Dual-Active-Bridge Model and Control for Supporting Fast Synthetic Inertial Action
Abstract
:1. Introduction
2. Dual-Active-Bridge Converter Connected to Energy Storage
3. The Proposed Discrete Control Method
PI Controller Model
4. Simulation Results
4.1. PI Design
4.2. PLECS Simulation Results
4.3. Simulated Performance Comparison for Fast Inertial Action
4.4. Comparison of Proposed PI Controller Model with a Classical Pole-Placement Method
5. Hardware-in-the-Loop Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
, | Converter’s input voltage (battery voltage) and output voltage (DC bus voltage) |
, | Converter’s input current and output current |
, | Average current, and corresponding small-signal variable |
Converter’s output capacitor voltage, current, equivalent series resistor | |
Primary and secondary voltages of a high-frequency transformer | |
Converter’s switches with index (from 1 to 8) | |
Equivalent resistive load | |
, | Phase-shift between two bridges, nominal/constant phase-shift, and corresponding small-signal variable |
Power of the primary full-bridge, secondary full-bridge and total output rated power of the converter | |
, | Transfer function relating the phase angle to the output current and output voltage in s-domain |
, | Transfer function relating the phase angle to the output current and output voltage in z-domain |
Transfer function relating the output voltage and output current in both s, z-domain, and corresponding frequency response | |
, | Discrete PI controller relating to output current in z-domain and corresponding frequency response |
Discrete PI controller relating to phase angle in z-domain | |
Gain crossover frequency and phase margin | |
An open-loop gain transfer function in z-domain and corresponding frequency response |
References
- Long, B.; Liao, Y.; Chong, K.T.; Rodríguez, J.; Guerrero, J.M. MPC-Controlled Virtual Synchronous Generator to Enhance Frequency and Voltage Dynamic Performance in Islanded Microgrids. IEEE Trans. Smart Grid 2021, 12, 953–964. [Google Scholar] [CrossRef]
- Ramana, N.V. Power System Analysis; Pearson Education: London, UK, 2011; ISBN 9788131755921. [Google Scholar]
- Tamrakar, U.; Shrestha, D.; Maharjan, M.; Bhattarai, B.P.; Hansen, T.M.; Tonkoski, R. Virtual inertia: Current trends and future directions. Appl. Sci. 2017, 7, 654. [Google Scholar] [CrossRef]
- Algarni, A.S.; Member, G.S.; Suryanarayanan, S.; Member, S.; Siegel, H.J.; Fellow, L.; Maciejewski, A.A. Combined Impact of Demand Response Aggregators and Carbon Taxation on Emissions Reduction in Electric Power Systems. IEEE Trans. Smart Grid 2021, 12, 1825–1827. [Google Scholar] [CrossRef]
- Obi, M.; Bass, R. Trends and challenges of grid-connected photovoltaic systems—A review. Renew. Sustain. Energy Rev. 2016, 58, 1082–1094. [Google Scholar] [CrossRef]
- Raza, S.A.; Jiang, J.I.N. A Benchmark Distribution System for Investigation of Residential Microgrids. IEEE Open-Access J. Power Energy 2020, 7, 41–50. [Google Scholar] [CrossRef]
- Gomez, J.S.; Rodriguez, J.; Garcia, C.; Tarisciotti, L.; Flores-Bahamonde, F.; Pereda, J.; Nunez, F.; Cipriano, A.Z.; Salas, J.C. An Overview of Microgrids Challenges in the Mining Industry. IEEE Access 2020, 8, 191378–191393. [Google Scholar] [CrossRef]
- Makolo, P.; Zamora, R.; Lie, T.T. The role of inertia for grid flexibility under high penetration of variable renewables—A review of challenges and solutions. Renew. Sustain. Energy Rev. 2021, 147, 111223. [Google Scholar] [CrossRef]
- Abubakr, H.; Mohamed, T.H.; Hussein, M.M.; Guerrero, J.M.; Agundis-Tinajero, G. Adaptive frequency regulation strategy in multi-area microgrids including renewable energy and electric vehicles supported by virtual inertia. Int. J. Electr. Power Energy Syst. 2021, 129, 106814. [Google Scholar] [CrossRef]
- Adu, J.A.; Rios Penaloza, J.D.; Napolitano, F.; Tossani, F. Virtual Inertia in a Microgrid with Renewable Generation and a Battery Energy Storage System in Islanding Transition. In Proceedings of the 2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Cagliari, Italy, 28–30 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Mallemaci, V.; Mandrile, F.; Rubino, S.; Mazza, A.; Carpaneto, E.A. comprehensive comparison of Virtual Synchronous Generators with focus on virtual inertia and frequency regulation. Electr. Power Syst. Res. 2021, 201, 107516. [Google Scholar] [CrossRef]
- Sarojini, R.K.; Palanisamy, K. Emulated inertia control for the stand-alone microgrid with high penetration of renewable energy sources. Int. J. Renew. Energy Res. 2020, 10, 831–842. [Google Scholar] [CrossRef]
- Sarojini, R.K.; Kaliannan, P.; Teekaraman, Y.; Nikolovski, S.; Baghaee, H.R. An Enhanced Emulated Inertia Control for Grid-Connected PV Systems with HESS in a Weak Grid. Energies 2021, 14, 1721. [Google Scholar] [CrossRef]
- Bagheri, S.; CheshmehBeigi, H.M. DC Microgrid Voltage Stability through Inertia Enhancement Using a Bidirectional DC-DC Converter. In Proceedings of the 7th Iran Wind Energy Conference (IWEC2021), Shahrood, Iran, 17–18 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 2014, 29, 4091–4106. [Google Scholar] [CrossRef]
- Chen, X.; Xu, G.; Han, H.; Liu, D.; Sun, Y.; Su, M. Light-Load Efficiency Enhancement of High-frequency Dual-Active-Bridge Converter under SPS Control. IEEE Trans. Ind. Electron. 2021, 68, 12941–12946. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, Q.; Sun, W. Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid. IEEE Trans. Power Electron. 2012, 27, 4667–4680. [Google Scholar] [CrossRef]
- Inoue, S.; Akagi, H. A Bidirectional DC-DC Converter for an Energy Storage System With Galvanic Isolation. IEEE Trans. Power Electron. 2007, 22, 2299–2306. [Google Scholar] [CrossRef]
- Choi, K.; Kim, Y.; Kim, K.; Kim, S. Output voltage tracking controller embedding auto-tuning algorithm for DC/DC boost converters. IET Power Electron. 2019, 12, 3767–3773. [Google Scholar] [CrossRef]
- Pal, A.; Kapat, S.; Jha, K.; Tiwari, A. Discrete-time framework for digital control design in a high-frequency dual active bridge converter. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2264–2270. [Google Scholar] [CrossRef]
- Middlebrook, R.D.; Cuk, S. A general unified approach to modelling switching-converter power stages. In Proceedings of the 1976 IEEE Power Electronics Specialists Conference, Cleveland, OH, USA, 8–10 June 1976; pp. 18–34. [Google Scholar] [CrossRef]
- De Doncker, R.W.; Divan, D.M.; Kheraluwala, M.H. A three-phase soft-switched high power density DC/DC converter for high power applications. In Proceedings of the Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting, Pittsburgh, PA, USA, 2–7 October 1988; Volume 1, pp. 796–805. [Google Scholar] [CrossRef]
- Sanders, S.R.; Noworolski, J.M.; Liu, X.Z.; Verghese, G.C. Generalized averaging method for power conversion circuits. In Proceedings of the 21st Annual IEEE Conference on Power Electronics Specialists, San Antonio, TX, USA; 1990; pp. 333–340. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Kimball, J.W. Generalized average modeling of dual active bridge DC-DC converter. IEEE Trans. Power Electron. 2012, 27, 2078–2084. [Google Scholar] [CrossRef]
- Liu, B.; Davari, P.; Blaabjerg, F. An Enhanced Generalized Average Modeling of Dual Active Bridge Converters. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 85–90. [Google Scholar] [CrossRef]
- Iqbal, M.T.; Member, S.; Maswood, A.I.; Member, S. An Explicit Discrete-Time Large- and Small-Signal Modeling of the Dual Active Bridge DC—DC Converter Based on the Time Scale Methodology. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 545–555. [Google Scholar] [CrossRef]
- Costa, P.F.S.; Löbler, P.H.B.; Roggia, L.; Schuch, L. Modeling and Control of DAB Converter Applied to Batteries Charging. IEEE Trans. Energy Convers. 2022, 37, 175–184. [Google Scholar] [CrossRef]
- Santos da Silva, E.L.; Luís Kirsten, A.; Pagano, D.J. Discrete SPS Control of a DAB converter using partial Feedback Linearization. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tong, A.; Hang, L.; Li, G.; Huang, J. Nonlinear characteristics of DAB converter and linearized control method. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 331–337. [Google Scholar] [CrossRef]
- Tiwari, S.; Hanif, O.; Sarangi, S. Fractional Order PI Control of Dual Active Bridge Converter Using Generalized Average Modelling. In Proceedings of the 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), New Delhi, India, 10–14 December 2019; pp. 253–259. [Google Scholar] [CrossRef]
- Xue, D.; Zhao, C.; Chen, Y. Fractional order PID control of a DC-motor with elastic shaft: A case study. In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; p. 6. [Google Scholar] [CrossRef]
- Yang, X. Nature-Inspired Optimization Algorithms; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 0124167454. [Google Scholar]
- Korlinchak, C.; Comanescu, M. Discrete time integration of observers with continuous feedback based on Tustin’s method with variable prewarping. In Proceedings of the 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, UK, 27–29 March 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Cuoghi, S.; Mandrioli, R.; Ntogramatzidis, L.; Gabriele, G. Multileg Interleaved Buck Converter for EV Charging: Discrete-Time Model and Direct Control Design. Energies 2020, 13, 466. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Ma, W.; Meng, J.; Wang, Y. A Virtual Inertia Control Strategy for Dual Active Bridge DC-DC Converter. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kheraluwala, M.H.; De Doncker, R.W. Single phase unity power factor control for dual active bridge converter. In Proceedings of the Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Toronto, ON, Canada, 2–8 October 1993; Volume 2, pp. 909–916. [Google Scholar] [CrossRef]
- Ogata, K. Modern Control. Engineering; Prentice Hall: Hoboken, NJ, USA, 2010; ISBN 9780136156734. [Google Scholar]
- RT Box LaunchPad Interface. May 2020. Available online: https://www.plexim.com/sites/default/files/launchpadinterfacemanual.pdf (accessed on 15 March 2022).
- RT Box User Manual. January 2021. Available online: https://www.plexim.com/sites/default/files/rtboxmanual.pdf (accessed on 15 March 2022).
Mode | Conducting Switches | Duration |
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
Parameter | Symbol | Value | Units |
---|---|---|---|
Battery voltage | |||
Rated DC bus voltage | |||
Filter capacitance | |||
Series resistance | |||
Leakage inductance | |||
Rated power | |||
Switching frequency | |||
Sampling time | |||
Transformer ratio | - |
Parameter | Value | Units |
Solver step size | ||
Discretization step size for converter | ||
Discretization step size for controller | ||
Analog output scaling factor for voltage | ||
Analog output scaling factor for current | ||
Analog output offset value (voltage and current) | - | |
ADC voltage scaling factor | ||
ADC current scaling factor | ||
ADC offset value | - |
Parameter | Nominal Values | 6 kW to 10 kW Load Change | 10 kW to 6 kW Load Change | ||
---|---|---|---|---|---|
Simulation Result | HIL Result | Simulation Result | HIL Result | ||
Power (kW) | maximum undershoot value | maximum undershoot value | maximum overshoot value | maximum overshoot value | |
DC bus voltage (V) | maximum undershoot value | maximum undershoot value | maximum overshoot value | maximum overshoot value |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuoghi, S.; Mandrioli, R.; Pittala, L.K.; Cirimele, V.; Ricco, M. Dual-Active-Bridge Model and Control for Supporting Fast Synthetic Inertial Action. Energies 2022, 15, 2295. https://doi.org/10.3390/en15062295
Cuoghi S, Mandrioli R, Pittala LK, Cirimele V, Ricco M. Dual-Active-Bridge Model and Control for Supporting Fast Synthetic Inertial Action. Energies. 2022; 15(6):2295. https://doi.org/10.3390/en15062295
Chicago/Turabian StyleCuoghi, Stefania, Riccardo Mandrioli, Lohith Kumar Pittala, Vincenzo Cirimele, and Mattia Ricco. 2022. "Dual-Active-Bridge Model and Control for Supporting Fast Synthetic Inertial Action" Energies 15, no. 6: 2295. https://doi.org/10.3390/en15062295
APA StyleCuoghi, S., Mandrioli, R., Pittala, L. K., Cirimele, V., & Ricco, M. (2022). Dual-Active-Bridge Model and Control for Supporting Fast Synthetic Inertial Action. Energies, 15(6), 2295. https://doi.org/10.3390/en15062295