Recovery of Sewage Sludge in the Cement Industry
Abstract
:1. Introduction
2. Chemical Properties of Sewage Sludge Ash
2.1. Chemical Composition
2.2. Hydration Characteristics of Ash
3. Mechanical Properties of Sewage Sludge Ash
3.1. Compression Strength
Sample | 0% | 5% | 10% | 15% | 20% | |
---|---|---|---|---|---|---|
[27] | 21.00 | - | - | - | 25.00 | |
1 day, [N/mm2] | [29] | 10.00 | - | 9.00 | - | 8.00 |
[30] | 7.43 | - | 2.11 | - | - | |
[6] | 7.95 | 7.39 | 6.85 | 6.07 | 5.84 | |
7 day, [N/mm2] | [27] | 34.00 | - | - | - | 33.00 |
[29] | 20.00 | - | 19.00 | - | 18.00 | |
[30] | 23.39 | - | 22.75 | - | - | |
[6] | 23.21 | 21.22 | 19.62 | 17.03 | 14.73 | |
[28] | 34.00 | - | - | - | 27.00 | |
28 day, [N/mm2] | [27] | 45.00 | - | - | - | 43.00 |
[30] | 35.02 | - | 35.53 | - | - | |
[29] | 48.00 | - | 42.00 | - | 40.00 | |
[6] | 30.07 | 33.09 | 25.24 | 23.16 | 15.68 | |
[28] | 42.00 | - | - | - | 38.00 | |
90 day, [N/mm2] | [28] | 47.00 | - | - | - | 46.00 |
[30] | 42.06 | - | 44.30 | - | - | |
[29] | 55.00 | - | 50.00 | - | 45.00 | |
[27] | 49.00 | - | - | - | 47.00 |
3.2. Workability
3.3. The Porosity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rusanescu, C.O.; Rusanescu, M.; Jinescu, C.; Durbaca, I. Recovery of Treated Sludge. Rev. Chim. 2019, 70, 3477–3481. [Google Scholar] [CrossRef]
- Christodoulou, A.; Stamatelatou, K. Overview of legislation on sewage sludge management in developed countries worldwide. Water Sci. Technol. 2016, 73, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Purdea, L.; Rusanescu, C.O.; Tucureanu, M.C. Alternative for the Use of Sewage Sludge in Romania. Rev. Chim. 2019, 70, 1967–1970. [Google Scholar] [CrossRef]
- Voicu, G.; Ciobanu, C.; Istrate, I.A.; Tudor, P. Emissions Control of Hydrochloric and Fluorhydric Acid in cement Factories from Romania. Int. J. Environ. Res. Public Health 2020, 17, 1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrew, R. Global CO2 emissions from cement production 2018. Earth Syst. Sci. Data ESSD 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Ing, D.S.; Chin, S.C.; Guan, T.K.; Suil, A. The use of sewage sludge ash (SSA) as partial replacement of cement in concrete. ARPN J. Eng. Appl. Sci. 2016, 11, 3771–3775. [Google Scholar]
- Activity Report CEMBUREAU. 2020. Available online: https://www.cembureau.eu/media/m2ugw54y/cembureau-2020-activity-report.pdf (accessed on 2 September 2021).
- Chen, Z.; Poon, C.S. Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Constr. Build. Mater. 2017, 154, 791–803. [Google Scholar] [CrossRef]
- Țucureanu, M.C.; Rusănescu, C.O.; Purdea, L. Polluting Emissions from Incineration and Waste Installations. Rev. Chim. 2019, 70, 2385–2387. [Google Scholar] [CrossRef]
- Eurostat. Eurostat Database: Sewage Sludge Production and Disposal from Urban Wastewater. 2021. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=env_ww_spd (accessed on 2 September 2021).
- Yang, G.; Zhang, G.M.; Wang, H.C. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, P.; Gao, P.; Wei, J.; Yu, Q. Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview. Resour. Conserv. Recycl. 2013, 74, 134–143. [Google Scholar] [CrossRef]
- Ulmanu, M.; Matsi, T.; Gament, E.; Olănescu, G.; Predescu, C.; Sohaciu, M. The remedial treatment of soil polluted with heavy metals using fly ash. UPB Sci. Bull. B Chem. Mater. Sci. 2007, 69, 109–116. [Google Scholar]
- Tepeș-Bobescu, L. Aspects regarding the environmental impact due to the use of alternative fuels in cement manufacturing process. Int. J. Eng. 2018, 4, 75–78. [Google Scholar]
- Ghiocel, A.N.; Panaitescu, V.N. Using sewage sludge as an alternative fuel for the cement production process. IOP Conf. Ser. Mater. Sci. Eng. 2018, 400, 022029. [Google Scholar] [CrossRef] [Green Version]
- Haustein, E.; Kuryłowicz-Cudowska, A.; Łuczkiewicz, A.; Fudala-Ksiazek, S.; Cieślik, B.M. Influence of Cement Replacement with Sewage Sludge Ash (SSA) on the Heat of Hydration of Cement Mortar. Materials 2022, 15, 1547. [Google Scholar] [CrossRef]
- Amminudin, A.L.; Ramadhansyah, P.J.; Doh, S.I.; Mangi, S.A.; Haziman, W.I.M. Effect of Dried Sewage Sludge on Compressive Strength of Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 712, 012042. [Google Scholar] [CrossRef]
- Monzó, J.; Payá, J.; Borrachero, M.; Girbés, I. Reuse of sewage sludge ashes (SSA) in cement mixtures: The effect of SSA on the workability of cement mortars. J. Waste Manag. 2003, 23, 373–381. [Google Scholar] [CrossRef]
- Pan, J.R.; Huang, C.; Lin, S. Reuse of fresh water sludge in cement making. Water Sci. Technol. 2004, 50, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, R.O.; Noor, Z.Z.; Din, M.F.M.; Abba, A.H. Use of sewage sludge ash (SSA) in the production of cement and concrete—A review. Int. J. Glob. Environ. Issues 2012, 12, 214. [Google Scholar] [CrossRef]
- Lin, D.-F.; Luo, H.-L.; Sheen, Y.-N. Glazed Tiles Manufactured from Incinerated Sewage Sludge Ash and Clay. J. Air Waste Manag. Assoc. 2005, 55, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Donatello, S.; Cheeseman, C.R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. J. Waste Manag. 2013, 33, 2328–2340. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, V.M.; Ramezanianpour, A.A. Fly Ash in Concrete; Canada Center for Mineral and Energy (CANMET): Ottawa, ON, Canada, 1994. [Google Scholar]
- Jamshidi, A.; Jamshidi, M.; Mehrdadi, N.; Shasavandi, A.; Pacheco-Torgal, F. Mechanical Performance of Concrete with Partial Replacement of Sand by Sewage Sludge Ash from Incineration. Mater. Sci. Forum 2012, 730–732, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Rutkowska, G.; Wichowski, P.; Franus, M.; Mendryk, M.; Fronczyk, J. Modification of Ordinary Concrete Using Fly Ash from Combustion of Municipal Sewage Sludge. Materials 2020, 13, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, T.K.; Nair, S.K. Compressive Strength of Concrete with Sewage Sludge Ash (SSA). IOP Conf. Ser. Mater. Sci. Eng. 2018, 371, 012009. [Google Scholar] [CrossRef]
- Mejdia, M.; Saillioa, M.; Chaussadenta, T.; Diveta, L.; Tagnit-Hamou, A. Hydration mechanisms of sewage sludge ashes used as cement replacement. Cem. Concr. Res. 2020, 135, 106–115. [Google Scholar] [CrossRef]
- Chen, Z.; Poon, C.S. Comparing the use of sewage sludge ash and glass powder in cement mortars. Environ. Technol. 2017, 38, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Piasta, W.; Lukawska, M. The Effect of Sewage Sludge Ash on Properties of Cement Composites. Procedia Eng. 2016, 161, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Kappel, A.; Ottosen, L.M.; Kirkelund, G.M. Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash. Constr. Build. Mater. 2017, 157, 1199–1205. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, J.; Lu, J.; Cheeseman, C.; Poon, C.S. Recycling incinerated sewage sludge ash (ISSA) as a cementi-tious binder by lime activation. J. Clean. Prod. 2020, 244, 118856. [Google Scholar] [CrossRef]
- Krejcirikova, B.; Ottosen, L.M.; Kirkelund, G.M.; Rode, C.; Peuhkuri, R. Characterization of sewage sludge ash and its effect on moisture physics of mortar. J. Build. Eng. 2019, 21, 396–403. [Google Scholar] [CrossRef]
- EN 197-1; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; European Committee for Standardization: Brussels, Belgium, 2011.
- Fontes, C.M.A.; Toledo Filho, R.D.; Barbosa, M.C. Sewage sludge ash (SSA) in high performance concrete: Characterization and application. Rev. Ibracon Estrut. Mater. 2016, 9, 989–1006. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.-S.; Chiou, I.-J.; Chen, C.-H.; Wang, D. Lightweight properties and pore structure of foamed material made from sewage sludge ash. Constr. Build. Mater. 2005, 19, 627–633. [Google Scholar] [CrossRef]
- Rutkowska, G.; Wichowski, P.; Fronczyk, J.; Franus, M.; Chalecki, M. Use of fly ashes from municipal sewage sludge combustion in production of ash concretes. Constr. Build. Mater. 2018, 188, 874–883. [Google Scholar] [CrossRef]
- Baeza, F.; Payá, J.; Galao, O.; Saval, J.M.; Garcés, P. Blending of Industrial Waste from Different Sources as Partial Substitution of Portland cement in Pastes and Mortars. J. Constr. Build. Mater. 2014, 66, 645–653. [Google Scholar] [CrossRef]
- Weeks, C.; Hand, R.J.; Sharp, J.H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr. Compos. 2008, 30, 970–978. [Google Scholar] [CrossRef]
- Cyr, M.; Coutand, M.; Clastres, P. Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 2007, 37, 1278–1289. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Y.; Xiao, Y.; Yu, Z. Performance of cement pastes containing sewage sludge ash at elevated temperatures. Constr. Build. Mater. 2019, 211, 785–795. [Google Scholar] [CrossRef]
- Garcés, P.; Pérez Carrión, M.; García-Alcocel, E.; Payá, J.; Monzó, J.; Borrachero, M.V. Mechanical and physical properties of cement blended with sewage sludge ash. Waste Manag. 2008, 28, 2495–2502. [Google Scholar] [CrossRef]
- Vouk, D.; Nakic, D.; Stirmer, N.; Cheeseman, C.R. Use of sewage sludge ash in cementitious materials. Rev. Adv. Mater. Sci. 2017, 49, 158–170. [Google Scholar]
- Akashi, O.; Hanaoka, T. Technological feasibility and costs of achieving a 50% reduction of global GHG emissions by 2050: Mid- and long-term perspectives. Sustain. Sci. 2012, 7, 139–156. [Google Scholar] [CrossRef] [Green Version]
- Donatello, S.; Freeman-Pask, A.; Tyrer, M.; Cheeseman, C. Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cem. Concr. Compos. 2010, 32, 54–61. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Lu, H.; Williams, C.; Price, L. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry; Ernest Orlando Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2012. [Google Scholar]
Indicatory | Unit Measure | Value |
---|---|---|
Net calorific value | GJ/t | 8.92 |
Humidity | % | 12.20 |
Mercury | mg/kg | 0.809 |
Cadmium | mg/kg | 2.17 |
Plumb | mg/kg | 42.50 |
Crom | mg/kg | 73.00 |
Cupru | mg/kg | 370.00 |
Mangan | mg/kg | 460.00 |
Arsen | mg/kg | 6.14 |
Zinc | mg/kg | 985.00 |
Petroleum products | mg/kg | 7780.00 |
The Component Element | Sewage Sludge Ash [%] | Portland Cement [%] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
[29] | [30] | [27] | [28] | [31] | [29] | [30] | [27] | [28] | [31] | |
SiO2 | 16.60 | 17.10 | 28.60 | 28.30 | 37.04 | 19.50 | 20.10 | 19.50 | 19.80 | 20.33 |
Al2O3 | 5.10 | 5.10 | 17.60 | 12.50 | 15.24 | 6.00 | 4.91 | 4.40 | 3.90 | 5.21 |
Fe2O3 | 9.10 | 15.70 | 4.40 | 18.60 | 14.03 | 3.10 | 5.43 | 2.60 | 3.20 | 3.13 |
MnO | - | 0.09 | - | 0.20 | - | - | 0.04 | - | 0.10 | - |
P2O5 | 15.00 | 20.20 | 1.90 | 0.50 | 9.12 | - | 0.23 | - | 0.90 | 0.20 |
CaO | 12.90 | 23.80 | 20.10 | 10.60 | 6.91 | 62.10 | 65.70 | 60.50 | 65.20 | 64.00 |
K2O | 2.80 | 1.57 | 1.90 | 1.90 | 2.77 | - | 0.81 | 0.90 | 0.70 | 0.63 |
MgO | 3.80 | 2.32 | 2.30 | 3.20 | 2.80 | 1.70 | 0.53 | 2.90 | 1.50 | 1.62 |
SO3 | 2.10 | 2.02 | 2.00 | 6.20 | 3.66 | 2.60 | 4.74 | 3.63 | 5.50 | 4.17 |
Na2O | 3.50 | 1.15 | 1.23 | 7.40 | 7.11 | 0.80 | 0.67 | 0.24 | - | - |
TiO2 | - | 0.83 | 1.50 | 0.50 | 0.38 | - | 0.35 | 0.20 | 0.30 | 0.27 |
ZnO | - | - | 0.52 | - | - | - | - | - | - | - |
Cl | 0.01 | 0.01 | - | - | - | 0.03 | 0.10 | - | - | - |
Loss on ignition (LOI) | - | - | 0.70 | - | - | - | - | 2.70 | - | - |
Type of Cement CEM I | Characteristics | Conditions |
---|---|---|
CEM I 42.5 R | Initial setting time | ≥60 min |
Compressive strength 2 days | ≥20 MPa | |
Compressive strength 28 days | ≥42.5 MPa…≤62.5 MPa | |
Loss on ignition | ≤5% | |
Sulfate content (as SO3) | ≤4% | |
Chloride content | ≤0.10% | |
CEM I 52.5 R | Initial setting time | ≥100 min ≤ 140 min |
Compressive strength 2 days | ≥30 MPa | |
Compressive strength 28 days | ≥52.5 MPa | |
Loss on ignition | ≤5% | |
Sulfate content (as SO3) | ≤4% | |
Chloride content | ≤0.10% |
Class | Description | Constituents |
---|---|---|
CEM I | Portland cement | Comprising Portland cement and up to 5% of minor additional constituents |
CEM II | Portland-composite cement | Portland cement and up to 35% of other single constituents |
CEM III | Blast furnace cement | Portland cement and higher percentages of blast furnace slag. |
CEM IV | Pozzolanic cement | Portland cement and up to 55% of pozzolanic constituents. |
CEM V | Composite cement | Portland cement, blast furnace slag, or fly ash and pozzolana. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusănescu, C.O.; Voicu, G.; Paraschiv, G.; Begea, M.; Purdea, L.; Petre, I.C.; Stoian, E.V. Recovery of Sewage Sludge in the Cement Industry. Energies 2022, 15, 2664. https://doi.org/10.3390/en15072664
Rusănescu CO, Voicu G, Paraschiv G, Begea M, Purdea L, Petre IC, Stoian EV. Recovery of Sewage Sludge in the Cement Industry. Energies. 2022; 15(7):2664. https://doi.org/10.3390/en15072664
Chicago/Turabian StyleRusănescu, Carmen Otilia, Gheorghe Voicu, Gigel Paraschiv, Mihaela Begea, Larisa Purdea, Ivona Camelia Petre, and Elena Valentina Stoian. 2022. "Recovery of Sewage Sludge in the Cement Industry" Energies 15, no. 7: 2664. https://doi.org/10.3390/en15072664
APA StyleRusănescu, C. O., Voicu, G., Paraschiv, G., Begea, M., Purdea, L., Petre, I. C., & Stoian, E. V. (2022). Recovery of Sewage Sludge in the Cement Industry. Energies, 15(7), 2664. https://doi.org/10.3390/en15072664