Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.1.1. Proximate Analysis
2.1.2. Ultimate Analysis
2.1.3. Chlorine Determination
3. Results and Discussion
3.1. TGA Analysis
3.2. Computational Simulation
3.3. TGA Analysis
3.4. Results of Computational Simulation
4. Conclusions
- The pyrolysis of plastic waste generated during the COVID-19 pandemic is an effective and environmentally safe solution with great application potential.
- Thermal conversion of waste by pyrolysis is characterized by a high yield of high-calorific pyrolysis gas. This gas can potentially be used as a substitute for natural gas for energy production.
- It is possible to forecast the chemical composition of gaseous pyrolysis products of plastic waste and on this basis to estimate the calorific value of the pyrolysis gas produced in the process.
- The pyrolysis of polypropylene, the main component of protective masks, allows one to obtain high-calorific pyrolysis gas (47.7 MJ/m3), the main components of which are H2, CH4, and C6H6.
- The results of the conducted research and computer simulations show the enormous energy value of plastic waste, especially those generated during the COVID-19 pandemic. Increasing the share of the above-mentioned waste in the municipal waste stream from which the so-called overflow and RDF fraction will increase the calorific value of the pyrolysis gas.
- Effective disposal of the new category of waste is both a technological- and material-related challenge. Solving this challenge and creating technological techniques and know-how will enable the safe treatment of municipal waste in the COVID-19 era, and will also point the way to effective thermal conversion products management.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahimi, N.R.; Fouladi-Fard, R.; Aali, R.; Shahryari, A.; Rezaali, M.; Ghafouri, Y.; Ghalhari, M.R.; Asadi-Ghalhari, M.; Farzinnia, B.; Conti Gea, O.; et al. Bidirectional association between COVID-19 and the environment: A systematic review. Environ. Res. 2021, 194, 110692. [Google Scholar] [CrossRef] [PubMed]
- Penteado, C.S.G.; de Castro, M.A.S. COVID-19 effects on municipal solid waste management: What can effectively be done in the Brazilian scenario? Resour. Conserv. Recycl. 2021, 164, 105152. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Berruti, F. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazard. Mater. 2021, 403, 123970. [Google Scholar] [CrossRef] [PubMed]
- Chand Malav, L.; Yadav, K.K.; Gupta, N.; Kumar, S.; Sharma, G.K.; Krishnan, S.; Rezania, S.; Kamyab, H.; Pham, Q.B.; Yadav, S.; et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J. Clean. Prod. 2020, 277, 123227. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I. Single-use surgical face masks, as a potential source of microplastics: Do they act as pollutant carriers? J. Mol. Liq. 2021, 326, 115247. [Google Scholar] [CrossRef]
- You, S.; Sonne, C.; Ok, Y.S. COVID-19: Resource recovery from plastic waste against plastic pollution. Cogent Environ. Sci. 2020, 6, 1801220. [Google Scholar] [CrossRef]
- Ikiz, E.; Maclaren, V.W.; Alfred, E.; Sivanesan, S. Impact of COVID-19 on household waste flows, diversion and reuse: The case of multi-residential buildings in Toronto, Canada. Resour. Conserv. Recycl. 2021, 164, 105111. [Google Scholar] [CrossRef]
- Dharmaraj, S.; Ashokkumar, V.; Pandiyan, R.; Halimatul Munawaroh, H.S.; Chew, K.W.; Chen, W.H.; Ngamcharussrivichai, C. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere 2021, 275, 130092. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Cheela, V.S.; Ranjan, V.P.; Jaglan, A.K.; Dubey, B.; Goel, S.; Bhattacharya, J. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour. Conserv. Recycl. 2020, 162, 105052. [Google Scholar] [CrossRef] [PubMed]
- Purnomo, C.W.; Kurniawan, W.; Aziz, M. Technological Review on Thermochemical Conversion of COVID-19-related Medical Wastes. Resour. Conserv. Recycl. 2021, 167, 105429. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe Market Research Group (PEMRG) and Conversio Market & Strategy GmbH. Plastics—The Fact. 2021. Available online: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (accessed on 3 March 2022).
- Kulkarni, B.N.; Anantharama, V. Repercussions of COVID-19 pandemic on municipal solid waste management: Challenges and opportunities. Sci. Total Environ. 2020, 743, 140693. [Google Scholar] [CrossRef]
- Elsner, W.; Wysocki, M.; Niegodajew, P.; Borecki, R. Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine. Appl. Energy 2017, 202, 213–227. [Google Scholar] [CrossRef]
- Park, C.; Choi, H.; Andrew Lin, K.Y.; Kwon, E.E.; Lee, J. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. Energy 2021, 230, 120876. [Google Scholar] [CrossRef] [PubMed]
- Ragazzi, M.; Rada, E.C.; Schiavon, M. Municipal solid waste management during the SARS-CoV-2 outbreak and lockdown ease: Lessons from Italy. Sci. Total Environ. 2020, 745, 141159. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives. Appl. Energy 2021, 283, 116129. [Google Scholar] [CrossRef]
- Skibiński, A. Demograficzne aspekty zarządzania gospodarką stałymi odpadami komunalnymi w dobie COVID-19. Przemysł Chem. 2021, 1, 94–96. [Google Scholar] [CrossRef]
- Variny, M.; Varga, A.; Rimár, M.; Janošovský, J.; Kizek, J.; Lukáč, L.; Jablonský, G.; Mierka, O. Advances in biomass co-combustion with fossil fuels in the European context: A review. Processes 2021, 9, 100. [Google Scholar] [CrossRef]
- Mohammad, A.; Goli, V.S.N.S.; Singh, D.N. Discussion on ‘Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic, by Sharma et al. (2020)’. Resour. Conserv. Recycl. 2021, 164, 105175. [Google Scholar] [CrossRef]
- Available online: https://raportsdg.stat.gov.pl/2020/index.html (accessed on 3 March 2022).
- Solarz, J.; Waliszewski, K. Pandrmia czy wojna pokoleń? J. Financ. Financ. Law 2020, 2, 99–114. [Google Scholar]
- Zhou, C.; Yang, G.; Ma, S.; Liu, Y.; Zhao, Z. The impact of the COVID-19 pandemic on waste-to-energy and waste-to-material industry in China. Renew. Sustain. Energy Rev. 2021, 139, 110693. [Google Scholar] [CrossRef]
- Dharmaraj, S.; Ashokkumar, V.; Hariharan, S.; Manibharathi, A.; Show, P.L.; Tung, C.C.; Ngamcharussrivichai, C. The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Chemosphere 2021, 272, 129601. [Google Scholar] [CrossRef]
- Shams, M.; Alam, I.; Mahbub, M.S. Plastic Pollution During COVID-19: Plastic Waste Directives and Its Long-term Impact on The Environment. Environ. Adv. 2021, 5, 100119. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.S.; Sharif, S.; Masnoon, A.; Rashid, E. SARS-CoV-2 pandemic-induced PPE and single-use plastic waste generation scenario. Waste Manag. Res. 2021, 39, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Benson, N.U.; Fred-Ahmadu, O.H.; Bassey, D.E.; Atayero, A.A. COVID-19 Pandemic and Emerging Plastic-based Personal Protective Equipment Waste Pollution and Management in Africa. J. Environ. Chem. Eng. 2021, 9, 105222. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A.; Mekonnen, B.A. Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: A waste-to-energy conversion via Pyrolysis. Environ. Syst. Res. 2021, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020, 262, 114665. [Google Scholar] [CrossRef] [PubMed]
- Ramteke, S.; Sahu, B.L. Novel coronavirus disease 2019 (COVID-19) pandemic: Considerations for the biomedical waste sector in India. Case Stud. Chem. Environ. Eng. 2020, 2019, 100029. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, G.; Chen, C.; Wang, Y.; Wang, W.; Li, A. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Process. Technol. 2020, 206, 106455. [Google Scholar] [CrossRef]
- Veksha, A.; Yin, K.; Moo, J.G.S.; Oh, W.D.; Ahamed, A.; Chen, W.Q.; Weerachanchai, P.; Giannis, A.; Lisak, G. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction. J. Hazard. Mater. 2020, 387, 121256. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Iyer, J.S.; Mohanty, K. Conversion of waste biomass and waste nitrile gloves into renewable fuel. Waste Manag. 2019, 89, 397–407. [Google Scholar] [CrossRef]
- Kumar Mishra, R.; Mohanty, K. Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals. Carbon Resour. Convers. 2020, 3, 145–155. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. J. Environ. Manag. 2019, 239, 395–406. [Google Scholar] [CrossRef]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Sharma, S.; Dwivedi, S.K. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resour. Conserv. Recycl. 2021, 164, 105156. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, V.; De Maio, F.; De Spirito, M.; Papi, M. Face masks and nanotechnology: Keep the blue side up. Nano Today 2021, 37, 101077. [Google Scholar] [CrossRef]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Ippolito, M.; Vitale, F.; Accurso, G.; Iozzo, P.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Medical masks and Respirators for the Protection of Healthcare Workers from SARS-CoV-2 and other viruses. Pulmonology 2020, 26, 204–212. [Google Scholar] [CrossRef]
- Rowan, N.J.; Laffey, J.G. Unlocking the surge in demand for personal and protective equipment (PPE) and improvised face coverings arising from coronavirus disease (COVID-19) pandemic—Implications for efficacy, re-use and sustainable waste management. Sci. Total Environ. 2021, 752, 142259. [Google Scholar] [CrossRef]
- Jung, S.; Lee, S.; Dou, X.; Kwon, E.E. Valorization of disposable COVID-19 mask through the thermo-chemical process. Chem. Eng. J. 2021, 405, 126658. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Das, P.; Tiwari, P. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Manag. 2018, 79, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Variny, M.; Jediná, D.; Rimár, M.; Kizek, J.; Kšiňanová, M. Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit. Int. J. Environ. Res. Public Health 2021, 18, 10370. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; You, J.X.; Lu, C.; Chen, Y.Z. Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renew. Sustain. Energy Rev. 2015, 41, 932–942. [Google Scholar] [CrossRef]
- Kumar Jha, K.; Kannan, T.T.M. Recycling of plastic waste into fuel by pyrolysis—A review. Mater. Today Proc. 2020, 37, 3718–37203. [Google Scholar] [CrossRef]
- Zaman, C.Z.; Pal, K.; Yehye, W.A.; Sagadevan, S.; Shah, S.T.; Adebisi, G.A.; Marliana, E.; Rafique, R.F.; Johan, R. Pyrolysis: A Sustainable Way to Generate Energy from Waste, Pyrolysis; IntechOpen: Rijeka, Croatia, 2017; Tom 1; pp. 3–36. [Google Scholar]
- Rajca, P.; Poskart, A.; Chrubasik, M.; Sajdak, M.; Zajemska, M.; Skibiński, A.; Korombel, A. Technological and economic aspect of Refuse Derived Fuel pyrolysis. Renew. Energy 2020, 161, 482–494. [Google Scholar] [CrossRef]
- Jagustyn, B.; Kmieć, M.; Smędowski, Ł.; Sajdak, M. The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards. J. Energy Inst. 2017, 90, 704–714. [Google Scholar] [CrossRef]
- Sajdak, M.; Muzyka, R. Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part I: The effect of the addition of plastic waste on the process and products. J. Anal. Appl. Pyrolysis 2014, 107, 267–275. [Google Scholar] [CrossRef]
- Mazurek, I.; Skawińska, A.; Sajdak, M. Analysis of chlorine forms in hard coal and the impact of leaching conditions on chlorine removal. J. Energy Inst. 2021, 94, 337–351. [Google Scholar] [CrossRef]
- Gałko, G.; Rejdak, M.; Tercki, D.; Bogacka, M.; Sajdak, M. Evaluation of the applicability of polymeric materials to BTEX and fine product transformation by catalytic and non-catalytic pyrolysis as a part of the closed loop material economy. J. Anal. Appl. Pyrolysis 2021, 154, 105017. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Gajek, M.; Zajemska, M.; Jayaraman, K.; Gokalp, I. Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques. Bioresour. Technol. 2017, 243, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Mlonka-Mędrala, A.; Evangelopoulos, P.; Sieradzka, M.; Zajemska, M.; Magdziarz, A. Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char: Experimental and numerical investigations. Fuel 2021, 296, 120611. [Google Scholar] [CrossRef]
- Pelucchi, M.; Frassoldati, A.; Faravelli, T.; Ruscic, B.; Glarborg, P. High-temperature chemistry of HCl and Cl2. Combust. Flame 2015, 162, 2693–2704. [Google Scholar] [CrossRef] [Green Version]
- Ranzi, E.; Cuoci, A.; Faravelli, T.; Frassoldati, A.; Migliavacca, G.; Pierucci, S.; Sommariva, S. Chemical Kinetics of Biomass Pyrolysis. Energy Fuels 2008, 22, 4292–4300. [Google Scholar] [CrossRef]
- Ranzi, E.; Pierucci, S.; Aliprandi, P.C.; Stringa, S. Comprehensive and detailed kinetic model of a traveling grate combustor of biomass. Energy Fuels 2011, 25, 4195–4205. [Google Scholar] [CrossRef]
- Faravelli, T.; Frassoldati, A.; Migliavacca, G.; Ranzi, E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 2010, 34, 290–301. [Google Scholar] [CrossRef]
- Poskart, A.; Skrzyniarz, M.; Sajdak, M.; Zajemska, M.; Skibiński, A. Management of lignocellulosic waste towards energy recovery by pyrolysis in the framework of circular economy strategy. Energies 2021, 14, 5864. [Google Scholar] [CrossRef]
- Zajemska, M.; Rajca, P.; Szwaja, S.; Morel, S. The chemical mechanism of the HCL formation in the pyrolysis process of selected wastes. Przem. Chem. 2019, 98, 907–910. [Google Scholar] [CrossRef]
- Sieradzka, M.; Rajca, P.; Zajemska, M.; Mlonka-Mędrala, A.; Magdziarz, A. Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software—Ansys Chemkin-Pro. J. Clean. Prod. 2020, 248, 119277. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Abdelnaby, M.A. Pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of Coronavirus Face Masks. J. Anal. Appl. Pyrolysis 2021, 156, 105118. [Google Scholar] [CrossRef]
- Szwaja, S.; Zajemska, M.; Szwaja, M.; Maroszek, A. Integration of waste biomass thermal processing technology with a metallurgical furnace to improve its efficiency and economic benefit. Clean Technol. Environ. Policy 2021. [Google Scholar] [CrossRef]
Plastic | Proximate Analysis (wt% Dry Basis) | Elemental Analysis (wt% Dry Basis) | LHV (MJ/kg) | Source | |||||
---|---|---|---|---|---|---|---|---|---|
Volatile Matter | Ash | C | H | N | S | O | |||
HDPE | 98.2 | 1.8 | 84.5 | 13.8 | 0.1 | 0.1 | 1.5 | 43.0 | [30] |
LDPE | 99.8 | 0.0 | 86.8 | 12.9 | 0.1 | - | 0.2 | 43.6 | |
PP | 99.6 | 0.4 | 85.0 | 13.9 | 0.1 | 0.0 | 1.0 | 43.6 | |
PS | 99.8 | 0.1 | 90.5 | 7.9 | 0.4 | 0.2 | 1.0 | 38.8 | |
PET | 92.9 | 6.9 | 62.5 | 4.0 | 0.1 | 0.0 | 33.5 | 21.1 | |
PET-12 | - | 4.9 | 77.1 | 12.6 | 0.2 | - | 5.2 | - | [31] |
PET-28 | - | 12.1 | 67.2 | 9.7 | 0.1 | - | 10.9 | - | |
PET | 86.75 | 6.83 | 63.94 | 4.52 | 0.01 | 0.04 | 31.49 | - | [32] |
PS | 98.81 | - | 92.2 | 7.8 | - | - | - | 41.25 | [33] |
PE | 99.96 | - | 85.5 | 14.5 | - | - | - | - | |
HDPE | 91.88 | 3.9 | 83.4 | 12.71 | 1.08 | 0.002 | 2.8 | 46.48 | [34] |
PP | 93.84 | 3.68 | 83.28 | 13.81 | 1.01 | 0.001 | 1.90 | 44.43 | |
PS | 94.33 | 0.84 | 89.2 | 8.78 | 0.01 | 0.00 | 2.01 | 40.34 |
Material | Proximate Analysis (wt% Dry Basis) | Elemental Analysis (wt% Dry Basis) | |||||||
---|---|---|---|---|---|---|---|---|---|
Ash | Moisture | Voltaire Matter | C | H | N | S | O | Cl | |
Plastic waste of protective mask | 4.76 | 1.23 | 95.24 | 76.4 | 11.65 | 1.12 | 0.16 | 4.65 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrzyniarz, M.; Sajdak, M.; Zajemska, M.; Iwaszko, J.; Biniek-Poskart, A.; Skibiński, A.; Morel, S.; Niegodajew, P. Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis. Energies 2022, 15, 2629. https://doi.org/10.3390/en15072629
Skrzyniarz M, Sajdak M, Zajemska M, Iwaszko J, Biniek-Poskart A, Skibiński A, Morel S, Niegodajew P. Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis. Energies. 2022; 15(7):2629. https://doi.org/10.3390/en15072629
Chicago/Turabian StyleSkrzyniarz, Magdalena, Marcin Sajdak, Monika Zajemska, Józef Iwaszko, Anna Biniek-Poskart, Andrzej Skibiński, Sławomir Morel, and Paweł Niegodajew. 2022. "Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis" Energies 15, no. 7: 2629. https://doi.org/10.3390/en15072629
APA StyleSkrzyniarz, M., Sajdak, M., Zajemska, M., Iwaszko, J., Biniek-Poskart, A., Skibiński, A., Morel, S., & Niegodajew, P. (2022). Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis. Energies, 15(7), 2629. https://doi.org/10.3390/en15072629