Pore-Scale Flow Fields of the Viscosity-Lost Partially Hydrolyzed Polyacrylamide Solution Caused by Sulfide Ion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Velocity Field Measurement Procedures
3. Results
3.1. Effect of Sulfide Ion on Rheology of the Polymer Solution
3.2. Microscopic Morphology Analysis
3.3. Flow Field of Polymer Solution in Pores by Micro-PIV
4. Discussion
4.1. Variation of Viscosity and Shear Thinning Induced by Sulfide Ion
4.2. Effects of Viscosity Loss Induced by Sulfide Ion on Flow Field
4.3. Effects of Elastic Loss Is the Key of the Special Flow Field by Sulfide Ion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Xiao, N.; Zhang, Y.; Zhao, C. Study on Increasing Oil and Gas Recovery in Oilfield by Using Partially Hydrolyzed Polyacrylamide. Chem. Eng. Trans. 2017, 62, 451–456. [Google Scholar]
- Choi, J.; Ka, D.; Chung, T.; Jung, J.; Koo, G.; Uhm, T.; Jung, S.H.; Park, S.; Jung, H.T. Evaluation of highly stable ultrahigh-molecular-weight partially hydrolyzed polyacrylamide for enhanced oil recovery. Macromol. Res. 2015, 23, 518–524. [Google Scholar] [CrossRef]
- Sidiq, H.; Abdulsalam, V.; Nabaz, Z. Reservoir simulation study of enhanced oil recovery by sequential polymer flooding method. Adv. Geo-Energy Res. 2019, 3, 115–121. [Google Scholar] [CrossRef]
- Wang, X.; Yin, H.; Zhao, X.; Li, B.; Yang, Y. Microscopic remaining oil distribution and quantitative analysis of polymer flooding based on CT scanning. Adv. Geo-Energy Res. 2019, 3, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Li, X.E.; Xu, Z.; Yin, H.; Feng, Y.; Quan, H. Comparative studies on enhanced oil recovery: Thermoviscosifying polymer versus polyacrylamide. Energy Fuels 2017, 31, 2479–2487. [Google Scholar] [CrossRef]
- Han, D.K.; Yang, C.Z.; Zhang, Z.Q.; Lou, Z.H.; Chang, Y.I. Recent development of enhanced oil recovery in China. J. Pet. Sci. Eng. 1999, 22, 181–188. [Google Scholar] [CrossRef]
- Du, C.A.; Pan, Y.Q.; Xu, P.; Wang, W.D.; Bao, M.T.; LI, Y. Mechanism study on effect of sulfur ion on the viscosity of polyacrylamide solution. J. China Univ. Pet. 2016, 40, 167–171. [Google Scholar] [CrossRef]
- Rashidi, M.; Blokhus, A.M.; Skauge, A. Viscosity and retention of sulfonated polyacrylamide polymers at high temperature. J. Appl. Polym. Sci. 2011, 119, 3623–3629. [Google Scholar] [CrossRef]
- Meng, L.W.; Kang, W.L.; Liu, L.P.; Zhou, Y.; Wang, Z.W.; Liu, S.R. Influence of Some Oilfield Chemicals on Demulsification/Dehydration of Crude Oils and Demulsifier Selection. Oilfield Chem. 2009, 26, 289–295. [Google Scholar] [CrossRef]
- Palmer, T.L.; Baardsen, G.; Skartlien, R. Reduction of the effective shear viscosity in polymer solutions due to crossflow migration in microchannels: Effective viscosity models based on DPD simulations. J. Dispers. Sci. Technol. 2018, 39, 190–206. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A.; Feng, Y. Rheological properties of thermoviscosifying polymers in high-temperature and high-salinity environments. Can. J. Chem. Eng. 2015, 93, 1194–1200. [Google Scholar] [CrossRef]
- Wang, Q.W. Effect of S2− ion on polymer viscosity. J. China Univ. Pet. 2011, 35, 157–161. [Google Scholar] [CrossRef]
- Mohamadian, N.; Ghorbani, H.; Wood, D.; Hormozi, H.K. Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: An experimental study. Adv. Geo-Energy Res. 2018, 2, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhu, Z.; Patrick, W.; Liu, J.; Lei, H.; Zhang, L. Pore-scale numerical simulation of supercritical CO2 migration in porous and fractured media saturated with water. Adv. Geo-Energy Res. 2020, 4, 419–434. [Google Scholar] [CrossRef]
- Xia, H.F.; Wang, D.M.; Liu, Z.C.; Yang, Q.Y. Study on the Mechanism of Polymer Solution with Visco-elastic Behavior Increasing Microscopic Oil Displacement Efficiency. Acta Pet. Sin. 2001, 22, 60–61. [Google Scholar]
- Wei, X.X.; Feng, Q.H.; Zhang, X.M.; Huang, Y.S.; Liu, L.J. Distribution of Remaining Oil in Water Flooding at Pore Scale: Volume of Fluid Method. Chin. J. Comput. Phys. 2021, 38, 573–583. [Google Scholar] [CrossRef]
- Yuan, B. Analysis and treatments of factors for viscosity loss of polymer solution with sewage in foam flooding. Petrol. Geol. Recovery Effic. 2013, 20, 83–86. [Google Scholar] [CrossRef]
- He, J.G.; Yang, J.; Tang, S.; Yuan, L. Effects of Fe2+ and sulfide ion on performance of polymer solution. Oilfield Chem. 2015, 32, 370–375. [Google Scholar]
- Kang, W.L.; Zhou, Y.; Wang, Z.W.; Meng, L.W.; Liu, S.R.; Bai, B.J. Mechanism of sulfide effect on viscosity of HPAM polymer solution. J. Cent. South Univ. Technol. 2008, 15, 115–117. [Google Scholar] [CrossRef]
- Liu, J.F.; Feng, J.Y.; Hu, H.; Li, C.Y.; Yang, S.Z.; Gu, J.D.; Mu, B.Z. Decrease in viscosity of partially hydrolyzed polyacrylamide solution caused by the interaction between sulfide ion and amide group. J. Pet. Sci. Eng. 2018, 170, 738–743. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, F.Q.; Wang, X.G.; Qin, M.; Li, X.K.; Tan, L. Displacement law of crude oil in micro-pores under different oil displacement modes: Taking Badaowan Formation in well block 530 of Karamay Oilfield as an example. J. Xian Shiyou Univ. (Nat. Sci. Ed.) 2022, 37, 58–65. [Google Scholar] [CrossRef]
- Shen, F.; Li, Y.; Liu, Z.M.; Li, X.J. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement. Microfluid. Nanofluidics 2017, 21, 66. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Kazemifar, F.; Blois, G.; Christensen, K.T. Micro-PIV measurements of multiphase flow of water and liquid CO2 in 2-D heterogeneous porous micromodels. Water Resour. Res. 2017, 53, 6178–6196. [Google Scholar] [CrossRef]
- Ekanem, E.M.; Berg, S.; De, S.; Fadili, A. Signature of elastic turbulence of viscoelastic fluid flow in a single pore throat. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2020, 101, 042605. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Z.; Furtado, F.; Aryana, S.A. A microfluidic study of transient flow states in permeable media using fluorescent particle image velocimetry. Capillarity 2021, 4, 76–86. [Google Scholar] [CrossRef]
- Fan, P.W.; Song, Z.Y.; Zhu, W.Y. Experimental Research on B-PPG Particle Size and Pore-throat Matching and Oil Displacement Viscosity Reduction. In Proceedings of the 22nd Annual Conference of Beijing Institute of Mechanics, Beijing, China, 9 January 2016; pp. 27–29. [Google Scholar]
- Li, H.; Zhu, W.Y.; Niu, H.; Gao, Y.B.; Chen, Z.; Song, Z.Y.; Kong, D.B. 2-D porous flow field reveals different EOR mechanisms between the biopolymer and chemical polymer. J. Pet. Sci. Eng. 2022, 210, 110084. [Google Scholar] [CrossRef]
- Zhang, M.G.; Zhang, L.H.; Jiang, B.; Li, X.G. Rheological properties of salt-tolerant HPAM solutions with ultrahigh molecular weight. J. Cent. South Univ. Technol. 2008, 15, 93–97. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, X.; Fang, Z.; Du, C.; Hu, X.N. Effects of sulfide ion on the viscoelasticity of polymer solution. Pet. Technol. 2016, 45, 701–705. [Google Scholar] [CrossRef]
- Zhao, F.; Du, Y.K.; Li, X.C.; Tang, J.A.; Yang, P. Study on viscoelastic properties of partially hydrolyzed polyacrylamid solution. Acta Phys.-Chim. Sin. 2004, 20, 1385–1388. [Google Scholar]
- Ye, Z.B.; Peng, Y.; Shi, L.T.; Shu, Z.; Chen, H. The influence of shear action in porous medium on viscoelasticity and oil displacement efficiency of polymer. Pet. Geol. Recovery Effic. 2008, 15, 59–62. [Google Scholar] [CrossRef]
- Dang, T.Q.C.; Chen, Z.; Nguyen, T.B.N.; Bae, W. The Potential of Enhanced Oil Recovery by Micellar/Polymer Flooding in Heterogeneous Reservoirs. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 36, 1540–1554. [Google Scholar] [CrossRef]
- Corredor, L.; Maini, B.; Husein, M. Improving Polymer Flooding by Addition of Surface Modified Nanoparticles. SPE J. 2019, 21, 1–21. [Google Scholar]
- Yang, S.R.; Wu, N.; Liu, L.L.; Wang, J. Flow behavior of viscoelastic fluid in reservoir pores. Spec. Oil Gas Reserv. 2007, 14, 70–87. [Google Scholar]
Experiments | Stage | Regions | |
---|---|---|---|
Main Stream | Margin | ||
Water | Water flooding | 11.86 | 5.94 |
Polymer without sulfide | Polymer flooding | 7.05 | 5.68 |
Post water flooding | 1.16 | 1.30 | |
Polymer with sulfide | Polymer flooding | 10.26 | 5.80 |
Post water flooding | 21.91 | 1.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Niu, H.; Li, H.; Du, C.; Song, Z.; Kong, D.; Zhu, W. Pore-Scale Flow Fields of the Viscosity-Lost Partially Hydrolyzed Polyacrylamide Solution Caused by Sulfide Ion. Energies 2022, 15, 2048. https://doi.org/10.3390/en15062048
Yu X, Niu H, Li H, Du C, Song Z, Kong D, Zhu W. Pore-Scale Flow Fields of the Viscosity-Lost Partially Hydrolyzed Polyacrylamide Solution Caused by Sulfide Ion. Energies. 2022; 15(6):2048. https://doi.org/10.3390/en15062048
Chicago/Turabian StyleYu, Xiaoluan, Hao Niu, Hua Li, Chunan Du, Zhiyong Song, Debin Kong, and Weiyao Zhu. 2022. "Pore-Scale Flow Fields of the Viscosity-Lost Partially Hydrolyzed Polyacrylamide Solution Caused by Sulfide Ion" Energies 15, no. 6: 2048. https://doi.org/10.3390/en15062048
APA StyleYu, X., Niu, H., Li, H., Du, C., Song, Z., Kong, D., & Zhu, W. (2022). Pore-Scale Flow Fields of the Viscosity-Lost Partially Hydrolyzed Polyacrylamide Solution Caused by Sulfide Ion. Energies, 15(6), 2048. https://doi.org/10.3390/en15062048