Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying
Abstract
:1. Introduction
- Smaller input DNN produces smaller DNN structures, which requires less computational burden, enabling it to be launched on different Evaluation Module (EVM) boards.
- Additional filters are not required during signal processing. The signal could be analyzed immediately after analog-to-digital processing, which reduces the signal processing time.
- Under the same testing conditions, the proposed DNN outperforms the previous studies in terms of the converging time.
2. Deep Neural Network-Based Removal of a Decaying DC Offset
2.1. DNN Architecture
2.2. Datasets
3. Results and Discussion
3.1. Result of The First Layer Autoencoder
3.2. Validation of the 64-Samples Scenario
3.3. Validation of the 60-Samples Scenario
3.4. Validation of the 58-Samples Scenario (DNN58)
3.5. Validation of The 57-Samples Scenario
3.6. DNN Results Using 58 Data Windows from 64 Samples Per Cycle
3.7. DNN Results Using the Different Samples Per Cycle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jyh-Cherng, G.; Sun-Li, Y. Removal of DC offset in current and voltage signals using a novel Fourier filter algorithm. IEEE Trans. Power Deliv. 2000, 15, 73–79. [Google Scholar] [CrossRef]
- Jyh-Cherng, G. Removal of decaying DC in current and voltage signals using a modified Fourier filter algorithm. IEEE Trans. Power Deliv. 2001, 16, 372–379. [Google Scholar] [CrossRef]
- Sachdev, M.S.; Baribeau, M.A. A New Algorithm for Digital Impedance Relays. IEEE Trans. Power Appar. Syst. 1979, PAS-98, 2232–2240. [Google Scholar] [CrossRef]
- Girgis, A.A.; Brown, R.G. Application of Kalman Filtering in Computer Relaying. IEEE Power Eng. Rev. 1981, PER-1, 43–44. [Google Scholar] [CrossRef]
- Sachdev, M.S.; Wood, H.C.; Johnson, N.G. Kalman Filtering Applied to Power System Measurements for Relaying. IEEE Power Eng. Rev. 1985, PER-5, 52–53. [Google Scholar] [CrossRef]
- Dash, P.K.; Panda, D.K. Digital impedance protection of power transmission lines using a spectral observer. IEEE Trans. Power Deliv. 1988, 3, 102–110. [Google Scholar] [CrossRef]
- Youssef, O.A.S. A fundamental digital approach to impedance relays. IEEE Trans. Power Deliv. 1992, 7, 1861–1870. [Google Scholar] [CrossRef]
- Benmouyal, G. Removal of DC-offset in current waveforms using digital mimic filtering. IEEE Trans. Power Deliv. 1995, 10, 621–630. [Google Scholar] [CrossRef]
- Sachdev, M.S.; Nagpal, M. A recursive least error squares algorithm for power system relaying and measurement applications. IEEE Trans. Power Deliv. 1991, 6, 1008–1015. [Google Scholar] [CrossRef]
- Ferrer, H.J.A.; Verduzco, I.D.; Martinez, E.V. Fourier and Walsh digital filtering algorithms for distance protection. IEEE Trans. Power Syst. 1996, 11, 457–462. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Bajrić, R.; Wang, L. Application of the DC Offset Cancellation Method and S Transform to Gearbox Fault Diagnosis. Appl. Sci. 2017, 7, 207. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Hwang, S.-H. DC Offset Error Compensation Algorithm for PR Current Control of a Single-Phase Grid-Tied Inverter. Energies 2018, 11, 2308. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O. On the DC Offset Current Generated during Biphasic Stimulation: Experimental Study. Electronics 2020, 9, 1198. [Google Scholar] [CrossRef]
- Soon-Ryul, N.; Sang-Hee, K.; Jong-Keun, P. An analytic method for measuring accurate fundamental frequency components. IEEE Trans. Power Deliv. 2002, 17, 405–411. [Google Scholar] [CrossRef]
- Yong, G.; Kezunovic, M.; Deshu, C. Simplified algorithms for removal of the effect of exponentially decaying DC-offset on the Fourier algorithm. IEEE Trans. Power Deliv. 2003, 18, 711–717. [Google Scholar] [CrossRef]
- Kang, S.; Lee, D.; Nam, S.; Crossley, P.A.; Kang, Y. Fourier Transform-Based Modified Phasor Estimation Method Immune to the Effect of the DC Offsets. IEEE Trans. Power Deliv. 2009, 24, 1104–1111. [Google Scholar] [CrossRef]
- Nam, S.; Park, J.; Kang, S.; Kezunovic, M. Phasor Estimation in the Presence of DC Offset and CT Saturation. IEEE Trans. Power Deliv. 2009, 24, 1842–1849. [Google Scholar] [CrossRef]
- Zadeh, M.R.D.; Zhang, Z. A New DFT-Based Current Phasor Estimation for Numerical Protective Relaying. IEEE Trans. Power Deliv. 2013, 28, 2172–2179. [Google Scholar] [CrossRef]
- Rahmati, A.; Adhami, R. An Accurate Filtering Technique to Mitigate Transient Decaying DC Offset. IEEE Trans. Power Deliv. 2014, 29, 966–968. [Google Scholar] [CrossRef]
- Silva, K.M.; Nascimento, F.A.O. Modified DFT-Based Phasor Estimation Algorithms for Numerical Relaying Applications. IEEE Trans. Power Deliv. 2018, 33, 1165–1173. [Google Scholar] [CrossRef]
- Silva, K.; Kusel, B.F. DFT based phasor estimation algorithm for numerical digital relaying. Electron. Lett. 2013, 49, 412–414. [Google Scholar] [CrossRef]
- Nam, S.-R.; Kang, S.-H.; Sohn, J.-M.; Park, J.-K. Modified Notch Filter-based Instantaneous Phasor Estimation for High-speed Distance Protection. Electr. Eng. 2007, 89, 311–317. [Google Scholar] [CrossRef]
- Mahari, A.; Sanaye-Pasand, M.; Hashemi, S.M. Adaptive Phasor Estimation Algorithm to Enhance Numerical Distance Protection. IET Gener. Transm. Distrib. 2017, 11, 1170–1178. [Google Scholar] [CrossRef]
- Gopalan, S.A.; Mishra, Y.; Sreeram, V.; Iu, H.H. An Improved Algorithm to Remove DC Offsets from Fault Current Signals. IEEE Trans. Power Deliv. 2017, 32, 749–756. [Google Scholar] [CrossRef]
- Cho, Y.S.; Lee, C.K.; Jang, G.; Lee, H.J. An Innovative Decaying DC Component Estimation Algorithm for Digital Relaying. IEEE Trans. Power Deliv. 2009, 24, 73–78. [Google Scholar] [CrossRef]
- Kim, S.B.; Lee, S.W.; Son, D.H.; Nam, S.R. DC Offset Removal in Power Systems Using Deep Neural Network. In Proceedings of the 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–21 February 2019; IEEE: Washington, DC, USA, 2019; pp. 1–5. [Google Scholar]
- Kim, S.-B.; Sok, V.; Kang, S.-H.; Lee, N.-H.; Nam, S.-R. A Study on Deep Neural Network-Based DC Offset Removal for Phase Estimation in Power Systems. Energies 2019, 12, 1619. [Google Scholar] [CrossRef] [Green Version]
- Nagamine, T.; Seltzer, M.; Mesgarani, N. On the Role of Nonlinear Transformations in Deep Neural Network Acoustic Models. In Interspeech; International Speech Communication Association, ISCA: Baixas, France, 2016; pp. 803–807. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Liang, J.; Jin, Y.; Wu, F.; Wang, X.; Chen, E. Online Evaluation Method for Low Frequency Oscillation Stability in a Power System Based on Improved XGboost. Energies 2018, 11, 3238. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Hu, T.; Ye, C.; Xu, G.; Wang, X.; Chen, L. Electric Load Data Compression and Classification Based on Deep Stacked Auto-Encoders. Energies 2019, 12, 653. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Choi, W.; Jeon, Y.; Liu, L. A Hybrid Neural Network Model for Power Demand Forecasting. Energies 2019, 12, 931. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- IEEE Std 519-2014 (Revision of IEEE Std 519-1992); IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. IEEE: Danvers, MA, USA, 2014; pp. 1–29. [CrossRef]
Parameter | Value |
---|---|
Time constant (ms) | 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 |
Fault inception angle (°) | 0, 90, 180, −90 |
Second harmonics ratio (%) | 0, 10, 20 |
Third harmonics ratio (%) | 0, 7, 14 |
Fourth harmonics ratio (%) | 0, 5, 10 |
Fifth harmonics ratio (%) | 0, 3, 6 |
Signal-to-noise ratio (dB) | 25, 40 |
Parameter | Value |
---|---|
Time constant (ms) | 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 |
Fault inception angle (°) | 0, 45, 90, 135, 180 |
Second harmonics ratio (%) | 0, 10, 20, 30 |
Third harmonics ratio (%) | 0, 7, 14, 21 |
Forth harmonics ratio (%) | 0, 5, 10, 15 |
Fifth harmonics ratio (%) | 0, 3, 6 |
Signal-to-noise ratio (dB) | 25, 40 |
Data Window Size | Maximum | Average | Variance |
---|---|---|---|
64 | 14.00531 | 1.13002 | 1.14886 |
63 | 14.48204 | 1.17732 | 1.32129 |
62 | 19.33602 | 1.22052 | 1.55644 |
61 | 24.69743 | 1.49729 | 1.87338 |
60 | 29.77590 | 2.30191 | 2.72297 |
59 | 43.23114 | 1.95650 | 2.89949 |
58 | 63.76960 | 3.19396 | 4.33714 |
57 | 327.6986 | 6.4972 | 16.43218 |
Sequence | Parameters | Value | Unit |
---|---|---|---|
Positive and negative | R1, R2 | 0.0001 | Ω/m |
L1, L2 | 0.0004 | Ω/m | |
C1, C2 | 265.258 | MΩ/m | |
Zero | R0 | 0.0002 | Ω/m |
L0 | 0.0008 | Ω/m | |
C0 | 530.516 | MΩ/m |
Fault Location (km) | Fault Inception Angle (°) | DNN3 (ms) | DNN (ms) | Partial Sum (ms) | DFT (ms) |
---|---|---|---|---|---|
5 | 0 | 14.062 | 13.541 | 14.322 | 38.541 |
20 | 14.322 | 13.802 | 14.322 | 38.281 | |
45 | 15.104 | 14.843 | 15.364 | 30.208 | |
80 | 19.270 | 18.229 | 16.927 | 17.708 | |
180 | 14.062 | 13.541 | 14.322 | 38.541 | |
10 | 0 | 13.802 | 13.281 | 14.062 | 38.020 |
25 | 0 | 14.322 | 13.541 | 14.322 | 37.760 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sok, V.; Lee, S.-W.; Kang, S.-H.; Nam, S.-R. Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying. Energies 2022, 15, 2644. https://doi.org/10.3390/en15072644
Sok V, Lee S-W, Kang S-H, Nam S-R. Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying. Energies. 2022; 15(7):2644. https://doi.org/10.3390/en15072644
Chicago/Turabian StyleSok, Vattanak, Sun-Woo Lee, Sang-Hee Kang, and Soon-Ryul Nam. 2022. "Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying" Energies 15, no. 7: 2644. https://doi.org/10.3390/en15072644
APA StyleSok, V., Lee, S. -W., Kang, S. -H., & Nam, S. -R. (2022). Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying. Energies, 15(7), 2644. https://doi.org/10.3390/en15072644