Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks
Abstract
:1. Introduction
1.1. Overview of the Smart Grid Strategies
1.2. Operation in an Incomplete Smart Grid
2. Presentation of Important Concepts
2.1. Main Concepts of the Traditional Protection for Distribution Networks
2.2. Differences between Smart Grids and Intelligent Systems Concepts
3. Overview of IEDs
3.1. General Structure of an IED
3.2. Overview of the Most Popular IEDs Systems Used in Distribution Systems
3.2.1. Schneider Electric’s Intelligent Loop Automation (ILA)
3.2.2. S&C Electric Company’s IntelliTeam SG
3.2.3. NovaTech’s Distribution Automation
3.2.4. Eaton’s Yukon Feeder Automation (YFA)
3.2.5. SEL’s Distribution Automation Controller (DAC)
3.2.6. Hitachi’s Distribution Feeder Automation
3.2.7. Siemens Self-Optimizing Grid
3.2.8. Comparative Analysis of the Described Technologies
3.3. Transforming a Set of IEDs into a Multi-Agent System
4. Proposed Methodology
4.1. Functions to Work with Fuses
4.1.1. Verifying Which Fuse Has a Problem
4.1.2. Example of Integration of Fuses with Smart Grid Devices
4.2. Functions to Work with Reclosers and Sectionalizers
4.2.1. Integration Function Procedure with Reclosers and Sectionalizers
4.2.2. Incorporation of an Intelligent Agent in Reclosers and Sectionalizers
4.3. Intelligent Agent Rules for Integration with Traditional Protection Devices
4.3.1. Verification of the Integrity of the Supervised Switches
4.3.2. Verification of the Performance of a Traditional Protection Device
4.3.3. Application of the Proposed Approach
4.3.4. Final Remarks
5. Application of the Proposed Strategy for Intelligent Agents
5.1. Case Study 1: Short-Circuit in Branch 82–83
5.2. Case Study 2: Short-Circuit in Branch 70–71
5.3. Case Study 3: Short-Circuit in Branch 74–76
5.4. Case Study 4: Wrong Actuation of the Traditional Protection
6. Computational Validation of the Proposed Approach
6.1. Presentation of the Validating Computer Program
6.2. Executing the Computational Program Once
6.3. Validating Test of the Proposed Approach
6.4. Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siebert, L.C.; Aoki, A.R.; Lambert-Torres, G.; Lambert-de-Andrade, N.; Paterakis, N.G. An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System. Energies 2020, 13, 4837. [Google Scholar] [CrossRef]
- Barreto, N.E.M.; Rodrigues, R.; Schumacher, R.; Aoki, A.R.; Lambert-Torres, G. Artificial Neural Network Approach for Fault Detection and Identification in Power Systems with Wide Area Measurement Systems. J. Control Autom. Electr. Syst. 2021, 32, 1617–1626. [Google Scholar] [CrossRef]
- Mahat, P.; Chen, Z.; Bak-Jensen, B.; Bak, C.L. A Simple Adaptive Overcurrent Protection of Distribution Systems With Distributed Generation. IEEE Trans. Smart Grid 2011, 2, 428–437. [Google Scholar] [CrossRef]
- Fletcher, S.D.A.; Norman, P.J.; Fong, K.; Galloway, S.J.; Burt, G.M. High-Speed Differential Protection for Smart DC Distribution Systems. IEEE Trans. Smart Grid 2014, 5, 2610–2617. [Google Scholar] [CrossRef] [Green Version]
- Zeineldin, H.H.; Sharaf, H.M.; Ibrahim, D.K.; El-Zahab, E.E.-D.A. Optimal Protection Coordination for Meshed Distribution Systems With DG Using Dual Setting Directional Over-Current Relays. IEEE Trans. Smart Grid 2015, 6, 115–123. [Google Scholar] [CrossRef]
- Noudjiep Djiepkop, G.F.; Krishnamurthy, S. Multi-Objective Feeder Reconfiguration Using Discrete Particle Swarm Optimization. Mathematics 2022, 10, 531. [Google Scholar] [CrossRef]
- Kim, M.-S.; Haider, R.; Cho, G.-J.; Kim, C.-H.; Won, C.-Y.; Chai, J.-S. Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems. Energies 2019, 12, 837. [Google Scholar] [CrossRef] [Green Version]
- Ates, Y.; Uzunoglu, M.; Karakas, A.; Boynuegri, A.R. The case study based protection analysis for smart distribution grids including distributed generation units. In Proceedings of the 12th IET International Conference on Developments in Power System Protection (DPSP 2014), Copenhagen, Denmark, 31 March–3 April 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Wei, L.; Qi, Y.; Qi, H. Research on design and implementation of relay protection in smart grid. In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 1439–1443. [Google Scholar] [CrossRef]
- Jimenez, S.; Vázquez, E.; Gonzalez-Longatt, F. Methodology of Adaptive Instantaneous Overcurrent Protection Setting. Electronics 2021, 10, 2754. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Chen, B.; Aved, A.; Jin, D. Towards Optimal and Executable Distribution Grid Restoration Planning with a Fine-Grained Power-Communication Interdependency Model. IEEE Trans. Smart Grid 2022, 11, 9973. [Google Scholar] [CrossRef]
- Sayed, M.M.; Mahdy, M.Y.; Abdel Aleem, S.H.E.; Youssef, H.K.M.; Boghdady, T.A. Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions. Energies 2022, 15, 2299. [Google Scholar] [CrossRef]
- Erenoğlu, A.K.; Sancar, S.; Terzi, I.S.; Erdinç, O.; Shafie-khah, M.; Catalão, J.P.S. Resiliency-Driven Multi-Step Critical Load Restoration Strategy Integrating On-Call Electric Vehicle Fleet Management Services. IEEE Trans. Smart Grid 2022, 11, 5438. [Google Scholar] [CrossRef]
- Singhal, A.; Vu, T.L.; Du, W. Consensus Control for Coordinating Grid-Forming and Grid-Following Inverters in Microgrids. IEEE Trans. Smart Grid 2022, 9, 254. [Google Scholar] [CrossRef]
- Assad, U.; Hassan, M.A.S.; Farooq, U.; Kabir, A.; Khan, M.Z.; Bukhari, S.S.H.; Jaffri, Z.U.A.; Oláh, J.; Popp, J. Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods. Energies 2022, 15, 2003. [Google Scholar] [CrossRef]
- ANEEL—Brazilian Electricity Regulatory Agency, “Module 8—Quality of Electric Energy—Electric Power Distribution Procedures in the National Electrical System—PRODIST. 2021. p. 88. Available online: https://www.aneel.gov.br/documents/656827/14866914/Módulo_8-Revisão_12/342ff02a-8eab-2480-a135-e31ed2d7db47 (accessed on 8 June 2021). (In Portuguese)
- Ferreira, L.R.; Aoki, A.R.; Lambert-Torres, G. A Reinforcement Learning Approach to Solve Service Restoration and Load Management Simultaneously for Distribution Networks. IEEE Access 2019, 7, 145978–145987. [Google Scholar] [CrossRef]
- Ferreira, L.R. Hybrid Intelligent Control for Smart Grid Functionalities Integration. Ph.D. Thesis, Federal University of Paraná, Curitiba, Brazil, 2020. Available online: https://hdl.handle.net/1884/70724 (accessed on 10 September 2021).
- Siebert, L.C. Demand Response Optimization System for Intelligent Power Grids. Ph.D. Thesis, Federal University of Paraná, Curitiba, Brazil, 2013. Available online: http://hdl.handle.net/1884/35731 (accessed on 18 October 2021). (In Portuguese).
- Sallam, A.A.; Malik, O.P. Electric Distribution Systems; Wiley-IEEE Press: Piscataway, NJ, USA, 2019; p. 624. ISBN 9781119509332. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Prentice-Hall: Hoboken, NJ, USA, 2020; p. 2579. ISBN 9780134610993. [Google Scholar]
- Ramesh Babu, N. Smart Grid Systems: Modeling and Control; Apple Academic Press: Waretown, NJ, USA, 2018; p. 290. ISBN 9781771886253. [Google Scholar]
- Belu, R. Smart Grid Fundamentals: Energy Generation, Transmission and Distribution; CRC Press: Boca Raton, FL, USA, 2022; p. 568. ISBN 978-1482256673. [Google Scholar]
- Tanenbaum, A. Modern Operating Systems; Pearson/Prentice Hall: Hoboken, NJ, USA, 2008; p. 160. ISBN 9780136006633. [Google Scholar]
- Falk, H. IEC 61850 Demystified; Artech House Publishers: Norwood, MA, USA, 2019; p. 332. ISBN 9781630813291. [Google Scholar]
- Cleveland, F. IEC TC57 Security Standards for the Power System's Information Infrastructure—Beyond Simple Encryption. In Proceedings of the 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, Chicago, IL, USA, 4–7 May 2006; pp. 1079–1087. [Google Scholar] [CrossRef]
- Reda, H.T.; Ray, B.; Peidaee, P.; Anwar, A.; Mahmood, A.; Kalam, A.; Islam, N. Vulnerability and Impact Analysis of the IEC 61850 GOOSE Protocol in the Smart Grid. Sensors 2021, 21, 1554. [Google Scholar] [CrossRef]
- Schneider Electric. Intelligent Loop Automation. 2013. p. 84. Available online: https://www.se.com/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/213039_E57A/SEAU26709_Loop_Automation_Manual_WEB.pdf (accessed on 21 December 2021).
- S&C Electric Company. IntelliTeam® SG Automatic Restoration System. 2022. p. 113. Available online: https://www.sandc.com/globalassets/sac-electric/documents/sharepoint/documents---all-documents/instruction-sheet-1044-570.pdf (accessed on 28 November 2021).
- Eaton. Yukon Feeder Automation (YFA)I. 2021, p. 16. Available online: https://www.eaton.com/content/dam/eaton/products/utility-and-grid-solutions/grid-automation-systems/yukon-feeder-automation/yukon-feeder-automation-ps818001en.docx (accessed on 28 December 2021).
- NovaTech. Distribution Automation Controller. 2019. p. 6. Available online: https://back.novatechautomation.com/wp-content/uploads/2020/10/DS_DAMaster_111210.pdf (accessed on 28 October 2021).
- Schweitzer Engineering Laboratories. Distribution Automation Controller. Available online: https://selinc.com/engineering-services/distribution-network-automation/ (accessed on 16 February 2022).
- Hitachi Energy. Self-Healing Distribution Grid. Available online: https://www.hitachienergy.com/rtu (accessed on 28 February 2022).
- Siemens, A.G. Self-Optimizing Grid—Intelligent Grid Automation. 2018, p. 12. Available online: https://assets.new.siemens.com/siemens/assets/api/uuid:28ae65dd-359c-4b96-85bd-280facec62ea/self-optimizing-grid.pdf (accessed on 18 November 2021).
- Railsback, S.; Grimm, V. Agent-Based and Individual-Based Modeling: A Practical Introduction, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2019; 360p, ISBN 9780691190839. [Google Scholar]
- McArthur, S.D.J.; Davidson, E.M.; Catterson, V.M.; Dimeas, A.L.; Hatziargyriou, N.D.; Ponci, F.; Funabashi, T. Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges. IEEE Trans. Power Syst. 2007, 22, 1743–1752. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Srinivasan, D.; Trivedi, A. A Decentralized Multiagent System Approach for Service Restoration using DG Islanding. IEEE Trans. Smart Grid 2015, 6, 2784–2793. [Google Scholar] [CrossRef]
- Torres, B.S.; Ferreira, L.R.; Aoki, A.R. Distributed Intelligent System for Self-Healing in Smart Grids. IEEE Trans. Power Deliv. 2018, 33, 2394–2403. [Google Scholar] [CrossRef]
- Kezunovic, M. Smart Fault Location for Smart Grids. IEEE Trans. Smart Grid 2011, 2, 11–22. [Google Scholar] [CrossRef]
- Zidan, A.; El-Saadany, E.F. A Cooperative Multiagent Framework for Self-healing Mechanisms in Distribution Systems. IEEE Trans. Smart Grid 2012, 3, 1525–1539. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Yau, K.-L.A.; Chong, Y.-W.; Wu, C. Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms. Appl. Sci. 2021, 11, 10870. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, W. Novel Multiagent Based Load Restoration Algorithm for Microgrids. IEEE Trans. Smart Grid 2011, 2, 152–161. [Google Scholar] [CrossRef]
- Nikkhah, S.; Allahham, A.; Bialek, J.W.; Walker, S.L.; Giaouris, D.; Papadopoulou, S. Active Participation of Buildings in the Energy Networks: Dynamic/Operational Models and Control Challenges. Energies 2021, 14, 7220. [Google Scholar] [CrossRef]
- Jamal, S.; Tan, N.M.L.; Pasupuleti, J. A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications. Sustainability 2021, 13, 10331. [Google Scholar] [CrossRef]
- Lim, I.-H.; Sidhu, T.S.; Choi, M.S.; Lee, S.J.; Hong, S.; Lim, S.I.; Lee, S.W. Design and Implementation of Multiagent-Based Distributed Restoration System in DAS. IEEE Trans. Power Deliv. 2013, 28, 585–593. [Google Scholar] [CrossRef]
- Karavas, C.-S.; Kyriakarakos, G.; Arvanitis, K.G.; Papadakis, G. A multiagent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Convers. Manag. 2015, 103, 166–179. [Google Scholar] [CrossRef]
- Siebert, L.C.; Aoki, A.R.; Fernandes, T.S.P.; Lambert-Torres, G. Customer Targeting Optimization System for Price-Based Demand Response Programs. Int. Trans. Electr. Energy Syst. 2018, 29, e2709. [Google Scholar] [CrossRef]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review. Energies 2015, 8, 573–609. [Google Scholar] [CrossRef] [Green Version]
- Siebert, L.C.; Sbicca, A.; Aoki, A.R.; Lambert-Torres, G. A Behavioral Economics Approach to Residential Electricity Consumption. Energies 2017, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks. Available online: https://colab.research.google.com/github/carloshvmoraes/ISGDTPDN/blob/main/ISGD_basic.ipynb (accessed on 18 November 2021).
- Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks. Available online: https://colab.research.google.com/github/carloshvmoraes/ISGDTPDN/blob/main/ISGD_benchmark.ipynb (accessed on 18 November 2021).
S8–S9 | S9–S10 | S10–S11 | S11–X |
---|---|---|---|
15A | 15A | 15A | 5A |
S8 | S9 | S10 | S11 |
---|---|---|---|
50A | 35A | 20A | 5A |
- | 70% | 40% | 5% |
Bus | Registrated Load (I0SWx) | Load (IPF) | Up-Date Registrated Load (ISWx-new) |
---|---|---|---|
64 | 5.067 | 5.168 | 5.062 |
65 | 1.259 | 1.239 | 1.258 |
66 | 2.836 | 2.738 | 2.833 |
67 | 2.522 | 2.637 | 2.519 |
68 | 5.786 | 5.691 | 5.780 |
69 | 5.421 | 5.199 | 5.415 |
70 | 6.796 | 6.521 | 6.789 |
71 | 1.675 | 1.733 | 1.674 |
72 | 3.798 | 3.837 | 3.794 |
73 | 1.312 | 1.352 | 1.310 |
74 | 2.515 | 2.573 | 2.512 |
75 | 4.342 | 4.358 | 4.338 |
76 | 1.292 | 1.353 | 1.291 |
77 | 2.379 | 2.350 | 2.377 |
78 | 5.242 | 5.269 | 5.237 |
79 | 4.511 | 4.660 | 4.506 |
80 | 2.483 | 2.512 | 2.480 |
81 | 4.792 | 4.966 | 4.787 |
82 | 6.132 | 6.179 | 6.125 |
83 | 1.138 | 1.161 | 1.135 |
84 | 6.114 | 5.836 | 6.098 |
Operated Switch | Complete Ordered List | Rank of Correct Switch |
---|---|---|
64 | [64, 65, 66, 67, 68, 69, 82, 73, 78, 70, 74, 80, 84, 81, 79, 75, 72, 77, 71, 76, 83] | 1 |
65 | [65, 66, 67, 64, 68, 69, 82, 73, 78, 70, 74, 80, 84, 81, 79, 75, 72, 77, 71, 76, 83] | 1 |
66 | [66, 67, 68, 65, 69, 64, 82, 73, 78, 70, 74, 80, 84, 81, 79, 75, 72, 77, 71, 76, 83] | 1 |
67 | [67, 68, 66, 65, 69, 82, 73, 78, 64, 70, 74, 80, 84, 81, 79, 75, 72, 77, 71, 76, 83] | 1 |
68 | [68, 67, 66, 69, 65, 82, 73, 78, 70, 74, 80, 84, 81, 79, 75, 72, 64, 77, 71, 76, 83] | 1 |
69 | [69, 82, 73, 78, 70, 74, 80, 68, 84, 81, 79, 75, 72, 67, 77, 71, 76, 83, 66, 65, 64] | 1 |
70 | [74, 70, 78, 80, 73, 84, 81, 79, 75, 72, 82, 77, 71, 76, 83, 69, 68, 67, 66, 65, 64] | 2 |
71 | [71, 76, 83, 77, 72, 75, 79, 81, 84, 80, 74, 70, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 1 |
72 | [72, 75, 79, 81, 77, 84, 71, 76, 83, 80, 74, 70, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 1 |
73 | [73, 78, 70, 74, 80, 82, 84, 81, 79, 75, 72, 77, 71, 76, 83, 69, 68, 67, 66, 65, 64] | 1 |
74 | [74, 70, 78, 80, 73, 84, 81, 79, 75, 72, 82, 77, 71, 76, 83, 69, 68, 67, 66, 65, 64] | 1 |
75 | [75, 79, 81, 72, 84, 77, 71, 80, 76, 83, 74, 70, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 1 |
76 | [76, 83, 71, 77, 72, 75, 79, 81, 84, 80, 74, 70, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 1 |
77 | [77, 71, 76, 83, 72, 75, 79, 81, 84, 80, 74, 70, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 1 |
78 | [78, 73, 70, 74, 80, 84, 82, 81, 79, 75, 72, 77, 71, 76, 83, 69, 68, 67, 66, 65, 64] | 1 |
79 | [81, 79, 75, 72, 84, 77, 80, 71, 76, 83, 74, 70, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 2 |
80 | [80, 74, 70, 84, 78, 73, 81, 79, 75, 72, 77, 71, 82, 76, 83, 69, 68, 67, 66, 65, 64] | 1 |
81 | [81, 79, 75, 84, 72, 80, 77, 71, 74, 70, 76, 83, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 1 |
82 | [82, 73, 78, 70, 74, 80, 84, 81, 79, 75, 72, 69, 77, 71, 76, 83, 68, 67, 66, 65, 64] | 1 |
83 | [83, 76, 71, 77, 72, 75, 79, 81, 84, 80, 74, 70, 78, 73, 82, 69, 68, 67, 66, 65, 64] | 1 |
84 | [84, 81, 79, 75, 80, 72, 74, 70, 78, 77, 73, 71, 76, 83, 82, 69, 68, 67, 66, 65, 64] | 1 |
Operated Switch | Complete Ordered List | Rank of Correct Switch |
---|---|---|
64 | [64, 69, 65, 73, 74, 70, 66, 75, 67, 78, 76, 77, 68, 72, 71, 82, 79, 80, 83, 84, 81] | 1 |
65 | [65, 69, 66, 67, 68, 64, 73, 74, 70, 75, 78, 76, 77, 72, 71, 82, 79, 80, 83, 84, 81] | 1 |
66 | [66, 67, 68, 69, 65, 73, 74, 82, 70, 64, 75, 78, 76, 77, 72, 71, 79, 80, 83, 84, 81] | 1 |
67 | [67, 66, 68, 69, 65, 73, 74, 82, 70, 75, 64, 78, 76, 77, 72, 71, 79, 80, 83, 84, 81] | 1 |
68 | [68, 67, 66, 69, 65, 73, 82, 74, 70, 75, 78, 79, 80, 76, 77, 83, 84, 64, 72, 71, 81] | 1 |
69 | [69, 73, 82, 68, 74, 67, 66, 70, 75, 78, 79, 80, 76, 77, 83, 84, 72, 71, 81, 65, 64] | 1 |
70 | [70, 75, 78, 79, 80, 76, 77, 83, 84, 72, 71, 81, 74, 82, 73, 69, 68, 67, 66, 65, 64] | 1 |
71 | [81, 71, 72, 84, 77, 83, 76, 80, 79, 78, 75, 70, 74, 82, 73, 69, 68, 67, 66, 65, 64] | 2 |
72 | [72, 71, 81, 84, 77, 83, 76, 80, 79, 78, 75, 70, 74, 82, 73, 69, 68, 67, 66, 65, 64] | 1 |
73 | [73, 82, 74, 70, 75, 69, 78, 79, 80, 76, 77, 83, 84, 72, 71, 81, 68, 67, 66, 65, 64] | 1 |
74 | [74, 82, 73, 70, 75, 78, 79, 80, 76, 77, 83, 84, 72, 71, 81, 69, 68, 67, 66, 65, 64] | 1 |
75 | [75, 70, 78, 79, 80, 76, 77, 83, 84, 72, 71, 81, 74, 82, 73, 69, 68, 67, 66, 65, 64] | 1 |
76 | [76, 83, 77, 80, 79, 78, 84, 72, 71, 81, 75, 70, 74, 82, 73, 69, 68, 67, 66, 65, 64] | 1 |
77 | [76, 83, 77, 80, 79, 78, 84, 72, 71, 81, 75, 70, 74, 82, 73, 69, 68, 67, 66, 65, 64] | 3 |
78 | [78, 79, 80, 76, 77, 83, 75, 84, 72, 71, 81, 70, 74, 82, 73, 69, 68, 67, 66, 65, 64] | 1 |
79 | [80, 79, 83, 84, 81, 71, 72, 77, 76, 78, 75, 70, 82, 74, 73, 69, 68, 67, 66, 65, 64] | 2 |
80 | [80, 79, 83, 84, 81, 71, 72, 77, 76, 78, 75, 70, 82, 74, 73, 69, 68, 67, 66, 65, 64] | 1 |
81 | [81, 84, 83, 80, 79, 71, 72, 77, 76, 78, 75, 70, 82, 74, 73, 69, 68, 67, 66, 65, 64] | 1 |
82 | [82, 71, 72, 77, 76, 78, 75, 70, 79, 80, 83, 84, 81, 74, 73, 68, 67, 66, 69, 65, 64] | 1 |
83 | [83, 80, 84, 79, 81, 71, 72, 77, 76, 78, 75, 70, 82, 74, 73, 69, 68, 67, 66, 65, 64] | 1 |
84 | [84, 83, 80, 79, 81, 71, 72, 77, 76, 78, 75, 70, 82, 74, 73, 69, 68, 67, 66, 65, 64] | 1 |
Position in the List | Error | Hits | Error | Hits | ||||
---|---|---|---|---|---|---|---|---|
ε | 1st | 2nd | 3rd | 4th | Total | Total | 1st | 1st + 2nd |
1% | 96.19% | 3.81% | 0.00% | 0.00% | 0.00% | 100.00% | 3.81% | 0.00% |
2% | 95.24% | 4.29% | 0.48% | 0.00% | 0.00% | 100.00% | 4.76% | 0.48% |
5% | 92.00% | 4.67% | 3.33% | 0.00% | 0.00% | 100.00% | 8.00% | 3.33% |
10% | 74.29% | 18.57% | 6.19% | 0.48% | 0.48% | 99.52% | 25.71% | 7.14% |
Position in the List | ||||||
---|---|---|---|---|---|---|
ε | 1st | 2nd | 3rd | 4th | Error | Hits |
1% | 99.52% | 0.48% | 0.00% | 0.00% | 0.00% | 100.00% |
2% | 95.71% | 3.81% | 0.48% | 0.00% | 0.00% | 100.00% |
5% | 92.86% | 6.67% | 0.48% | 0.00% | 0.00% | 100.00% |
10% | 79.05% | 14.29% | 3.33% | 2.38% | 0.95% | 99.05% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, B.S.; Borges da Silva, L.E.; Salomon, C.P.; de Moraes, C.H.V. Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks. Energies 2022, 15, 2518. https://doi.org/10.3390/en15072518
Torres BS, Borges da Silva LE, Salomon CP, de Moraes CHV. Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks. Energies. 2022; 15(7):2518. https://doi.org/10.3390/en15072518
Chicago/Turabian StyleTorres, Bruno Silva, Luiz Eduardo Borges da Silva, Camila Paes Salomon, and Carlos Henrique Valério de Moraes. 2022. "Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks" Energies 15, no. 7: 2518. https://doi.org/10.3390/en15072518
APA StyleTorres, B. S., Borges da Silva, L. E., Salomon, C. P., & de Moraes, C. H. V. (2022). Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks. Energies, 15(7), 2518. https://doi.org/10.3390/en15072518