Method of Biomass Discrimination for Fast Assessment of Calorific Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Samples
2.2. Biomass Image Acquisition and Preprocessing
2.3. Biomass Image Textural Feature Computing
2.4. Textural Feature Scaling and Reduction
2.5. Biomass Classifier Models
2.6. Prediction Correction Method
3. Results
3.1. Feature Space Scaling and Reduction
3.2. Classifier Validation and Computing Time
3.3. PLSDA Linear Classifier
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EC | European Commission |
IDB | image database |
PC | Personal Computer |
CPU | Central Processing Unit |
RAM | Random Access Memory |
GPU | Graphic Processing Unit |
GLCM | Gray Level Co-occurrence Matrix |
SFTA | Segmentation-based Fractal Texture Analysis |
LBP | Local Binary Pattern |
PCA | Principal Component Analysis |
RF | Random Forest |
DNN | Deep Neural Network |
LDA | Linear Discrimination Analyzer |
PLSDA | Partial Least Squares-Discriminant Analysis |
BER | balanced error rate |
PC1, PC2 | principal components 1, 2 |
References
- European Comission. 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_pl (accessed on 14 November 2021).
- Sarkar, N.; Kumar, S.; Bannerjee, G.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B.; Trocewicz, A.; Jendrzejewski, B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies 2020, 13, 5054. [Google Scholar] [CrossRef]
- Millati, R.; Cahyono, R.; Ariyanto, T.; Azzahrani, I.; Putri, R.; Taherzadeh, M. Agricultural, Industrial, Municipal, and Forest Wastes: An Overview. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 1–22. [Google Scholar] [CrossRef]
- Lantz, M.; Prade, T.; Ahlgren, S.; Björnsson, L. Biogas and ethanol from wheat grain or straw: Is there a trade-off between climate impact, avoidance of iLUC and production cost? Energies 2018, 11, 2633. [Google Scholar] [CrossRef] [Green Version]
- Singh, J. Identifying an economic power production system based on agricultural straw on regional basis in India. Renew. Sustain. Energy Rev. 2016, 60, 1140–1155. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Novikova, A.; Romaneckas, K. Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland. Sustainability 2019, 11, 4714. [Google Scholar] [CrossRef] [Green Version]
- Lunguleasa, A.; Spirchez, C.; Zeleniuc, O. Evaluation Of The Calorific Values Of Wastes From Some Tropical Wood Species, Maderas. Cienc. Tecnol. 2020, 22, 269–280. [Google Scholar] [CrossRef]
- Logeswaran, J.; Shamsuddin, A.; Silitonga, A.; Mahlia, T. Prospect of using rice straw for power generation: A review. Environ. Sci. Pollut. Res. 2020, 27, 25956–25969. [Google Scholar] [CrossRef]
- Spirchez, C.; Lunguleasa, A.; Ionescu, C.; Croitoru, C. Physical and calorific properties of wheat straw briquettes and pellets. MATEC Web Conf. 2019, 290, 11011. [Google Scholar] [CrossRef]
- Naik, S.; Goud, V.V.; Rout, P.K.; Jacobson, K.; Dalai, A.K. Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energy 2010, 35, 1624–1631. [Google Scholar] [CrossRef]
- Herkowiak, M.; Adamski, M.; Dworecki, Z.; Waliszewska, B.; Pilarski, K.; Witaszek, K.; Niedbała, G.; Piekutowska, M. Analysis of the possibility of obtaining thermal energy from combustion of selected cereal straw species. J. Res. Appl. Agric. Eng. 2018, 63, 68–72. [Google Scholar]
- Pordesimo, L.O.; Hames, B.R.; Sokhansanj, S.; Edens, W.C. Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 2005, 28, 366–374. [Google Scholar] [CrossRef]
- Morissette, E.; Savoie, P.; Villeneuve, J. Combustion of Corn Stover Bales in a Small 146-kW Boiler. Energies 2011, 4, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Lin, S.; Lu, W. Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Process. Technol. 2009, 90, 980–987. [Google Scholar] [CrossRef]
- Chou, C.; Lin, S.; Peng, C.; Lu, W. The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the Taguchi method. Fuel Process. Technol. 2009, 90, 1041–1046. [Google Scholar] [CrossRef]
- Denisiuk, W. Straw as fuel. Inżynieria Rolnicza 2009, 1, 83–89. [Google Scholar]
- Jach-Nocoń, M.; Pełka, G.; Luboń, W.; Mirowski, T.; Nocoń, A.; Pachytel, P. An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types. Energies 2021, 14, 4465. [Google Scholar] [CrossRef]
- Toscano, G.; Pedretti, E. Calorific Value Determination Of Solid Biomassfuel By Simplified Method. J. Agric. Eng. 2009, 3, 1–6. [Google Scholar] [CrossRef]
- Sheng, C.; Azevedoj, L. Estimating the higherheating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Mostaço-Guidolin, L.B.; Ko, A.C.; Wang, F.; Xiang, B.; Hewko, M.; Tian, G.; Major, A.; Shiomi, M.; Sowa, M.G. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 2013, 3, 2190. [Google Scholar] [CrossRef]
- Beguet, B.; Guyon, D.; Boukir, S.; Chehata, N. Automated retrival of forest structure variables based on multis-scale texture analysis of VHR satelite imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96, 164–178. [Google Scholar] [CrossRef]
- Lottering, R.T.; Govender, M.; Peerbhay, K.; Lottering, S. Comparing partial least squares (PLS) discriminant analysis and sparse PLS discriminant analysis in detecting and mapping Solanum mauritianum in commercial forest plantations using image texture. ISPRS J. Photogramm. Remote Sens. 2020, 159, 271–280. [Google Scholar] [CrossRef]
- Larmuseau, M.; Sluydts, M.; Theuwissen, K.; Duprez, L.; Dhaene, T.; Cottenier, S. Compact representations of microstructure images using triplet networks. NPJ Comput. Mater. 2020, 6, 156. [Google Scholar] [CrossRef]
- Nurski, M. Sony Wants to Make Sense of Taking Photos of Food. Available online: https://komorkomania.pl/34226,sony-aplikacja-kalorie-zdjecie (accessed on 10 November 2021).
- Available online: https://apkpure.com/work-performance-plus/biz.sonymobile.wpp (accessed on 14 November 2021).
- Bite AI, Inc. Bitesnap. The Easier Way to Track What You Eat. Available online: https://getbitesnap.com/ (accessed on 14 November 2021).
- EN. ISO 18125:2017 Solid Biofuels—Determination of Calorific Value Standard. Available online: https://www.iso.org/standard/61517.html (accessed on 14 November 2021).
- Dey, N. Uneven illumination correction of digital images: A survey of the state-of-the-art. Optik 2019, 183, 483–495. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R.R.E. Digital Image Processing, 4th ed.; Pearson: London, UK, 2017; p. 1168. Available online: http://www.mypearsonstore.com/bookstore/digital-image-processing-9780133356724 (accessed on 14 November 2021).
- Haralick, R.; Shanmugan, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. Available online: http://haralick.org/journals/TexturalFeatures.pdf (accessed on 14 November 2021). [CrossRef] [Green Version]
- Haralick, R.; Shapiro, L. Computer and Robot Vision; Addison-Wesley Pub. Co.: Boston, MA, USA, 1992; p. 459. [Google Scholar]
- Costa, A.; Humpire-Mamani, G.; Traina, A. An Efficient Algorithm for Fractal Analysis of Textures. In Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 22–25 August 2012. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Iannaccone, P.; Khokha, M. Fractal Geometry in Biological Systems: An Analytical Approach; CRC Press: Boca Raton, FL, USA, 1996; p. 368. [Google Scholar]
- Yan, X. Linear Regression Analysis: Theory and Computing; World Scientific Publishing: Singapore, 2009; p. 348. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M. Unsupervised Texture Segmentation Using Feature Distributions. Pattern Recognit. 1999, 32, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Recognit. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Computer Vision Using Local Binary Patterns; Springer: Berlin/Heidelberg, Germany, 2011; p. 207. [Google Scholar] [CrossRef]
- Eddie_4072. Feature Scaling Techniques in Python—A Complete Guide. Available online: https://www.analyticsvidhya.com/blog/2021/05/feature-scaling-techniques-in-python-a-complete-guide/ (accessed on 5 November 2021).
- Scikit-learn Developers. StandardScaler. 2021. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (accessed on 5 November 2021).
- Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002; p. 493. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition; Wiley Interscience: Hoboken, NJ, USA, 2004; p. 526. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Zhang, J. New machine learning algorithm: Random Forest. In Information Computing and Applications; Liu, B., Ma, M., Chang, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252. [Google Scholar] [CrossRef]
- Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing: Birmingham, UK, 2017; p. 318. [Google Scholar]
- Vasilev, I.; Slater, D.; Spacagna, G. Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with PyTorch, Keras, and TensorFlow, 2nd ed.; Packt Publishing: Birmingham, UK, 2019; p. 386. [Google Scholar]
- Scikit-learn Developers. Sklearn.Ensemble.RandomForestClassifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 5 November 2021).
- Raileanu, L.; Stoffel, K. Theoretical comparison between the Gini index and information gain criteria. Ann. Math. Artif. Intell. 2004, 41, 77–93. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Packt Publishing: Birmingham, UK, 2016; p. 800. [Google Scholar]
- Wiki, A. Overfitting vs. Underfitting. Available online: https://docs.paperspace.com/machine-learning/wiki/overfitting-vs-underfitting (accessed on 5 November 2021).
- Hinton, G. Neural Networks for Machine Learning Online Course. Available online: https://www.coursera.org/learn/neural-networks/home/welcome (accessed on 14 November 2021).
- Bushaev, V. Understanding RMSprop—Faster Neural Network Learning. Available online: https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a (accessed on 14 November 2021).
- Westland, J. Audit Analytics: Data Science for the Accounting Profession, 1st ed.; Springer: Chicago, IL, USA, 2020; p. 344. [Google Scholar]
- The SciPy Community. Scipy.Stats.Binom. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html (accessed on 14 November 2021).
- Gómez, R. Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and All Those Confusing Names. Available online: https://gombru.github.io/2018/05/23/cross_entropy_loss/ (accessed on 5 November 2021).
- Lee, L.; Liong, C.; Jemain, A. Partial least squares discriminant analysis (PLSDA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Lantz, B. Machine Learning with R—Third Edition: Expert Techniques for Predictive Modeling; Packt Publishing: Birmingham, UK, 2019; p. 458. [Google Scholar]
- Biocondictor. MixOmics. Available online: http://www.bioconductor.org/packages/release/bioc/manuals/mixOmics/man/mixOmics.pdf (accessed on 5 November 2021).
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakaran, S. Mahalanobis Distance–Understanding the Math with Examples (Python). 2019. Available online: https://www.machinelearningplus.com/statistics/mahalanobis-distance/ (accessed on 5 November 2021).
- Chaloupková, V.; Ivanova, T.; Ekrt, O.; Kabutey, A.; Herák, D. Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the Structure of Biomass Briquettes. Energies 2018, 11, 331. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lei, M.; Chen, Y.; Li, M.; Zou, L. Intelligent Identification of Maceral Components of Coal Based on Image Segmentation and Classification. Appl. Sci. 2019, 9, 3245. [Google Scholar] [CrossRef] [Green Version]
Biofuel Type | Material Components | Number of Images | Heating Value [MJ/kg] | Combustion Heat [MJ/kg] |
---|---|---|---|---|
1 | 50% wheat, 50% wheat straw | 100 | 15.6 | 17.15 |
2 | 50% wheat, 50% triticale straw | 100 | 15.6 | 16.90 |
3 | 50% wheat straw, 50% triticale straw | 100 | 15.5 | 16.80 |
4 | 100% wheat | 100 | 15.8 | 17.20 |
5 | 100% wheat straw | 100 | 15.4 | 17.10 |
Test | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | av | sd | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
acc | LDA | 0.96 | 0.88 | 0.98 | 0.96 | 0.96 | 0.96 | 0.96 | 0.98 | 0.90 | 0.96 | 0.95 | 0.03 |
RF | 0.96 | 0.96 | 0.96 | 0.94 | 0.96 | 0.98 | 0.98 | 0.92 | 0.96 | 0.94 | 0.96 | 0.02 | |
DNN | 0.92 | 0.96 | 0.96 | 1.00 | 0.90 | 0.94 | 0.98 | 0.98 | 1.00 | 0.88 | 0.95 | 0.04 |
Preprocessing | Feature Extraction | |||
---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 |
[ms] | [ms] | [ms] | [ms] | [ms] |
126.60 | 8.06 | 23.36 | 13.20 | 25.86 |
Classifier | Training | Prediction |
---|---|---|
[s] | [s] | |
LDA | 0.009 | 0.002 |
RF | 0.413 | 0.012 |
DNN | 39.187 | 1.615 |
Scaling | PCA | ||
---|---|---|---|
Training | Prediction | Training | Prediction |
[ms] | [ms] | [ms] | [ms] |
0.65 | 0.15 | 9.20 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gocławski, J.; Korzeniewska, E.; Sekulska-Nalewajko, J.; Kiełbasa, P.; Dróżdż, T. Method of Biomass Discrimination for Fast Assessment of Calorific Value. Energies 2022, 15, 2514. https://doi.org/10.3390/en15072514
Gocławski J, Korzeniewska E, Sekulska-Nalewajko J, Kiełbasa P, Dróżdż T. Method of Biomass Discrimination for Fast Assessment of Calorific Value. Energies. 2022; 15(7):2514. https://doi.org/10.3390/en15072514
Chicago/Turabian StyleGocławski, Jarosław, Ewa Korzeniewska, Joanna Sekulska-Nalewajko, Paweł Kiełbasa, and Tomasz Dróżdż. 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value" Energies 15, no. 7: 2514. https://doi.org/10.3390/en15072514
APA StyleGocławski, J., Korzeniewska, E., Sekulska-Nalewajko, J., Kiełbasa, P., & Dróżdż, T. (2022). Method of Biomass Discrimination for Fast Assessment of Calorific Value. Energies, 15(7), 2514. https://doi.org/10.3390/en15072514