materials 2022, 15, 1438. [Google Scholar] [CrossRef] [PubMed]
- Nowoświat, A.; Gołaszewski, J. Influence of the variability of calcareous fly ash properties on rheological properties of fresh mortar with its addition. Materials 2019, 12, 1942. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.; Sokolář, R. Corrosion Resistance of Novel Fly Ash-Based Forsterite-Spinel Refractory Ceramics. Materials 2022, 15, 1363. [Google Scholar] [CrossRef]
- Vanitha, N.; Revathi, T.; Gopalakrishnan, R.; Jeyalakshmi, R. Effect of TiO2, Al2O3 and CaCO3 nano-additives in singular, binary and ternary forms on the mechanical, thermal and microstructural propertites of fly ash supplemented cement matrix. Mater. Today Proc. 2021, 47, 871–879. [Google Scholar] [CrossRef]
- Goswami, A.P. Determining physico-chemical parameters for high strength ambient cured fly ash-based alkali-activated cements. Ceram. Int. 2021, 47, 29109–29119. [Google Scholar] [CrossRef]
- Jani, P.; Imqam, A. Class C fly ash-based alkali activated cement as a potential alternative cement for CO2 storage applications. J. Pet. Sci. Eng. 2021, 201, 108408. [Google Scholar] [CrossRef]
- Saikia, N.; Mertens, G.; Van Balen, K.; Elsen, J.; Van Gerven, T.; Vandecasteele, C. Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Constr. Build. Mater. 2015, 96, 76–85. [Google Scholar] [CrossRef]
- Gao, X.; Wang, W.; Ye, T.; Wang, F.; Lan, Y. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. J. Environ. Manag. 2008, 88, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Trinh, M.M.; Chang, M.B. Transformation of mono- to octa- chlorinated dibenzo-p-dioxins and dibenzofurans in MWI fly ash during catalytic pyrolysis process. Chem. Eng. J. 2022, 427, 130907. [Google Scholar] [CrossRef]
- Liu, G.; Zhan, J.; Zheng, M.; Li, L.; Li, C.; Jiang, X.; Wang, M.; Zhao, Y.; Jin, R. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. J. Hazard. Mater. 2015, 299, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Xiang, Y.; Chen, Z.; Chen, T.; Lin, X.; Zhang, W.; Li, X.; Yan, J. Development of phosphorus-based inhibitors for PCDD/Fs suppression. Waste Manag. 2021, 119, 82–90. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, S.; Tang, M.; Lin, X.; Qiu, Q.; He, H.; Yan, J. Mechanochemical stabilization of heavy metals in fly ash with additives. Sci. Total Environ. 2019, 694, 133813. [Google Scholar] [CrossRef]
- Birke, V.; Mattik, J.; Runne, D.; Benning, H.; Zlatovic, D. Dechlorination of recalcitrant polychlorinated contaminants using ball milling. In Ecological Risks Associated with the Destruction of Chemical Weapons; Springer: Berlin/Heidelberg, Germany, 2006; pp. 111–127. [Google Scholar]
- Lu, S.; Huang, J.; Peng, Z.; Li, X.; Yan, J. Ball milling 2, 4, 6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations. Chem. Eng. J. 2012, 195, 62–68. [Google Scholar] [CrossRef]
- Yan, J.; Peng, Z.; Lu, S.; Li, X.; Ni, M.; Cen, K.; Dai, H. Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. J. Hazard. Mater. 2007, 147, 652–657. [Google Scholar] [CrossRef]
- Montinaro, S.; Concas, A.; Pisu, M.; Cao, G. Immobilization of heavy metals in contaminated soils through ball milling with and without additives. Chem. Eng. J. 2008, 142, 271–284. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Y.; Wang, T.; Wang, J.; Romero, C.E. Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling. Waste Manag. 2021, 135, 428–436. [Google Scholar] [CrossRef]
- Geng, X.; Zhao, W.; Zhou, Q.; Duan, Y.; Huang, T.; Liu, X. Effect of a Mechanochemical Process on the Stability of Mercury in Simulated Fly Ash. Part 1. Ball Milling. Ind. Eng. Chem. Res. 2021, 60, 14737–14746. [Google Scholar] [CrossRef]
- Chen, C.-G.; Sun, C.-J.; Gau, S.-H.; Wu, C.-W.; Chen, Y.-L. The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste. Waste Manag. 2013, 33, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Erdoğdu, K.; Türker, P. Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cem. Concr. Res. 1998, 28, 1217–1222. [Google Scholar] [CrossRef]
- Cordeiro, G.; Toledo Filho, R.; Tavares, L.; Fairbairn, E. Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Compos. 2008, 30, 410–418. [Google Scholar] [CrossRef]
- He, H.; Lu, S.; Peng, Y.; Tang, M.; Zhan, M.; Lu, S.; Xu, L.; Zhong, W.; Xu, L. Emission characteristics of dioxins during iron ore Co-sintering with municipal solid waste incinerator fly ash in a sintering pot. Chemosphere 2022, 287, 131884. [Google Scholar] [CrossRef]
- Wang, W.; Gao, X.; Li, T.; Cheng, S.; Yang, H.; Qiao, Y. Stabilization of heavy metals in fly ashes from municipal solid waste incineration via wet milling. Fuel 2018, 216, 153–159. [Google Scholar] [CrossRef]
- Ke, S.; Jianhua, Y.; Xiaodong, L.; Shengyong, L.; Yinglei, W.; Muxing, F. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system. Chemosphere 2010, 78, 1230–1235. [Google Scholar] [CrossRef]
- Palaniandy, S.; Azizli, K.A.M.; Hussin, H.; Hashim, S.F.S. Study on mechanochemical effect of silica for short grinding period. Int. J. Miner. Processing 2007, 82, 195–202. [Google Scholar] [CrossRef]
- Zhiliang, C.; Minghui, T.; Shengyong, L.; Buekens, A.; Jiamin, D.; Qili, Q.; Jianhua, Y. Mechanochemical degradation of PCDD/Fs in fly ash within different milling systems. Chemosphere 2019, 223, 188–195. [Google Scholar] [CrossRef]
- Wei, Y.-L.; Yan, J.-H.; Liu, Q.-Y.; Li, X.-D. Decomposition of PCDD/Fs by mechanochemical means with calcium-based additives. J. ZheJiang Univ. 2012, 44, 991–997. [Google Scholar]
- Zhiliang, C.; Minghui, T.; Shengyong, L.; Jiamin, D.; Qili, Q.; Yuting, W.; Jianhua, Y. Evolution of PCDD/F-signatures during mechanochemical degradation in municipal solid waste incineration filter ash. Chemosphere 2018, 208, 176–184. [Google Scholar] [CrossRef]
- Li, M.-G.; Sun, C.-J.; Gau, S.-H.; Chuang, C.-J. Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. J. Hazard. Mater. 2010, 174, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Polat, R.; Demirboğa, R.; Karagöl, F. Mechanical and physical behavior of cement paste and mortar incorporating nano-CaO. Struct. Concr. 2019, 20, 361–370. [Google Scholar] [CrossRef] [Green Version]
WFA | MFA-0% | MFA-15% | MFA-30% | MFA-45% | OPC | |
---|---|---|---|---|---|---|
SN0 | 100 | |||||
SN1 | 35 | 65 | ||||
SN2 | 35 | 65 | ||||
SN3 | 35 | 65 | ||||
SN4 | 50 | 50 | ||||
SN5 | 65 | 35 | ||||
SN6 | 35 | 65 | ||||
SN7 | 50 | 50 | ||||
SN8 | 65 | 35 | ||||
SN9 | 35 | 65 | ||||
SN10 | 50 | 50 | ||||
SN11 | 65 | 35 |
Samples | D50 | D90 |
---|---|---|
OPC | 16.1 | 45.2 |
WFA | 49.6 | 96.5 |
MFA-0%-10 h | 4.2 | 46.8 |
MFA-15%-10 h | 3.3 | 23.7 |
MFA-30%-10 h | 3.2 | 23.1 |
MFA-45%-10 h | 2.7 | 21.4 |
Heavy Metal | Cd | Cr | Ni | Cu | Pb | Zn | PH |
---|---|---|---|---|---|---|---|
Standard | 0.15 | 1.5 | 0.5 | 40 | 0.25 | 100 | 2–12.5 |
WFA | 0.41 | 0.66 | 0.40 | 9.45 | 0.68 | 35.73 | 7.2 |
MFA-0%-6 h | 0.32 | 0.06 | 0.50 | 1.25 | 0.30 | 22.67 | 7.8 |
MFA-15%-6 h | 0.006 | ND | ND | 0.2 | 0.005 | 0.02 | 8.2 |
MFA-30%-6 h | 0.002 | ND | ND | 0.06 | 0.002 | 0.004 | 8.9 |
MFA-45%-6 h | ND | ND | ND | 0.02 | 0.002 | 0.002 | 9.6 |
Heavy Metal | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|
Standard | 0.15 | 1.5 | 0.5 | 40 | 0.25 | 100 |
SN0 | ND | 0.338 | 0.003 | 0.057 | ND | 0.013 |
SN1 | 0.25 | 2.643 | 0.422 | 0.106 | ND | 0.506 |
SN2 | 0.005 | 0.228 | 0.040 | ND | ND | 0.312 |
SN3 | 0.004 | ND | 0.020 | ND | ND | 0.173 |
SN4 | 0.003 | ND | 0.027 | ND | ND | 0.170 |
SN5 | 0.048 | ND | 0.048 | ND | ND | 0.723 |
SN6 | ND | ND | ND | ND | ND | 0.002 |
SN7 | ND | ND | 0.002 | ND | ND | 0.001 |
SN8 | ND | ND | 0.007 | ND | ND | 0.013 |
SN19 | ND | ND | 0.001 | ND | ND | 0.001 |
SN10 | ND | ND | 0.003 | ND | ND | 0.001 |
SN11 | ND | ND | 0.002 | ND | ND | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Ding, J.; Peng, Y.; Lu, S.; Li, X. Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement. Energies 2022, 15, 2013. https://doi.org/10.3390/en15062013
Pan S, Ding J, Peng Y, Lu S, Li X. Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement. Energies. 2022; 15(6):2013. https://doi.org/10.3390/en15062013
Chicago/Turabian StylePan, Shuping, Jiamin Ding, Yaqi Peng, Shengyong Lu, and Xiaodong Li. 2022. "Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement" Energies 15, no. 6: 2013. https://doi.org/10.3390/en15062013
APA StylePan, S., Ding, J., Peng, Y., Lu, S., & Li, X. (2022). Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement. Energies, 15(6), 2013. https://doi.org/10.3390/en15062013