Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement
Abstract
:1. Introduction
2. Literature Review
- Voltage control using only the on-load tap-changer (and/or possibly a capacitor bank);
- Voltage control with the use of on-load tap changer and reactive power generation in RES;
- Voltage control with the use of on-load tap changer, reactive power generation in renewable energy sources and the use of energy storages connected in selected network nodes;
- Voltage control with the use of on-load tap changer, reactive power generation in RES and the use of electrolyser installations connected in generation nodes.
- Using the actual annual power generation characteristics by the solar and wind sources under consideration ();
- Using the real characteristics of the power received at nodes () of the considered network;
- Using the real waveform of voltage changes in the 110 kV network ();
- Determination of the optimal values of the control variables with the use of the proprietary OPFh-MVt algorithm for all the considered grid states and determination of global control assessment indicators;
- Formulation of a simplified method of voltage control using the interaction of the OLTC system and active operation of the source control and its evaluation in relation to the reference results obtained with the OPFh-MVt method.
3. The Method of Voltage Control in the MV Network Using the Results of Cyclic Solving of the OPF Task
- Minimum and maximum transformer ratio values (). The calculations were based on a 10 MVA transformer with 19 operating positions of the tap changer, within the range of ±9 (plus the tap in the zero position);
- Minimum and maximum reactive power values for each renewable energy source (). It was assumed that each RES has the ability to generate/consume a maximum reactive power equal to ; since the maximum power of each power plant is 1 MW, the possible reactive power control is within ±0.4 Mvar;
- Minimum and maximum voltage values for all network nodes (); the voltage was kept in the range from 0.9 UnMV to 1.1 UnMV;
- Permissible values of current carrying capacity of sections of power lines (). The following value was assumed in the calculations:
- ○
- for conductors with a cross-section of 120 mm2,
- ○
- for conductors with a cross-section of 70 mm2,
- ○
- for conductors with a cross-section of 50 mm2,
- ○
- for conductors with a cross-section of 35 mm2,
4. A Simplified Method of Voltage Control in the MV Network with the Use of the Tap Changer of the HV/MV Transformer and the Active Influence of Distributed Sources
5. Test Network
6. Calculation Results
6.1. Assessment of Voltage Quality Using a Traditional Circuit
6.2. Voltage Quality Assessment Using the OPFh-MVt Method
6.3. Description of the Method Using OLTC Control Related to the Voltage inside the Network with the Simultaneous Use of the Q(U) Characteristics of Individual Sources
6.4. Selection of the Internal Reference Node
6.5. Discussion and Comparison of Results for the Analysed Voltage Control Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kacejko, P.; Pijarski, P. Optimal voltage control in MV network with distributed generation. Energies 2021, 14, 469. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. A new metaheuristic optimization method: The algorithm of the innovative gunner (AIG). Eng. Optim. 2019, 51, 2049–2068. [Google Scholar] [CrossRef]
- Adamek, S. Optimal Voltage Control in Distributed Power Grid with Dispersed Generation. Ph.D. Thesis, Lublin University of Technology, Lublin, Poland, 2010. [Google Scholar]
- Kryonidis, G.C.; Demoulias, C.S.; Papagiannis, G.K. A new voltage control scheme for active medium-voltage (MV) networks. Electr. Power Syst. Res. 2019, 169, 53–64. [Google Scholar] [CrossRef]
- Hashim, T.J.T.; Mohamed, A. Optimal coordinated voltage control in active distribution networks using backtracking search algorithm. PLoS ONE 2017, 12, e0177507. [Google Scholar] [CrossRef] [Green Version]
- Wlodarczyk, P.; Sumper, A.; Cruz, M. Voltage control of distribution grids with multi-microgrids using reactive power management. Adv. Electr. Comput. Eng. 2015, 15, 83–88. [Google Scholar] [CrossRef]
- Farkas, C.; Tóth, A.; Orlay, I. Voltage control methods in the MV grid with a large share of PV. Int. J. Emerg. Electr. Power Syst. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Szpyra, W.; Kot, A. Optimal voltage control in medium voltage power distribution networks. Acta Energ. 2009, 2, 89–105. [Google Scholar]
- Agalgaonkar, Y.; Pal, B.; Jabr, R. Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators. IEEE Trans. Power Syst. 2014, 29, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Neagu, B.C.; Grigoras, G. Optimal voltage control in power distribution networks using an adaptive on-load tap changer transformers techniques. In Proceedings of the 2019 IEEE International Conference on Electromechanical and Energy Systems (SIELMEN), Craiova, Romania, 9–11 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Dib, M.; Ramzi, M.; Nejmi, A. Voltage regulation in the medium voltage distribution grid in the presence of renewable energy sources. Mater. Today Proc. 2019, 13, 739–745. [Google Scholar] [CrossRef]
- Kazmi, S.A.A.; Shahzad, M.K.; Shin, D.R. Multi-objective planning techniques in distribution networks: A composite review. Energies 2017, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, N.; Zahedi, A. Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renew. Sustain. Energy Rev. 2016, 64, 582–595. [Google Scholar] [CrossRef]
- Ziari, I. Planning of Distribution Networks for Medium Voltage and Low Voltage. Ph.D. Thesis, Queensland University of Technology, Brisbane, QLD, Australia, 2011. [Google Scholar]
- Jiayi, H.; Chuanwen, J.; Rong, X. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 2008, 12, 2472–2483. [Google Scholar] [CrossRef]
- Kow, K.W.; Wong, Y.W.; Rajkumar, R.K.; Rajkumar, R.K. A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events. Renew. Sustain. Energy Rev. 2016, 56, 334–346. [Google Scholar] [CrossRef]
- Kulmala, A. Active Voltage Control in Distribution Networks Including Distributed Energy Resources. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland, 2014. [Google Scholar]
- Pathak, A.K.; Sharma, M.P.; Bundele, M. A critical review of voltage and reactive power management of wind farms. Renew. Sustain. Energy Rev. 2015, 51, 460–471. [Google Scholar] [CrossRef]
- Raghav, P.; Sarathy, P. Analysis and Optimization of Medium Voltage Line Voltage Regulators. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2018. [Google Scholar]
- Zhou, H.; Yan, X.; Liu, G. A review on voltage control using on-load voltage transformer for the power grid. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 32144. [Google Scholar] [CrossRef]
- Musa, H. An overview on voltage stability indices as indicators of voltage stability for networks with distributed generations penetration. Int. J. Sci. Technol. Soc. 2015, 3, 244. [Google Scholar] [CrossRef] [Green Version]
- Antoniadou-Plytaria, K.E.; Kouveliotis-Lysikatos, I.N.; Georgilakis, P.S.; Hatziargyriou, N.D. Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research. IEEE Trans. Smart Grid 2017, 8, 2999–3008. [Google Scholar] [CrossRef]
- Provoost, F. Intelligent Distribution Network Design; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2009; ISBN 978-90-386-1974-3. [Google Scholar]
- Małkowski, R.; Izdebski, M.; Miller, P. Adaptive algorithm of a tap-changer controller of the power transformer supplying the radial network reducing the risk of voltage collapse. Energies 2020, 13, 5403. [Google Scholar] [CrossRef]
- Bedawy, A.; Yorino, N.; Mahmoud, K.; Zoka, Y.; Sasaki, Y. Optimal voltage control strategy for voltage regulators in active unbalanced distribution systems using multi-agents. IEEE Trans. Power Syst. 2020, 35, 1023–1035. [Google Scholar] [CrossRef]
- Kersting, W.H. Distribution feeder voltage regulation control. In Proceedings of the 2009 IEEE Rural Electric Power Conference (REPC), Fort Collins, CO, USA, 26–29 April 2009; pp. 1–7. [Google Scholar]
- Castro, J.R.; Saad, M.; Lefebvre, S.; Asber, D.; Lenoir, L. Optimal voltage control in distribution network in the presence of DGs. Int. J. Electr. Power Energy Syst. 2016, 78, 239–247. [Google Scholar] [CrossRef]
- Li, P.; Ji, H.; Wang, C.; Zhao, J.; Song, G.; Ding, F.; Wu, J. Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Trans. Sustain. Energy 2017, 8, 1430–1442. [Google Scholar] [CrossRef] [Green Version]
- Nick, M.; Cherkaoui, R.; Paolone, M. Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support. IEEE Trans. Power Syst. 2014, 29, 2300–2310. [Google Scholar] [CrossRef]
- Kacejko, P.; Adamek, S.; Wydra, M. Optimal voltage control in distribution networks with dispersed generation. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 11–13 October 2010; pp. 1–4. [Google Scholar]
- Arefi, A.; Shahnia, F.; Ledwich, G. Electric Distribution Network Management and Control; Springer: Singapore, 2018; ISBN 978-981-10-7000-6. [Google Scholar]
- Constantin, A.; Lazar, R.; Kjaer, S.B. Voltage regulation (MV) by means of Q(U)—Simulation and measurement on a 12 MVA PV power plant. In Proceedings of the CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, Lisbon, Portugal, 29–30 May 2012; p. 272. [Google Scholar] [CrossRef]
- Dutta, A.; Ganguly, S.; Kumar, C. Model predictive control-based optimal voltage regulation of active distribution networks with OLTC and reactive power capability of PV inverters. IET Gener. Transm. Distrib. 2020, 14, 5183–5192. [Google Scholar] [CrossRef]
- Fandi, G.; Igbinovia, F.O.; Tlusty, J.; Mahmoud, R. Voltage regulation and power losses reduction in a wind farm integrated MV distribution network. J. Electr. Eng. 2018, 69, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Ouali, S.; Cherkaoui, A. Elimination of the impact produced by DG units on the voltage profile of distribution networks. J. Appl. Math. 2020, 2020, 1395943. [Google Scholar] [CrossRef]
- Prochazka, K.; Vaculik, P.; Mezera, D.; Kysnar, F.; Novotny, J. Voltage quality and reactive power flow solution in distribution networks with a high share of renewable energy sources. In Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, Sweden, 10–13 June 2013; p. 1142. [Google Scholar] [CrossRef] [Green Version]
- Berkel, F.; Bleich, J.; Bell, M.; Liu, S. A distributed voltage controller for medium voltage grids with storage-containing loads. In Proceedings of the IECON 2018 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 3523–3528. [Google Scholar]
- Guo, Y.; Wu, Q.; Gao, H.; Chen, X.; Ostergaard, J.; Xin, H. MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system. IEEE Trans. Sustain. Energy 2019, 10, 1731–1739. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhou, F.; Guo, F.; Fan, F.; Huang, Z. Optimized energy storage system configuration for voltage regulation of distribution network with PV access. Front. Energy Res. 2021, 9, 641518. [Google Scholar] [CrossRef]
- Liu, X.; Aichhorn, A.; Liu, L.; Li, H. Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Trans. Smart Grid 2012, 3, 897–906. [Google Scholar] [CrossRef]
- Reihani, E.; Sepasi, S.; Roose, L.R.; Matsuura, M. Energy management at the distribution grid using a Battery Energy Storage System (BESS). Int. J. Electr. Power Energy Syst. 2016, 77, 337–344. [Google Scholar] [CrossRef]
- Teng, J.-H.; Luan, S.-W.; Lee, D.-J.; Huang, Y.-Q. Optimal charging/discharging scheduling of battery storage systems for distribution systems interconnected with sizeable PV generation systems. IEEE Trans. Power Syst. 2013, 28, 1425–1433. [Google Scholar] [CrossRef]
- Kabir, M.N.; Mishra, Y.; Ledwich, G.; Xu, Z.; Bansal, R.C. Improving voltage profile of residential distribution systems using rooftop PVs and Battery Energy Storage systems. Appl. Energy 2014, 134, 290–300. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Sankur, M.; Dobbe, R.; Von Meier, A.; Arnold, D.B. Model-free optimal voltage phasor regulation in unbalanced distribution systems. IEEE Trans. Smart Grid 2020, 11, 884–894. [Google Scholar] [CrossRef]
- Xu, H.; Dominguez-Garcia, A.D.; Veeravalli, V.V.; Sauer, P.W. Data-driven voltage regulation in radial power distribution systems. IEEE Trans. Power Syst. 2020, 35, 2133–2143. [Google Scholar] [CrossRef] [Green Version]
- Arnold, D.B.; Sankur, M.; Negrete-Pincetic, M.; Callaway, D.S. Model-free optimal coordination of distributed energy resources for provisioning transmission-level services. IEEE Trans. Power Syst. 2018, 33, 817–828. [Google Scholar] [CrossRef]
- Nazaripouya, H.; Pota, H.R.; Chu, C.-C.; Gadh, R. Real-time model-free coordination of active and reactive powers of distributed energy resources to improve voltage regulation in distribution systems. IEEE Trans. Sustain. Energy 2020, 11, 1483–1494. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; He, C.; Jiang, Z.; Guan, L. Data-driven-based optimization for power system var-voltage sequential control. IEEE Trans. Ind. Inform. 2019, 15, 2136–2145. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Zhao, J.; Zhang, C. Distributed online voltage control in active distribution networks considering PV curtailment. IEEE Trans. Ind. Inform. 2019, 15, 5519–5530. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, J.; Zhang, Y. Deep reinforcement learning based volt-VAR optimization in smart distribution systems. IEEE Trans. Smart Grid 2021, 12, 361–371. [Google Scholar] [CrossRef]
- Xu, H.; Dominguez-Garcia, A.D.; Sauer, P.W. Optimal tap setting of voltage regulation transformers using batch reinforcement learning. IEEE Trans. Power Syst. 2020, 35, 1990–2001. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, N.; Shi, J.; Gao, Y. Volt-VAR control in power distribution systems with deep reinforcement learning. In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Duan, J.; Shi, D.; Diao, R.; Li, H.; Wang, Z.; Zhang, B.; Bian, D.; Yi, Z. Deep-reinforcement-learning-based autonomous voltage control for power grid operations. IEEE Trans. Power Syst. 2020, 35, 814–817. [Google Scholar] [CrossRef]
- Brauns, J.; Turek, T. Alkaline water electrolysis powered by renewable energy: A review. Processes 2020, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Martín, F.; Ochoa-Mendoza, A.; Rodriguez-Anton, L.M. Pre-investigation of water electrolysis for flexible energy storage at large scales: The case of the Spanish power system. Int. J. Hydrogen Energy 2015, 40, 5544–5551. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Yamasaki, M.; Fujimura, K.; Matsui, T.; Izumiya, K.; Komori, M.; El-Moneim, A.; Akiyama, E.; Habazaki, H.; Kumagai, N.; et al. Global CO2 recycling—Novel materials and prospect for prevention of global warming and abundant energy supply. Mater. Sci. Eng. A 1999, 267, 200–206. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kumagai, N.; Izumiya, K.; Takano, H.; Kato, Z. The production of renewable energy in the form of methane using electrolytic hydrogen generation. Energy Sustain. Soc. 2014, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- El-Taweel, N.A.; Khani, H.; Farag, H.E. Voltage regulation in active power distribution systems integrated with natural gas grids using distributed electric and gas energy resources. Int. J. Electr. Power Energy Syst. 2019, 106, 561–571. [Google Scholar] [CrossRef]
- Estermann, T.; Newborough, M.; Sterner, M. Power-to-gas systems for absorbing excess solar power in electricity distribution networks. Int. J. Hydrogen Energy 2016, 41, 13950–13959. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable power-to-gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Mazza, A.; Salomone, F.; Arrigo, F.; Bensaid, S.; Bompard, E.; Chicco, G. Impact of power-to-gas on distribution systems with large renewable energy penetration. Energy Convers. Manag. X 2020, 7, 100053. [Google Scholar] [CrossRef]
- Simonis, B.; Newborough, M. Sizing and operating power-to-gas systems to absorb excess renewable electricity. Int. J. Hydrogen Energy 2017, 42, 21635–21647. [Google Scholar] [CrossRef]
- Pijarski, P.D. Optymalizacja Heurystyczna w Ocenie Warunków Pracy i Planowaniu Rozwoju Systemu Elektroenergetycznego; Lublin University of Technology Publishers: Lublin, Poland, 2019; ISBN 978-83-7947-349-6. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95 IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Kumar, K.; Zindani, D.; Davim, J.P. Optimizing Engineering Problems through Heuristic Techniques; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781138485365. [Google Scholar]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Hajiabbas, M.P.; Mohammadi-Ivatloo, B. Optimization of Power System Problems: Methods, Algorithms and MATLAB Codes; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-34049-0. [Google Scholar]
- Pham, D.T.; Ghanbarzadeh, A.; Koç, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm—A Novel Tool for Complex Optimisation Problems. Intelligent Production Machines and Systems; Elsevier: Amsterdam, The Netherlands, 2006; pp. 454–459. ISBN 9780080451572. [Google Scholar]
- Radosavljević, J. Metaheuristic Optimization in Power Engineering; The Institution of Engineering and Technology: London, UK, 2018; ISBN 9781785615467. [Google Scholar]
- Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 IEEE World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Sarma, S.K. Optimally configured deep convolutional neural network for attack detection in internet of things: Impact of algorithm of the innovative gunner. Wirel. Pers. Commun. 2021, 118, 239–260. [Google Scholar] [CrossRef]
- Dehghani, R.; Poudeh, H.T.; Izadi, Z. The effect of climate change on groundwater level and its prediction using modern meta-heuristic model. Groundw. Sustain. Dev. 2022, 16, 100702. [Google Scholar] [CrossRef]
- Konjaang, J.K.; Xu, L. Meta-heuristic approaches for effective scheduling in infrastructure as a service cloud: A systematic review. J. Netw. Syst. Manag. 2021, 29, 1–57. [Google Scholar] [CrossRef]
- Shafiei, M.; Ghasemi-Marzbali, A. Fast-charging station for electric vehicles, challenges and issues: A comprehensive review. J. Energy Storage 2022, 49, 104136. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. Voltage optimization in MV network with distributed generation using power consumption control in electrolysis installations. Energies 2021, 14, 993. [Google Scholar] [CrossRef]
- CSN EN 50549-1; Requirements for Generating Plants to Be Connected in Parallel with Distribution Networks—Part 1: Connection to a LV Distribution Network—Generating Plants Up to and including Type B. European Standards S.R.O.: Pilsen, Czech Republic, 2019. Available online: https://www.en-standard.eu/csn-en-50549-1-requirements-for-generating-plants-to-be-connected-in-parallel-with-distribu-tion-networks-part-1-connection-to-a-lv-distribution-network-generating-plants-up-to-and-including-type-b/ (accessed on 4 March 2022).
- CSN EN 50549-2; Requirements for Generating Plants to Be Connected in Parallel with Distribution Networks—Part 2: Connection to a MV Distribution Network—Generating Plants Up to and including Type B. European Standards S.R.O.: Pilsen, Czech Republic, 2019. Available online: https://www.en-standard.eu/csn-en-50549-2-requirements-for-generating-plants-to-be-connected-in-parallel-with-distribu-tion-networks-part-2-connection-to-a-mv-distribution-network-generating-plants-up-to-and-including-type-b/ (accessed on 4 March 2022).
- AS/NZS 4777.2:2015; Grid Connection of Energy Systems via Inverters, Part 2: Inverter Requirements; EL-042 (Renewable Energy Power Supply Systems & Equipment). Standards Australia: Sydney, Australia, 2015. Available online: https://www.standards.org.au/standards-catalogue/sa-snz/electrotechnology/el-042/as-slash-nzs--4777-dot-2-colon-2015 (accessed on 4 March 2022).
- Pijarski, P.; Kacejko, P. Optimization of the selection of P(U) and Q(U) characteristic parameters of solar microinverters. Acta Energ. 2019, 39, 6–13. [Google Scholar] [CrossRef]
- Juamperez, M.; Yang, G.; Kjær, S.B. Voltage regulation in LV grids by coordinated volt-var control strategies. J. Mod. Power Syst. Clean Energy 2014, 2, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Witzmann, R.; Esslinger, P. Experimental Study on Voltage Dependent Reactive Power Control Q(V) by Solar Inverters in Low-Voltage Networks. In Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, Sweden, 10–13 June 2013; p. 644. [Google Scholar]
- Biel, D.; Scherpen, J.M. Active and reactive power regulation in single-phase PV inverters. In Proceedings of the 2018 IEEE 17th European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; pp. 782–787. [Google Scholar] [CrossRef]
- Valsera-Naranjo, E.; Sumper, A.; Villafáfila-Robles, R.; Martinez-Vicente, D. Probabilistic method to assess the impact of charging of electric vehicles on distribution grids. Energies 2012, 5, 1503–1531. [Google Scholar] [CrossRef] [Green Version]
Power Line from-to | Line Length l, km | Conductor Cross-Section S, mm2 | Resistance R, Ω | Reactance X, Ω |
---|---|---|---|---|
0–1 | 1.80 | 120 | 0.43 | 0.18 |
1–2 | 1.80 | 120 | 0.43 | 0.18 |
2–3 | 0.50 | 70 | 0.20 | 0.20 |
2–6 | 0.50 | 70 | 0.20 | 0.20 |
2–16 | 2.50 | 120 | 0.60 | 0.25 |
3–4 | 0.70 | 70 | 0.29 | 0.28 |
3–5 | 0.60 | 70 | 0.25 | 0.24 |
6–7 | 1.20 | 70 | 0.50 | 0.48 |
7–8 | 1.20 | 35 | 0.99 | 0.48 |
7–10 | 2.00 | 70 | 0.82 | 0.80 |
8–9 | 0.70 | 35 | 0.57 | 0.28 |
10–11 | 0.50 | 35 | 0.41 | 0.20 |
10–13 | 1.20 | 35 | 0.98 | 0.48 |
11–12 | 1.20 | 35 | 0.98 | 0.48 |
13–14 | 0.50 | 35 | 0.41 | 0.20 |
13–15 | 0.90 | 35 | 0.74 | 0.36 |
16–17 | 1.50 | 35 | 1.22 | 0.60 |
16–21 | 2.90 | 120 | 0.69 | 0.29 |
17–18 | 0.90 | 35 | 0.74 | 0.36 |
18–19 | 0.50 | 35 | 0.41 | 0.20 |
18–20 | 0.70 | 35 | 0.57 | 0.28 |
21–22 | 2.50 | 120 | 0.60 | 0.25 |
22–23 | 1.00 | 35 | 0.82 | 0.40 |
22–24 | 1.00 | 35 | 0.82 | 0.40 |
22–25 | 1.80 | 35 | 1.47 | 0.72 |
25–26 | 0.50 | 35 | 0.41 | 0.20 |
25–27 | 2.00 | 35 | 1.63 | 0.80 |
27–28 | 1.50 | 35 | 1.22 | 0.60 |
28–29 | 0.90 | 35 | 0.74 | 0.36 |
28–32 | 1.80 | 35 | 1.47 | 0.72 |
29–30 | 1.00 | 35 | 0.82 | 0.40 |
29–31 | 0.60 | 35 | 0.49 | 0.24 |
32–33 | 1.50 | 35 | 1.22 | 0.60 |
33–34 | 1.90 | 35 | 1.55 | 0.76 |
34–35 | 0.80 | 35 | 0.65 | 0.32 |
34–36 | 0.80 | 35 | 0.65 | 0.32 |
σ | Max | Min | Med | ||
---|---|---|---|---|---|
Ind U 1 | 0.034 | 0.011 | 0.076 | 0.011 | 0.033 |
Ind U 2 | 0.048 | 0.035 | 0.240 | 0.003 | 0.038 |
Ind U 3 | 0.011 | 0.014 | 0.108 | 0.001 | 0.006 |
Ind U 4 | 0.033 | 0.018 | 0.121 | 0.004 | 0.029 |
ΔP/P0 1 [%] | 0.740 | 0.260 | 1.730 | 0.238 | 0.724 |
ΔP/P0 2 [%] | 1.208 | 2.040 | 26.70 | 0.050 | 0.441 |
ΔP/P0 3 [%] | 2.760 | 3.590 | 38.30 | 0.040 | 1.327 |
ΔP/P0 4 [%] | 1.355 | 2.350 | 30.57 | 0.051 | 0.466 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pijarski, P.; Kacejko, P.; Wancerz, M. Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement. Energies 2022, 15, 2081. https://doi.org/10.3390/en15062081
Pijarski P, Kacejko P, Wancerz M. Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement. Energies. 2022; 15(6):2081. https://doi.org/10.3390/en15062081
Chicago/Turabian StylePijarski, Paweł, Piotr Kacejko, and Marek Wancerz. 2022. "Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement" Energies 15, no. 6: 2081. https://doi.org/10.3390/en15062081
APA StylePijarski, P., Kacejko, P., & Wancerz, M. (2022). Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement. Energies, 15(6), 2081. https://doi.org/10.3390/en15062081