Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation
Abstract
:1. Introduction
2. An Overview of the Jensen Model and the Gauss Model
3. Numerical Model
3.1. Large Eddy Simulation (LES)
3.2. Wind Turbine Modeling
3.3. Numerical Setup
3.4. Grid Sensitivity Verification and Model Validation
3.5. Wake Growth Rate
4. Results and Discussion
4.1. Upstream Wind Turbine
4.2. Downstream Wind Turbine
4.3. Different Lateral Spacing
4.4. Different Inflow Wind Speeds
5. Conclusions
- (1)
- The higher turbulence intensity in the environment accompanies the greater wake expansion of upstream wind turbines. There is a linear relationship between the wake grow rate and the environmental turbulence intensities and .
- (2)
- The downstream wind turbines have smaller wake growth rates compared with the upstream turbines, even though they are in the stronger turbulence produced by the upstream turbines. The wake expansion of the further downstream wind turbines is significantly reduced.
- (3)
- Although the nearby wind turbines are not in the wake expansion region of other turbines, their wake growth rate may still be affected. The smaller lateral spacing in the wind farm decreases the wake expansion of turbine arrays.
- (4)
- The linear relationship between the wake grow rate and the environmental turbulence intensities is different at different inflow wind speeds. The proposed formulae need to be modified for different inflow wind speeds.
- (5)
- The formulae of the wake growth rate and the calculation methods can obtain more accurate wake expansion and velocity deficit and, therefore, improve the precision of analytical wake models. However, the wake expansion of wind turbines needs to be further investigated under more complex conditions, such as different stability of atmospheric boundary layers, different wind turbine spacing and wind turbines in yaw conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
thrust coefficient (dimensionless) | |
Smagorinsky constant (dimensionless) | |
rotor diameter (m) | |
acceleration of gravity | |
Coriolis parameter () | |
external forces in the wind field () | |
force exerted by the wind turbines () | |
total turbulence intensity (dimensionless) | |
streamwise turbulence intensity (dimensionless) | |
lateral turbulence intensity (dimensionless) | |
vertical turbulence intensity (dimensionless) | |
wake growth rate in Jensen model (dimensionless) | |
wake growth rate in Gaussian model (dimensionless) | |
sub-grid energy (m2/s2) | |
resolved part of the energy (m2/s2) | |
turbulent resolution (dimensionless) | |
modified pressure () | |
mean pressure (Pa) | |
static pressure (Pa) | |
temperature flux () | |
subgrid turbulent Prandtl number (dimensionless) | |
strain rate tensor after filtration () | |
time (s) | |
length of time (s) | |
wind speed (m/s) | |
velocity vector of resolved-scale (m/s) | |
velocity deficit (m/s) | |
streamwise velocity at time t (m/s) | |
average streamwise velocity over time (m/s) | |
wind velocity of incoming flow (m/s) | |
wake velocity (m/s) | |
time-mean streamwise velocity (m/s) | |
incoming wind speed at the hub height (m/s) | |
downwind distance (m) | |
wind turbine hub height (m) | |
surface roughness length (m) | |
standard deviation of the Gaussian velocity deficit profiles (m) | |
standard deviation of streamwise velocity (m/s) | |
standard deviation of lateral velocity (m/s) | |
standard deviation of velocity (m/s) | |
value of as approaches zero (dimensionless) | |
alternating unit tensor () | |
Kronecker delta (dimensionless) | |
reference air density () | |
deviatoric part of the wind stress tenor () | |
resolved potential temperature (K) | |
reference temperature (K) |
References
- Barthelmie, R.J.; Pryor, S.C.; Frandsen, S.T.; Hansen, K.S.; Schepers, J.G.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.E.; Neckelmann, S. Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms. J. Atmos. Ocean. Technol. 2010, 27, 1302–1317. [Google Scholar] [CrossRef]
- Jensen, N. A Note on Wind Generator Interaction; Technical Report Ris-M-2411; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Bastankhah, M.; Porté-Agel, F. A new analytical model for wind-turbine wakes. Renew. Energy 2014, 70, 116–123. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, W.; Shen, W.; Zhao, N.; Shen, Z. Development and validation of a new two-dimensional wake model for wind turbine wakes. J. Wind Eng. Ind. Aerod. 2015, 137, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yang, H. Study on an innovative three-dimensional wind turbine wake model. Appl. Energy 2018, 226, 483–493. [Google Scholar] [CrossRef]
- Ishihara, T.; Qian, G. A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects. J. Wind Eng. Ind. Aerod. 2018, 177, 275–292. [Google Scholar] [CrossRef]
- Troldborg, N.; Sørensen, J.N.; Mikkelsen, R. Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow. J. Phys. 2007, 75, 012063. [Google Scholar] [CrossRef]
- Troldborg, N.; Larsen, G.C.; Madsen, H.A.; Hansen, K.S.; Sørensen, J.N.; Mikkelsen, R. Numerical simulations of wake interaction between two wind turbines at various inflow conditions. Wind Energy 2011, 14, 859–876. [Google Scholar] [CrossRef]
- Wu, Y.; Porté-Agel, F. Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study. Energies 2012, 5, 5340–5362. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, J.; Adams, D.E.; Fleeter, S. Influence of inflow conditions on turbine loading and wake structures predicted by large eddy simulations using exact geometry. Wind Energy 2016, 19, 803–824. [Google Scholar] [CrossRef]
- Niayifar, A.; Porté-Agel, F. Analytical Modeling of Wind Farms: A New Approach for Power Prediction. Energies 2016, 9, 741. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zhang, M.; Zhang, Z.; Xu, J. A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory. Appl. Energy 2019, 239, 96–106. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Larsen, G.C.; Frandsen, S.T.; Folkerts, L.; Rados, K.; Pryor, S.C.; Lange, B.; Schepers, G. Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar. J. Atmos. Ocean. Technol. 2006, 23, 888–901. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Jensen, L.E. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 2010, 13, 573–586. [Google Scholar] [CrossRef]
- Frandsen, S. On the wind speed reduction in the center of large clusters of wind turbines. J. Wind Eng. Ind. Aerod. 1992, 39, 251–265. [Google Scholar] [CrossRef]
- Churchfield, M.J.; Lee, S.; Michalakes, J.; Moriarty, P.J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J. Turbul. 2012, 13, N14. [Google Scholar] [CrossRef]
- Archer, C.L.; Mirzaeisefat, S.; Lee, S. Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation. Geophys. Res. Lett. 2013, 40, 4963–4970. [Google Scholar] [CrossRef]
- Archer, C.L.; Vasel-Be-Hagh, A. Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation. Sustain. Energy Technol. Assess. 2019, 33, 34–43. [Google Scholar] [CrossRef]
- Moeng, A. Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence. J. Atmos. Sci. 1984, 41, 2052–2062. [Google Scholar] [CrossRef]
- Wu, Y.; Porté-Agel, F. Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations. Bound-Lay Meteorol. 2011, 138, 345–366. [Google Scholar] [CrossRef]
- Sørensen, J.N.; Shen, W.Z. Numerical Modeling of Wind Turbine Wakes. J. Fluids Eng. 2002, 124, 393–399. [Google Scholar] [CrossRef]
- Troldborg, N.; Sorensen, J.N.; Mikkelsen, R. Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Wu, Y.; Lu, H.; Conzemius, R.J. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerod. 2011, 99, 154–168. [Google Scholar] [CrossRef]
- Martínez-Tossas, L.A.; Churchfield, M.J.; Leonardi, S. Large eddy simulations of the flow past wind turbines: Actuator line and disk modeling. Wind Energy 2015, 18, 1047–1060. [Google Scholar] [CrossRef]
- Mikkelsen, R.; Sørensen, J.N.; Øye, S.; Troldborg, N. Analysis of Power Enhancement for a Row of Wind Turbines Using the Actuator Line Technique. J. Phys. 2007, 75, 012044. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; NREL/TP-500-38060; National Renewable Energy Laboratory: Golden, CO, USA, 2009.
- National Renewable Energy Laboratory. Available online: https://github.com/NREL/SOWFA (accessed on 25 October 2021).
- IIssa, R. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Churchfield, M.J.; Lee, S.; Moriarty, P.J. Overview of the Simulator for Offshore Wind Farm Application (SOWFA). Available online: https://www.nrel.gov/wind/nwtc/assets/pdfs/sowfa-webinar.pdf (accessed on 25 October 2021).
- Coussement, A.; Gicquel, O.; Degrez, G. Large eddy simulation of a pulsed jet in cross-flow. J. Fluid Mech. 2012, 695, 1–34. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, C.; Chang, T. Effects of inflow turbulence intensity and turbine arrangements on the power generation efficiency of large wind farms. Wind Energy 2020, 23, 1640–1655. [Google Scholar] [CrossRef]
- Ge, M.; Wu, Y.; Liu, Y.; Li, Q. A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes. Appl. Energy 2019, 233–234, 975–984. [Google Scholar] [CrossRef]
- Abkar, M.; Porté-Agel, F. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Phys. Fluids 2015, 27, 035104. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Porté-Agel, F. A Simple Physically-Based Model for Wind-Turbine Wake Growth in a Turbulent Boundary Layer. Bound-Lay Meteorol. 2018, 169, 1–10. [Google Scholar] [CrossRef]
- Carbajo Fuertes, F.; Markfort, C.; Porté-Agel, F. Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation. Remote Sens. 2018, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- DeCastro, M.; Salvador, S.; Gómez-Gesteira, M.; Costoya, X.; Carvalho, D.; Sanz-Larruga, F.J.; Gimeno, L. Europe, China and the United States: Three different approaches to the development of offshore wind energy. Renew. Sustain. Energy Rev. 2019, 109, 55–70. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Computational domain size (m) | |
(m) | 2.5 |
(m) | 2.5 |
(m) | 2.5 |
Precursor simulation time (s) | 24,000 |
Precursor simulation time step (s) | 0.5 |
Wind farm simulation time (s) | 4000 |
Wind farm simulation time step (s) | 0.2 |
Number of cores | 140 |
(s−1) | 9.6 × 10−5 |
0.13 | |
Molecular Prandtl number | 0.7 |
Solver tolerance of convergence | 1 × 10−6 |
Solver relative tolerance of pressure | 0.01 |
Maximum number of iterations of convergence | 1000 |
Case | (m) | N | (m/s) | LD (D) |
---|---|---|---|---|
1 | 0.001 | 3 | 8 | - |
2 | 0.005 | 3 | 8 | - |
3 | 0.01 | 3 | 8 | - |
4 | 0.016 | 3 | 8 | - |
5 | 0.001 | 6 | 8 | 6 |
6 | 0.003 | 6 | 8 | 6 |
7 | 0.007 | 6 | 8 | 6 |
8 | 0.016 | 6 | 8 | 6 |
9 | 0.001 | 6 | 8 | 3 |
10 | 0.016 | 6 | 8 | 3 |
11 | 0.001 | 3 | 9 | - |
12 | 0.001 | 3 | 10 | - |
13 | 0.001 | 3 | 11 | - |
14 | 0.001 | 3 | 12 | - |
GR Case | (m) | (m) | (m) | Grid Number | Time (Core Hours) | Mean Relative Error (%) | ||
---|---|---|---|---|---|---|---|---|
1 | 5 | 5 | 5 | 25 | 25 | 1176 | 6.91 | |
2 | 2.5 | 2.5 | 2.5 | 50 | 50 | 1792 | 6.82 | |
3 | 2.5 | 1.25 | 1.25 | 100 | 100 | 2744 | 6.75 |
Case | ||||||
---|---|---|---|---|---|---|
5 | 0.86 | 0.001 | 0.0559 | 0.0409 | 0.0447 | 0.03084 |
6 | 0.88 | 0.003 | 0.0632 | 0.0482 | 0.0513 | 0.03866 |
7 | 0.89 | 0.007 | 0.0689 | 0.0526 | 0.0544 | 0.04280 |
8 | 0.88 | 0.016 | 0.0746 | 0.0584 | 0.0607 | 0.04942 |
Case 5 | Case 6 | Case 7 | Case 8 | |||||
---|---|---|---|---|---|---|---|---|
Equation Number | Relative Error (%) | Relative Error (%) | Relative Error (%) | Relative Error (%) | ||||
3 | 0.044 | 42.67 | 0.049 | 26.75 | 0.053 | 23.83 | 0.058 | 17.36 |
18 | 0.039 | 26.46 | 0.044 | 13.81 | 0.048 | 12.15 | 0.052 | 5.22 |
19 | 0.105 | 240.47 | 0.110 | 184.53 | 0.114 | 166.36 | 0.114 | 130.68 |
20 | 0.062 | 101.04 | 0.065 | 68.13 | 0.067 | 56.54 | 0.070 | 41.64 |
16 | 0.031 | 0.52 | 0.039 | 0.88 | 0.043 | 0.47 | 0.051 | 3.20 |
17 | 0.032 | 3.76 | 0.038 | 1.7 | 0.043 | 0.47 | 0.048 | 2.87 |
Case | ||
---|---|---|
1 | 5.06 | 0.0907 |
2 | 5.15 | 0.0957 |
3 | 5.24 | 0.0967 |
4 | 5.38 | 0.1003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liang, Z.; Liu, H. Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation. Energies 2022, 15, 2022. https://doi.org/10.3390/en15062022
Liu M, Liang Z, Liu H. Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation. Energies. 2022; 15(6):2022. https://doi.org/10.3390/en15062022
Chicago/Turabian StyleLiu, Mingqiu, Zhichang Liang, and Haixiao Liu. 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation" Energies 15, no. 6: 2022. https://doi.org/10.3390/en15062022
APA StyleLiu, M., Liang, Z., & Liu, H. (2022). Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation. Energies, 15(6), 2022. https://doi.org/10.3390/en15062022