Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium) †
Abstract
:1. Introduction
2. Method
2.1. Case Study
2.2. Calibrated Thermal Model
2.3. Climate Change Model
2.4. Summer Thermal Comfort Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Gouvernement Wallon. Déclaration de Politique Régionale pour la Wallonie 2019–2024; Gouvernement Wallon: Namur, Belgium, 2019.
- Gouvernement Wallon. Stratégie Wallonne de Rénovation Énergétique à Long Terme du Bâtiment; Gouvernement Wallon: Namur, Belgium, 2020.
- ICEDD. Bilan Énergétique de la Wallonie: Secteur Domestique et Équivalents; ICEDD: Namur, Belgium, 2014. [Google Scholar]
- Deltour, J.; Vanwelde, V.; Dartevelle, O. MEsures de Performances Réelles et de Satisfaction des occUpants dans les Bâtiments Résidentiels à Hautes Performances Energétiques: Rapport de Synthèse sur les Performances Énergétiques Réelles; Architecture et Climat—Université catholique de Louvain, Centre Scientifique et Technique de la Construction: Louvain-la-Neuve, Belgium, 2018; p. 100. [Google Scholar]
- Rohdin, P.; Molin, A.; Moshfegh, B. Experiences from nine passive houses in Sweden—Indoor thermal environment and energy use. Build. Environ. 2014, 71, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Mlecnik, E.; Schütze, T.; Jansen, S.J.T.; de Vries, G.; Visscher, H.; van Hal, A. End-user experiences in nearly zero-energy houses. Energy Build. 2012, 49, 471–478. [Google Scholar] [CrossRef]
- Ortiz, M.; Itard, L.; Bluyssen, P.M. Indoor environmental quality related risk factors with energy-efficient retrofitting of housing: A literature review. Energy Build. 2020, 221, 110102. [Google Scholar] [CrossRef]
- Jones, R.V.; Goodhew, S.; de Wilde, P. Measured Indoor Temperatures, Thermal Comfort and Overheating Risk: Post-occupancy Evaluation of Low Energy Houses in the UK. Energy Procedia 2016, 88, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Ozarisoy, B.; Elsharkawy, H. Assessing overheating risk and thermal comfort in state-of-the-art prototype houses that combat exacerbated climate change in UK. Energy Build. 2019, 187, 201–217. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Health and Global Environmental Change. Heat-Waves: Risks and Responses; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Mlakar, J.; Štrancar, J. Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy Build. 2011, 43, 1443–1451. [Google Scholar] [CrossRef]
- Chan, H.Y.; Riffat, S.B.; Zhu, J. Review of passive solar heating and cooling technologies. Renew. Sustain. Energy Rev. 2010, 14, 781–789. [Google Scholar] [CrossRef]
- Gouvernement wallon. Arrêté du Gouvernement Wallon Déterminant la Méthode de Calcul et les Exigences, les Agréments et les Sanctions Applicables en Matière de Performance Énergétique et de Climat Intérieur des Bâtiments; Gouvernement Wallon: Namur, Belgium, 2008.
- Dartevelle, O.; Vanwelde, V. MEsures de Performances Réelles et de Satisfaction des Occupants dans les Bâtiments Résidentiels à Hautes Performances Energétiques: Rapport de Synthèse sur le Climat Intérieur; Architecture et Climat—Université catholique de Louvain, Centre Scientifique et Technique de la Construction: Louvain-la-Neuve, Belgium, 2018; p. 80. [Google Scholar]
- Yang, Y.; Javanroodi, K.; Nik, V.M. Climate change and energy performance of European residential building stocks—A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment. Appl. Energy 2021, 298, 117246. [Google Scholar] [CrossRef]
- Ford, B.; Mumovic, D.; Rawal, R. Call for Papers: Alternatives to Air Conditioning: Policies, Design, Technologies, Behaviours. Available online: https://www.buildingsandcities.org/media/pdf/BCCFPAltCooling.pdf (accessed on 10 February 2022).
- BPIE. Stratégie Wallonne de Rénovation Énergétique à Long Terme du Bâtiment; Service public de Wallonie: Namur, Belgium, 2017. [Google Scholar]
- Gouvernement wallon. Arrêté du Gouvernement Wallon Modifiant L’arrêté du Gouvernement Wallon du 15 Mai 2014 Portant Exécution du Décret du 28 Novembre 2013 Relatif à la Performance Énergétique des Bâtiments; Gouvernement Wallon: Namur, Belgium, 2019.
- European Parliament. Directive 2010/31/UE of the European Parliament and of the Council of 19 may 2010 on the Energy Performance of Buildings; European Parliament: Strasbourg, France, 2010.
- Dartevelle, O.; van Moeseke, G.; Mlecnik, E.; Altomonte, S. Long-term evaluation of residential summer thermal comfort: Measured vs. perceived thermal conditions in nZEB houses in Wallonia. Build. Environ. 2021, 190, 107531. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Alexrk2. File:Europe Blank Laea Location map.svg under CC-BY-SA-3.0 Licence. Available online: https://commons.wikimedia.org/wiki/File:Europe_blank_laea_location_map.svg (accessed on 10 February 2022).
- Solar Energy Laboratory. TRNSYS: A Transient Simulation Program; University of Wisconsin: Madison, WI, USA, 2018. [Google Scholar]
- Aparicio-Fernández, C.; Vivancos, J.-L.; Cosar-Jorda, P.; Buswell, R.A. Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation. Energies 2019, 12, 3360. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. Guideline 14-2014: Measurement of Energy, Demand, and Water Savings; ASHRAE: Atlanta, GA, USA, 2014. [Google Scholar]
- Juneja, M.; Nagar, S.K. Particle swarm optimization algorithm and its parameters: A review. In Proceedings of the 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahbad, India, 21–22 October 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Royal Meteorological Institute of Belgium. Bilan Climatologique Annuel 2016; RMI: Uccle, Belgium, 2017.
- Giot, O.; Termonia, P.; Degrauwe, D.; De Troch, R.; Caluwaerts, S.; Smet, G.; Berckmans, J.; Deckmyn, A.; De Cruz, L.; De Meutter, P.; et al. Validation of the ALARO-0 model within the EURO-CORDEX framework. Geosci. Model Dev. 2016, 9, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Shen, P. Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data. Energy Build. 2017, 134, 61–70. [Google Scholar] [CrossRef]
- United Nations. Framework Convention on Climate Change Adoption of the Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- Royal Meteorological Institute of Belgium. Vague de Chaleur: A Definition. Available online: https://www.meteo.be/fr/infos/dico-meteo/vague-de-chaleur (accessed on 10 February 2022).
- ASHRAE. International Weather for Energy Calculations (IWEC Weather Files) Users Manual and CD-ROM.; ASHRAE: Atlanta, GA, USA, 2001. [Google Scholar]
- CIBSE. TM 52: The Limits of Thermal Comfort: Avoiding Overheating in European Buildings; CIBSE: London, UK, 2013. [Google Scholar]
- CIBSE. TM59: Design Methodology for the Assessment of Overheating Risk in Homes; CIBSE: London, UK, 2017. [Google Scholar]
- Salinas, J.C.G.; Monge-Barrio, A.; Sánchez-Ostiz, A. Overheating risk assessment of different dwellings during the hottest season of a warm tropical climate. Build. Environ. 2020, 171, 106664. [Google Scholar] [CrossRef]
- NBN. EN15251:2007 Critères pour l’Environnement Intérieur et Évaluation des Performances Énergétiques des Bâtiments Couvrant la Qualité d’air Intérieur, la Thermique, l’Eclairage et l’Acoustique; NBN: Brussels, Belgium, 2007. [Google Scholar]
- De Dear, R.; Brager, G.S. Developing an adaptive model of thermal comfort and preference. In ASHRAE Winter Meeting; ASHRAE: San Francisco, CA, USA, 1998; Volume 104. [Google Scholar]
- Nicol, F.; Humphreys, M. Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Build. Environ. 2010, 45, 11–17. [Google Scholar] [CrossRef]
- Olesen, B.W. The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings. Energy Build. 2007, 39, 740–749. [Google Scholar] [CrossRef]
- Peeters, L.; de Dear, R.; Hensen, J.; D’Haeseleer, W. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Appl. Energy 2009, 86, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Attia, S.; Gobin, C. Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building. Energies 2020, 13, 5357. [Google Scholar] [CrossRef]
- De Dear, R.; Kim, J.; Parkinson, T. Residential adaptive comfort in a humid subtropical climate—Sydney Australia. Energy Build. 2018, 158, 1296–1305. [Google Scholar] [CrossRef]
- Jeong, B.; Kim, J.; Chen, D.; de Dear, R. Comparison of residential thermal comfort in two different climates in Australia. Build. Environ. 2021, 211, 108706. [Google Scholar] [CrossRef]
- Attia, S.; Levinson, R.; Ndongo, E.; Holzer, P.; Kazanci, O.B.; Homaei, S.; Zhang, C.; Olesen, B.W.; Qi, D.; Hamdy, M.; et al. Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. Energy Build. 2021, 239, 110869. [Google Scholar] [CrossRef]
Characteristics | Units | Value | Source of Value * | Instrumental Uncertainties Considered | Used Uncertainty for Calibration | |
---|---|---|---|---|---|---|
Construction type | [-] | Masonry | 1 | n.a.** | n.a. | |
Number of occupants | [-] | 5 (<12 y/o: 3) | 2 | n.a. | n.a. | |
Presence during working hours | [-] | Yes | 2 | n.a. | n.a. | |
Net heated floor area | Total | [m2] | 166 | 3 | n.a. | n.a. |
Living room | [m2] | 42.3 | 3 | n.a. | n.a. | |
Main bedroom | [m2] | 14.2 | 3 | n.a. | n.a. | |
Window-to-floor surface ratio | Total | [%] | 19.9 | 3 | n.a. | n.a. |
Living room | [%] | 29.2 | 3 | n.a. | n.a. | |
Main bedroom | [%] | 7.9 | 3 | n.a. | n.a. | |
Mean U-value (windows included) | [W/m2 K] | 0.31 | 3 (Walls: 1) | [−20%; +20%] | −7% | |
Air change rate at 50 Pa (n50) | [1/h] | 1.1 | 1 | [−5%; +5%] | −5% | |
Mechanical ventilation airflow (Air change rate) | [1/h] | 0.25 | 1 | [−6%; +6%] | −6% | |
Efficiency of heat recovery | [%] | 85 | 1 | [−6.2%; +6.2%] | −2% | |
Solar Heat Gain Coefficient (SHGC) (windows) | [-] | 0.63 | 3 | [−5%; +5%] | −5% | |
Main windows orientation (living room and main bedroom) | [-] | E | 1 | n.a. | n.a. | |
Living room total SHGC (glazing + internal shading) | [-] | 0.35 | 2, 3 | [−5%; +5%] | +5% | |
Bedroom total SHGC (glazing + internal shading) | [-] | 0.35 (usually not used) | 2, 3 | [−5%; +5%] | +5% | |
Internal gains (electrical) | [W/m2] | 2.2 (mean value) | 1 | [−3%; +3%] | −3% | |
Additional thermal capacity of zones (furniture) | [kJ/K.m2] | 26.5 | 4 | [−100%; +100%] | +100% | |
Windows opening for summer thermal control (living room) | [Ach] | 3 (Cross ventilation) | 2 | [−100%; +100%] | +30% | |
Windows opening for summer thermal control (bedroom) | [Ach] | 0 (Not usual) (One side ventilation) | 2 | [0; +6] | +0% | |
Heating needs | [kWh/m2·y] | 17.8 | 1 | [−6%; +6%] | −6% | |
Dry bulb outdoor temperature (annual mean) | [°C] | 10.8 | [−0.3; +0.3] | −0.3 | ||
Radiation (Global Horizontal) | [kWh/m2·y] | 1035 | 1 | [−10%; +10%] | +0% | |
Setpoint temperature (mean value September to May) Living Room | [°C] | 20.1 | 1 | [−0.3; +0.3] | +0.3 | |
Main Bedroom | [°C] | 19.1 | 1 | [−0.3; +0.3] | +0.3 | |
Primary energy use (Mainly heating and domestic hot water —PV production) | [kWh/m2·y] | 61 kWh/m2·y | 3 | n.a. | n.a. |
Living Room Temperature | Bedroom Temperature | Calibration Criteria | |
---|---|---|---|
NMBE [%] | 0.64 | 0.68 | ±10 |
CV-RMSE [%] | 3.39 | 3.41 | 30 |
Name | Thresholds | Benchmark (Maximum) | Source |
---|---|---|---|
Static hours of exceedance | Top > 26 °C | 1% of annual occupied hours (10 p.m.–7 a.m.) (bedrooms only) | TM59, CIBSE 2017 |
Adaptive hours of exceedance | Top − Tmax > 1 K Tmax = EN15251 Cat II upp. limit | 3% of occupied hours (May to September inclusive) | TM52, CIBSE 2013 TM59, CIBSE 2017 |
Daily weighted exceedance | We = ∑he × WF WF = max (0; Top − Tmax) he: corresponding time [h] | 6 in any one day during occupied hours | TM52, CIBSE 2013 |
Upper limit temperature | Tupp = Tmax + 4 K | Absolute maximum value during occupied hours | TM52, CIBSE 2013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dartevelle, O.; Altomonte, S.; Masy, G.; Mlecnik, E.; van Moeseke, G. Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium). Energies 2022, 15, 2410. https://doi.org/10.3390/en15072410
Dartevelle O, Altomonte S, Masy G, Mlecnik E, van Moeseke G. Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium). Energies. 2022; 15(7):2410. https://doi.org/10.3390/en15072410
Chicago/Turabian StyleDartevelle, Olivier, Sergio Altomonte, Gabrielle Masy, Erwin Mlecnik, and Geoffrey van Moeseke. 2022. "Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium)" Energies 15, no. 7: 2410. https://doi.org/10.3390/en15072410
APA StyleDartevelle, O., Altomonte, S., Masy, G., Mlecnik, E., & van Moeseke, G. (2022). Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium). Energies, 15(7), 2410. https://doi.org/10.3390/en15072410