Momentum-Dependent Cosmic Ray Muon Computed Tomography Using a Fieldable Muon Spectrometer
Abstract
:1. Introduction
2. Overview of Muon Tomography Detection Capabilities
3. Fieldable Muon Spectrometer and Momentum-Dependent PoCA
3.1. Fieldable Muon Spectrometer
3.2. Momentum-Dependent PoCA
4. GEANT4 Simulations
5. Results
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borozdin, K.N.; Hogan, G.E.; Morris, C.; William, C.; Saunders, A.; Schultz, L.J. Radiographic imaging with cosmic-ray muons. Nature 2003, 422, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J. Tomography of Canisters for Spent Nuclear Fuel Using Cosmic-Ray Muons; Uppsala University: Uppsala, Sweden, 2005. [Google Scholar]
- Liu, Z.; Chatzidakis, S.; Scaglione, J.M.; Liao, C.; Yang, H.; Hayward, J.P. Muon Tracing and Image Reconstruction Algorithms for Cosmic Ray Muon Computed Tomography. IEEE Trans. Image Process. 2019, 28, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Chatzidakis, S.; Choi, C.K.; Tsoukalas, L.H. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit. Nucl. Inst. Methods Phys. Res. A 2016, 828, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Chatzidakis, S. Classification and Imaging of Spent Nuclear Fuel Dry Casks Using Cosmic Ray Muons; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2017; pp. 237–245. [Google Scholar]
- Hagiwara, K.; Hikasa, K.; Nakamura, K.; Tanabashi, M.; Aguilar-Benitez, M. Review of Particle Properties (Particle Data Group). Phys. Rev. D 2002, 66, 01001. [Google Scholar] [CrossRef] [Green Version]
- Jenneson, P.M. Large vessel imaging using cosmic-ray muons. Nucl. Inst. Methods Phys. Res. A 2004, 525, 346–351. [Google Scholar] [CrossRef]
- Checchia, P.; Benettoni, M.; Bettella, G.; Conti, E.; Cossutta, L.; Furlan, M.; Gonella, F.; Klinger, J.; Montecassiano, F.; Nebbia, G.; et al. INFN muon tomography demonstrator: Past and recent results with an eye to near-future activities. Philos. Trans. R. Soc. A 2019, 377, 20180065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.; Chatzidakis, S. A Cosmic Ray Muon Spectrometer Using Pressurized Gaseous Cherenkov Radiators. arXiv 2021, arXiv:2110.15061. [Google Scholar]
- Bae, J.; Chatzidakis, S. Fieldable Muon Momentum Measurement using Coupled Pressurized Gaseous Cherenkov Detectors. arXiv 2022, arXiv:2201.02591. [Google Scholar]
- Lynch, G.R.; Dahl, O.I. Approximations to multiple Coulomb scattering. Nucl. Inst. Methods Phys. Res. 1991, 58, 6–10. [Google Scholar] [CrossRef]
- Österlund, M.; Wallin, L.; Mermod, P.; Flodin, A.; Nilsson, L.; Gustafsson, J.; Hayashi, M.; Pomp, S.; Ohrn, A.; Donnard, J.; et al. Tomography of canisters for spent nuclear fuel. Proc. Sci. 2006, 25, 030. [Google Scholar] [CrossRef] [Green Version]
- Jonkmans, G.; Anghel, V.N.P.; Jewett, C.; Thompson, M. Nuclear waste imaging and spent fuel verification by muon tomography. Ann. Nucl. Energy 2013, 53, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, A.; Hamilton, D.; Hoek, M.; Ireland, D.; Johnstone, J.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D.; McKinnon, B.; et al. The design and performance of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers. Nucl. Inst. Methods Phys. Res. A 2014, 745, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L. Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography. J. Instrum. 2016, 11, P03008. [Google Scholar] [CrossRef] [Green Version]
- Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.L.; Erlandson, A.; Gallant, G.; et al. A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Inst. Methods Phys. Res. A 2015, 798, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Schultz, L.J. Cosmic Ray Muon Radiography. Ph.D. Thesis, Portland State University, Portland, Oregon, 2003. [Google Scholar]
- Hoch, R. Advances in Cosmic Ray Muon Tomography Reconstruction Algorithms. Master’s Thesis, Florida Institute of Technology, Melbourne, FL, USA, 2009. [Google Scholar]
- Poulson, D.; Durham, J.M.; Guardincerri, E.; Morris, C.L.; Bacon, J.D.; Plaud-Ramos, K.; Morley, D.; Hecht, A.A. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks. Nucl. Inst. Methods Phys. Res. A 2017, 842, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Cox, L.; Adsley, P.; O’Malley, J.; Quillin, S.; Steer, C.; Clemett, C. Detector requirements for a cosmic ray muon scattering tomography system. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 706–710. [Google Scholar] [CrossRef]
- Chatzidakis, S.; Hausladen, P.A.; Croft, S.; Chapman, J.A.; Jarrell, J.J.; Scaglione, J.M.; Choi, C.K.; Tsoukalas, L.H. Exploring the Use of Muon Momentum for Detection of Nuclear Material Within Shielded Spent Nuclear Fuel Dry Casks. Am. Nucl. Soc. Annu. Meet. 2017, 116, 190–193. [Google Scholar]
- Tripathy, S.; Datta, J.; Jash, A.; Bouri, S.; Majumdar, N.; Mukhopadhyay, S.; Sarkar, S. Material Identification with Cosmic Ray Muons using RPC. J. Instrum. 2019, 14, C07007. [Google Scholar] [CrossRef] [Green Version]
- Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector. Nucl. Inst. Methods Phys. Res. A 2013, 728, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Chatzidakis, S.; Choi, C.K.; Tsoukalas, L.H. Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons. IEEE Trans. Nucl. Sci. 2016, 63, 2866–2874. [Google Scholar] [CrossRef]
- Liu, Z.; Hayward, J.; Liao, C.; Yang, H. Detection of Missing Assemblies and Estimation of the Scattering Densities in a VSC-24 Dry Storage Cask with Cosmic-Ray-Muon-Based Computed Tomography. arXiv 2017, arXiv:1706.07072. [Google Scholar]
- Durham, J.M.; Guardincerri, E.; Morris, C.L.; Poulson, D.; Bacon, J.D.; Chichester, D.; Fabritius, J.; Fellows, S.; Plaud-Ramos, K.O.; Morley, D.J.; et al. Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks. J. Nucl. Mater. Manag. 2016, 44. [Google Scholar]
- Green, J.A.; Alexander, C.; Asaki, T.; Bacon, J.; Blanpied, G.; Borozdin, K.; Canabal-Rey, A.; Cannon, M.; Chartrand, R.; Clark, D.; et al. Optimizing the tracking efficiency for cosmic ray muon tomography. In Proceedings of the 2006 IEEE Nuclear Science Symposium Conference Record, San Diego, CA, USA, 29 October–1 November 2006; Volume 1, pp. 285–288. [Google Scholar] [CrossRef]
- Pesente, S.; Vanini, S.; Benettoni, M.; Bonomi, G.; Calvini, P.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G.; Squarcia, S.; et al. First results on material identification and imaging with a large-volume muon tomography prototype. Nucl. Inst. Methods Phys. Res. A 2009, 604, 738–746. [Google Scholar] [CrossRef]
- Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; et al. Precision measurements of linear scattering density using muon tomography. J. Instrum. 2016, 11, P07010. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Inst. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.E.A.; Araujo, H.A.A.H.; Dubois, P.A.; Asai, M.A.A.M.; Barrand, G.A.B.G.; Capra, R.A.C.R.; Chauvie, S.A.C.S.; Chytracek, R.A.C.R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, A.G.; Burkhardt, H.; Ivanchenko, V.N.; Kelner, S.R.; Kokoulin, R.P.; Maire, M.; Rybin, A.M.; Urban, L. Geant4 Simulation of High Energy Muon Interactions. In Proceedings of the IEEE Symposium Conference Record Nuclear Science, Rome, Italy, 16–22 October 2004; pp. 2043–2047. [Google Scholar]
- Geant4 Collaboration. Physics Reference Manual (Release 10.4); CERN: Geneva, Switzerland, 2017. [Google Scholar]
- Jelley, J.V. Čerenkov radiation: Its origin, properties and applications. Contemp. Phys. 1961, 3, 45–57. [Google Scholar] [CrossRef]
- Bae, J.; Chatzidakis, S. Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications. Sci. Rep. 2022, 12, 2559. [Google Scholar] [CrossRef]
- Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L.H. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications. Nucl. Inst. Methods Phys. Res. A 2015, 804, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Duller, N.M. Effects of pi meson decay-absorption phenomena on the high-energy mu meson zenithal variation near sea level. J. Geophys. Res. 1959, 64, 2297–2305. [Google Scholar] [CrossRef]
- Bae, J.; Chatzidakis, S. A New Semi-Empirical Model for Cosmic Ray Muon Flux Estimation. Prog. Theor. Exp. Phys. 2022, ptac016. [Google Scholar] [CrossRef]
- Bae, J.; Chatzidakis, S. The Effect of Cosmic Ray Muon Momentum Measurement for Monitoring Shielded Special Nuclear Materials. arXiv 2021, arXiv:2109.02470. [Google Scholar]
Detector Type | Active Area | Sampling Volume | Resolution | Efficiency | |
---|---|---|---|---|---|
LANL prototype [17] | Delay line readout multiple drift wire chambers | 60 × 60 cm2 | 60 × 60 × 27 cm3 | 400 μm | >96% |
Mini Muon Tracker [26] | Drift wire chambers | 1.2 × 1.2 m2 | 100 × 100 × 60 cm3 | 400 μm (2 mrad) | >90% |
Large Muon Tracker [27] | Drift wire chambers | 2.0 × 2.0 m2 | 2.0 × 2.0 × 1.5 m3 | 400 μm (2 mrad) | >96% |
Muon Portal INFN [28] | Plastic scintillator strips | 3 × 6 m2 | 3 × 6 × 2.8 m3 | 3.5 mm (3.5 mrad) | >90% |
INFN [29] | Drift wire chambers | 3 × 2.5 m2 | 3 × 2.5 × 1.6 m3 | 200 μm | >90% |
CRIPT [16] | Plastic scintillator bars | 2.0 × 2.0 m2 | 1.6 × 2.0 × 2.0 m3 | 3 mm (6 mrad) | >99.5% |
RPC [22] | Resistive plate chambers | 0.5 × 0.5 m2 | 0.09 × 0.5 × 0.5 m3 | 300–900 μm | >95% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.; Chatzidakis, S. Momentum-Dependent Cosmic Ray Muon Computed Tomography Using a Fieldable Muon Spectrometer. Energies 2022, 15, 2666. https://doi.org/10.3390/en15072666
Bae J, Chatzidakis S. Momentum-Dependent Cosmic Ray Muon Computed Tomography Using a Fieldable Muon Spectrometer. Energies. 2022; 15(7):2666. https://doi.org/10.3390/en15072666
Chicago/Turabian StyleBae, Junghyun, and Stylianos Chatzidakis. 2022. "Momentum-Dependent Cosmic Ray Muon Computed Tomography Using a Fieldable Muon Spectrometer" Energies 15, no. 7: 2666. https://doi.org/10.3390/en15072666
APA StyleBae, J., & Chatzidakis, S. (2022). Momentum-Dependent Cosmic Ray Muon Computed Tomography Using a Fieldable Muon Spectrometer. Energies, 15(7), 2666. https://doi.org/10.3390/en15072666