Improving Transportation Technologies for Carbon Reduction in the Chinese Provinces along the Silk Road
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Results and Analysis
4.1. Analysis of Carbon-Reduction Performance (CRP) and Its Contributors
4.2. Analysis of CRP by Provinces
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houghton, J.T.; Callander, B.A.; Varney, S.K. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment; Cambridge University Press: Cambridge, UK, 1992; p. 23. [Google Scholar]
- IEA. CO2 Emissions from Fuel Combustion Highlights; International Energy Agency: Paris, France, 2011; Available online: https://www.iea.org/about/copyright.asp (accessed on 1 January 2022).
- Azam, M.; Khan, A.Q.; Abdullah, H.B. The impact of CO2 emissions on economic growth: Evidence from selected higher CO2 emissions economies. Environ. Sci. Pollut. Res. 2016, 23, 6376–6389. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.; Li, F.; Zhao, W. Congestion assessment for the Belt and Road countries considering carbon emission reduction. J. Clean. Prod. 2020, 242, 118405. [Google Scholar] [CrossRef]
- Godil, D.I.; Zhang, Y.; Sharif, A.; Usman, R.; Khan, S.A.R. Investigating the role of technology innovation and renewable energy in reducing transport sectors CO2 emission in China: A path toward sustainable development. Sustain. Dev. 2021, 29, 694–707. [Google Scholar] [CrossRef]
- Luo, Y.; Xue, Q.; Han, B. How emerging market governments promote outward FDI: Experience from China. J. World Bus. 2010, 45, 68–79. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, X.; Wang, H. Regional logistics efficiency and performance in China along the Belt and Road Initiative: The analysis of integrated DEA and hierarchical regression with carbon constraint. J. Cleaner Prod. 2020, 276, 123649. [Google Scholar] [CrossRef]
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar] [CrossRef]
- Du, M.M. China’s ‘One Belt, One Road’ Initiative: Context, focus, institutions, and implications. Chin. J. Glob. Govern. 2016, 2, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.L.; Qiu, Q.; Choi, C.H. How will the Belt and Road initiative advance China’s exports? Asia Pac. Bus. Rev. 2019, 25, 81–99. [Google Scholar] [CrossRef]
- Ding, X.; He, J.; Yu, X. Spatial differentiation of carbon emission efficiency of Silk Road Economic Belt based on environmental regulation. In Proceedings of the IOP Conference Science: Earth and Environmental Science, Hong Kong, China, 26–28 October 2018; Volume 208, p. 012027. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, L.; Liu, J.; Zhou, Y.; Chen, M.; Hu, J. Carbon dioxide mitigation co-benefit analysis of energy-related measures in the Air Pollution Prevention and Control Action Plan in the Jing-Jin-Ji region of China. Resour. Conserv. Recycl. X 2019, 1, 100006. [Google Scholar] [CrossRef]
- Danish, K.N.; Baloch, M.A.; Saud, S.; Fatima, T. The effect of ICT on CO2 emissions in emerging economies: Does the level of income matter? Environ. Sci. Pollut. Res. 2018, 25, 22850–22860. [Google Scholar] [CrossRef]
- Ishak, S.A.; Hashim, H. Low carbon measures for cement plant—A review. J. Clean. Prod. 2015, 103, 260–274. [Google Scholar] [CrossRef]
- Ramli, A.F.; Muis, Z.A.; Ho, W.S.; Idris, A.M.; Mohtar, A. Carbon emission pinch analysis: An application to the transportation sector in Iskandar Malaysia for 2025. Clean Technol. Environ. Policy 2019, 21, 1899–1911. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, L.; Jia, H.; Shao, S. Silk Road Economic Belt strategy and industrial total-factor productivity: Evidence from Chinese industries. Manag. Environ. Qual. 2019, 30, 260–282. [Google Scholar] [CrossRef]
- Yao, C.R.; Feng, K.S.; Hubacek, K. Driving forces of CO2 emissions in the G20 countries: An index decomposition analysis from 1971 to 2010. Ecol. Inform. 2015, 26, 93–100. [Google Scholar] [CrossRef]
- Kleeman, M.J.; Zapata, C.; Stilley, J.; Hixson, M. PM2.5 co-benefits of climate change legislation part 2: California governor’s executive order S-3-05 applied to the transportation sector. Clim. Chang. 2013, 117, 399–414. [Google Scholar] [CrossRef]
- Zapata, C.; Muller, N.; Kleeman, M.J. PM2.5 co-benefits of climate change legislation part 1: California’s AB 32. Clim. Chang. 2013, 117, 377–397. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Econ. 2009, 31, 456–462. [Google Scholar] [CrossRef]
- Feng, C.; Ye, G.; Jiang, Q.; Zheng, Y.; Chen, G.; Wu, J.; Feng, X.; Si, Y.; Zeng, J.; Li, P.; et al. The contribution of ocean-based solutions to carbon reduction in China. Sci. Total Environ. 2021, 797, 149168. [Google Scholar] [CrossRef]
- Ulucak, R.; Danish; Khan, S.U.-D. Does information and communication technology affect CO2 mitigation under the pathway of sustainable development during the mode of globalization? Sustain. Dev. 2020, 28, 857–867. [Google Scholar] [CrossRef]
- Morfeldt, J.; Nijs, W.; Silveira, S. The impact of climate targets on future steel production -an analysis based on a global energy system model. J. Clean. Prod. 2015, 103, 469–482. [Google Scholar] [CrossRef]
- Crossin, E.C. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 2015, 95, 101–108. [Google Scholar] [CrossRef]
- Dayaratne, S.; Gunawardena, K.D. Carbon footprint reduction: A critical study of rubber production in small and medium scale enterprises in Sri Lanka. J. Clean. Prod. 2015, 103, 87–103. [Google Scholar] [CrossRef]
- Lin, B.; Zhao, H. Energy efficiency and conservation in China’s chemical fiber industry. J. Clean. Prod. 2015, 103, 345–352. [Google Scholar] [CrossRef]
- Taghdisian, H.; Pishvaie, M.R.; Farhadi, F. Multi-objective optimization approach for green design of methanol plant based on CO2-efficiency indicator. J. Clean. Prod. 2015, 103, 640–650. [Google Scholar] [CrossRef]
- To, W.M. Greenhouse gases emissions from the logistics sector: The case of Hong Kong, China. J. Clean. Prod. 2015, 103, 658–664. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Wang, S.; Zhang, Y.; Liu, Y. Linkage analysis of sectoral CO2 emissions based on the hypothetical extraction method in South Africa. J. Clean. Prod. 2015, 103, 916–924. [Google Scholar] [CrossRef]
- Versteijlen, M.; Salgado, F.P.; Groesbeek, M.J.; Counotte, A. Pros and cons of online education as a measure to reduce carbon emissions in higher education in the Netherlands. Curr. Opin. Environ. Sustain. 2017, 28, 80–89. [Google Scholar] [CrossRef]
- Mielnik, O.; Goldemberg, J. The evolution of the carbonation index in developing countries. Energy Policy 2005, 27, 307–308. [Google Scholar] [CrossRef]
- Sun, J.W. The decrease of CO2 emission intensity is deodorization at national and global levels. Energy Policy 2005, 33, 975–978. [Google Scholar] [CrossRef]
- Zofio, J.L.; Prieto, A.M. Measuring productive efficiency in input-output models by means of data envelopment analysis. Int. Rev. Appl. Econ. 2007, 21, 517–537. [Google Scholar] [CrossRef]
- Wu, K.Y.; He, C.H.; Wang, G.X.; Zhang, H. Investigation and decomposition analysis on carbon reduction of transportation energy consumption in Shanghai. Econ. Geogr. 2012, 11, 45–51. (In Chinese) [Google Scholar]
- Li, J.; Jin, M.T.; Yuan, Q.M. Estimation of carbon emission and driving factors in Beijing-Tianjin-Hebei traffic under green development. J. Arid. Land Resour. Environ. 2018, 7, 36–42. (In Chinese) [Google Scholar]
- Yuan, C.W.; Zhang, S.; Jiao, P.; Wu, D.Y. Temporal and spatial variation and influencing factors research on total factor efficiency for transportation carbon emissions in China. Resour. Sci. 2017, 39, 687–697. (In Chinese) [Google Scholar] [CrossRef]
- Ouyang, B.; Feng, Z.H. Planning Approaches and Empirical Studies on Low Carbon Transportation; China Communication Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Chai, J.; Xin, L.M.; Zhou, Y.H.; Wei, B.L.; Wang, S.Y. Effect of transportation structure change on CO2 emissions. Oper. Res. Manag. Sci. 2017, 26, 100–106. (In Chinese) [Google Scholar]
- Wang, Y.; Wu, F.; Wang, Z. Bootstrap-Malmquist analysis on production rate changes in transportation sector (1980–2005). Economics 2018, 4, 891–912. (In Chinese) [Google Scholar]
- Wang, Q.W.; Zhou, P.; Zhou, D.Q. Research on dynamic carbon dioxide emission performance, regional disparity and affecting factors in China. China Ind. Econ. 2010, 262, 45–54. (In Chinese) [Google Scholar]
- Zhang, L.L.; Wu, W.; Liu, B. Evaluation and analysis of highway transportation efficiency in Yangtze River Delta based on DEA-Malmquist. J. Univ. Chin. Acad. Sci. 2017, 6, 712–718. (In Chinese) [Google Scholar]
- Lei, X.; Yang, J.; Zou, J.; Zhuang, M. Research on the impact of logistics technology progress on employment structure based on DEA-Malmquist method. Math. Probl. Eng. 2020, 2020, 7064897. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, D.C. Supervision and China’s water pollution—An empirical study based on the decomposition indexes of industrial structure and technical progress. Economics 2014, 1, 491–514. (In Chinese) [Google Scholar]
- Jin, W.M.; Zhang, L. Environment administration, openness and green technology progress of the Chinese industry. Econ. Res. 2014, 9, 34–47. (In Chinese) [Google Scholar]
- Ma, D.L.; Wu, W.L.; Dong, Z.M. Industrial carbon reduction performance and its determinants in China: An empirical study based on spatial model of panel data. China Econ. Stud. 2017, 300, 121–135. (In Chinese) [Google Scholar]
- Zhou, J.Q.; Wang, T.S. FDI, factor market distortion and carbon reduction—Theory and evidence from China. Int. Trade Issues 2017, 7, 96–107. (In Chinese) [Google Scholar]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output and productivity. Econometric 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Yang, J. DEA models and applications in the cross-context of information entropy. J. Stat. Inf. Forum 2017, 7, 23–29. (In Chinese) [Google Scholar]
- Kazanjian, R.K.; Drazin, R. An empirical test of a stage of growth progress model. Manag. Sci. 1989, 35, 1489–1503. [Google Scholar] [CrossRef]
- del Rio, P.; Silvosa, A.C.; Gomez, G.I. Policies and design elements for the repowering of wind farms: A qualitative analysis of different options. Energy Policy 2011, 39, 1897–1908. [Google Scholar] [CrossRef]
- Himpler, S.; Madlener, R. Repowering of Wind Turbines: Economics and Optimal Timing; FCN Working Paper: 19/2011; E. ON Energy Research Center, RWTH Aachen University: Aachen, Germany, 2011. [Google Scholar] [CrossRef]
- Norouzi, N. Post-COVID-19 and globalization of oil and natural gas trade: Challenges, opportunities, lessons, regulations, and strategies. Intl. J. Energy Res. 2021, 45, 14338–14356. [Google Scholar] [CrossRef]
- Norouzi, N.; Fani, M.; Ziarani, Z.K. The fall of oil Age: A scenario planning approach over the last peak oil of human history by 2040. J. Petroleum Sci. Eng. 2020, 188, 106827. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Wang, F.; Hao, Z. The impact of China’s investment on economic growth and carbon emission intensity in the Belt and Road. Advances Earth Sci. 2020, 35, 618–631. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Tan, X.; Wu, R.; Xu, H.; Zhong, Z.; Li, Y.; Zheng, C.; Wang, R.; Qiao, Y. A study on route to achieve carbon emission peak and carbon neutrality in transportation sector. Strateg. Study CAE 2021, 23, 15–21. (In Chinese) [Google Scholar]
- Huang, H.; Cheng, F.; Su, Y.; Yao, L.; Hu, J. An analysis and countermeasure of the energy conservation potential in the context of carbon emission peak in China. Strateg. Study CAE 2021, 23, 81–91. (In Chinese) [Google Scholar]
- Wang, W.; Xiang, Q. Accounting and responsibility analysis on carbon emissions embodied in international trade. China Ind. Econ. 2011, 283, 56–64. [Google Scholar]
- Chen, A.; Groenewold, N. Emission reduction policy: A regional economic analysis for China. Econ. Model. 2015, 51, 136–152. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, W. Research of Chinese provincial carbon efficiency and total factor productivity based on SFA. Soft Sci. 2015, 29, 105–109. [Google Scholar]
- Moutinbo, V.; Madaleno, M.; Inglesi-Lotz, R. Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application. Renew. Sustain. Energy Rev. 2018, 90, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Shao, H.; Zhou, T. A study on carbon emission efficiency of tourism and its spatial correlation characteristics in China. Resour. Environ. Yangtze Basin 2018, 27, 473–482. [Google Scholar]
- Shuai, C.; Chen, X.; Wu, Y. A three-step strategy for decoupling economic growth from carbon emissions: Empirical evidence from 133 countries. Sci. Total Environ. 2018, 646, 524–543. [Google Scholar] [CrossRef]
- Hu, C.; Ding, Z.; Mu, X.; Guo, X. Spatial change and drivers of transportation carbon emissions in tourism of Yangtze River Economic Belt. J. Nanjing Norm. Univ. 2021, 12, 1–12. (In Chinese) [Google Scholar]
- Pan, Z. A Study on the Influential Factors and Threshold Effect of Carbon Emissions in the Chinese Tourism: Based on the Panel Data from 30 Provinces/Cities during 2004–2013. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2015. (In Chinese). [Google Scholar]
- Wei, Q.; Zhao, S.; Xiao, W. An empirical study on the environmental tax impact on carbon emission performance in transportation sector. Soft Sci. 2013, 27, 33–38. (In Chinese) [Google Scholar]
Years | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |
Provinces | |||||||||||||
Shannxi | 1350.51 | 1560.30 | 1799.14 | 2083.02 | 2434.05 | 2733.21 | 2975.17 | 3478.54 | 2629.50 | 2605.19 | 2631.77 | 2676.40 | |
Gansu | 525.91 | 543.06 | 546.54 | 578.81 | 652.47 | 744.32 | 762.11 | 816.35 | 1103.14 | 1107.87 | 1015.12 | 1008.57 | |
Qinghai | 73.02 | 81.00 | 142.53 | 174.36 | 218.36 | 251.79 | 266.89 | 263.64 | 270.35 | 300.74 | 296.04 | 312.11 | |
Ningxia | 48.09 | 34.97 | 35.74 | 44.61 | 49.31 | 69.63 | 70.43 | 65.78 | 67.60 | 58.76 | 59.70 | 67.97 | |
Xinjiang | 792.36 | 872.51 | 933.53 | 922.18 | 962.97 | 1062.94 | 1158.02 | 1283.41 | 1496.64 | 1525.45 | 1751.59 | 1875.69 | |
Liaoning | 2423.51 | 2672.76 | 2937.82 | 2949.88 | 3190.13 | 3340.74 | 3593.34 | 3730.62 | 3519.02 | 3699.44 | 3888.49 | 4077.79 | |
Jilin | 560.64 | 647.60 | 846.66 | 946.78 | 1019.12 | 1117.84 | 1148.01 | 1167.95 | 1301.59 | 1424.02 | 1471.10 | 1558.07 | |
Heilongjiang | 979.16 | 1137.74 | 1114.52 | 1014.17 | 1245.72 | 1240.91 | 2036.26 | 2065.88 | 2256.07 | 2389.78 | 2474.57 | 2580.50 | |
Inner Mongolia | 1375.84 | 1527.40 | 1765.17 | 2091.89 | 2402.34 | 2706.89 | 2975.62 | 3453.55 | 2566.98 | 2537.03 | 2574.83 | 2612.03 | |
Yunnan | 86.71 | 327.53 | 319.34 | 335.27 | 394.29 | 518.19 | 500.96 | 510.04 | 583.26 | 652.34 | 556.90 | 601.08 | |
Guangxi | 75.80 | 310.80 | 350.05 | 307.12 | 418.90 | 483.87 | 483.95 | 517.43 | 467.41 | 491.05 | 529.19 | 588.05 | |
Chongqing | 88.45 | 203.86 | 211.93 | 285.55 | 148.84 | 182.23 | 199.23 | 203.22 | 250.76 | 279.48 | 289.71 | 323.21 | |
SREB | 8430.18 | 9964.91 | 11,044.93 | 11,782.57 | 13,186.78 | 14,510.70 | 16,261.30 | 17,662.34 | 16,621.93 | 17,181.66 | 17,704.91 | 18,481.37 |
Periods | Technical Efficiency (TE) | Technical Progress (TP) | Pure Technology Efficiency (PTE) | Scale Efficiency (SE) | Carbon Reduction Performance (CRP) |
2006/2005 | 0.9890 | 0.9710 | 0.9954 | 0.9936 | 0.9603 |
2007/2006 | 0.9844 | 0.9922 | 0.9887 | 0.9957 | 0.9767 |
2008/2007 | 0.9786 | 0.9900 | 0.9816 | 0.9969 | 0.9688 |
2009/2008 | 0.9893 | 0.9980 | 1.0016 | 0.9877 | 0.9873 |
2010/2009 | 0.9937 | 0.9770 | 1.0056 | 0.9882 | 0.9708 |
2011/2010 | 0.9945 | 0.9924 | 0.9922 | 1.0023 | 0.9869 |
2012/2011 | 0.9986 | 0.9895 | 0.9880 | 1.0107 | 0.9881 |
2013/2012 | 0.9985 | 0.9995 | 0.9759 | 1.0232 | 0.9980 |
2014/2013 | 1.0159 | 1.0005 | 0.9954 | 1.0206 | 1.0164 |
2015/2014 | 1.0241 | 0.9941 | 0.9965 | 1.0277 | 1.0181 |
2016/2015 | 1.0273 | 0.9881 | 0.9984 | 1.0289 | 1.0151 |
Mean | 0.9994 | 0.9902 | 0.9927 | 1.0069 | 0.9897 |
Northwest | Northeast | Southwest | |||||||||||
Periods | Shannxi | Gansu | Qinghai | Ningxia | Xinjiang | Liaoning | Jilin | Heilongjiang | Inner Mongolia | Yunnan | Guangxi | Chongqing | SREB |
2006/2005 | 1.0423 | 1.1733 | 1.0287 | 1.0352 | 0.8761 | 0.8232 | 0.7207 | 0.8043 | 0.7840 | 1.1792 | 0.8898 | 1.1673 | 0.9603 |
2007/2006 | 1.0635 | 1.1241 | 0.8447 | 0.8596 | 1.0639 | 0.8296 | 1.0741 | 0.9759 | 0.9392 | 1.0718 | 0.9744 | 0.8567 | 0.9767 |
2008/2007 | 1.0450 | 0.9506 | 0.9601 | 0.9016 | 1.0163 | 0.9102 | 1.0007 | 0.9187 | 0.9778 | 0.9891 | 0.9554 | 1.0002 | 0.9688 |
2009/2008 | 0.9863 | 0.9524 | 0.9422 | 0.9567 | 1.0598 | 0.9683 | 1.1062 | 0.9573 | 0.9855 | 1.0008 | 0.9687 | 1.0485 | 0.9873 |
2010/2009 | 0.9880 | 0.9971 | 1.0002 | 0.8485 | 1.0240 | 1.0171 | 0.9964 | 0.8422 | 0.9836 | 1.0002 | 1.0369 | 0.9154 | 0.9708 |
2011/2010 | 1.0144 | 1.0022 | 1.0072 | 0.9219 | 1.0016 | 1.0106 | 0.9942 | 0.8498 | 0.9957 | 1.0054 | 1.0242 | 0.9663 | 0.9869 |
2012/2011 | 1.0147 | 0.9866 | 0.9911 | 0.9734 | 0.9989 | 0.9926 | 0.9884 | 0.9503 | 0.9863 | 1.0008 | 1.0007 | 0.9733 | 0.9881 |
2013/2012 | 1.0251 | 0.9439 | 0.9916 | 0.9542 | 0.9915 | 0.9874 | 0.9835 | 0.9583 | 0.9955 | 1.0038 | 1.0138 | 0.9854 | 0.998 |
2014/2013 | 1.0514 | 1.0504 | 1.0160 | 0.9889 | 1.0104 | 0.9833 | 0.9769 | 0.9964 | 0.9751 | 1.0492 | 1.0929 | 1.0054 | 1.0164 |
2015/2014 | 1.0712 | 0.9942 | 1.0866 | 0.9472 | 0.9769 | 0.9258 | 0.9386 | 1.0504 | 0.9551 | 1.0337 | 1.1014 | 1.0744 | 1.0181 |
2016/2015 | 1.0748 | 0.9956 | 1.0897 | 0.9465 | 0.9726 | 0.9207 | 0.9351 | 1.0774 | 0.9530 | 1.0317 | 1.1040 | 1.0801 | 1.0151 |
Mean | 1.0342 | 1.0096 | 0.9388 | 0.9394 | 0.9987 | 0.9475 | 0.9654 | 0.9720 | 0.9565 | 1.0330 | 1.0260 | 1.0020 | 0.9897 |
Northwest | Northeast | Southwest | |||||||||||
Periods | Shannxi | Gansu | Qinghai | Ningxia | Xinjiang | Liaoning | Jilin | Heilongjiang | Inner Mongolia | Yunnan | Guangxi | Chong-qing | SREB |
2006/2005 | 1.0113 | 1.1240 | 1.0103 | 1.0211 | 0.9361 | 0.8953 | 0.9006 | 0.9019 | 0.8857 | 1.2314 | 0.9396 | 1.0109 | 0.9890 |
2007/2006 | 1.0117 | 1.0420 | 0.8495 | 0.9389 | 1.0336 | 0.8915 | 1.0782 | 1.0187 | 1.0152 | 1.0652 | 1.0328 | 0.8358 | 0.9844 |
2008/2007 | 0.9922 | 0.9506 | 0.9622 | 0.9467 | 1.0008 | 0.9516 | 0.9888 | 0.9568 | 1.0164 | 0.9878 | 1.0021 | 0.9877 | 0.9786 |
2009/2008 | 0.9929 | 0.9706 | 0.9626 | 0.9515 | 1.012 | 0.9804 | 1.0064 | 0.9589 | 1.0218 | 0.9912 | 1.0001 | 1.0230 | 0.9893 |
2010/2009 | 1.0016 | 0.9909 | 0.9762 | 0.9414 | 1.0009 | 1.0246 | 0.9883 | 0.9756 | 0.9953 | 0.9915 | 1.0197 | 1.0189 | 0.9937 |
2011/2010 | 1.0157 | 0.9955 | 0.9966 | 0.9521 | 1.0006 | 1.0151 | 0.9954 | 0.9462 | 0.997 | 1.0052 | 1.0141 | 1.0009 | 0.9945 |
2012/2011 | 1.0148 | 0.9941 | 1.0021 | 0.9984 | 1.0004 | 0.9968 | 0.9917 | 0.9833 | 0.9987 | 1.001 | 1.0008 | 1.0007 | 0.9986 |
2013/2012 | 1.0255 | 0.9932 | 1.0036 | 0.9812 | 1.0005 | 0.9882 | 0.9903 | 0.9862 | 0.9968 | 1.0036 | 1.0074 | 1.0057 | 0.9985 |
2014/2013 | 1.0514 | 1.0048 | 1.0033 | 0.9964 | 1.0202 | 0.9911 | 0.9849 | 1.0103 | 0.9979 | 1.0339 | 1.0899 | 1.0069 | 1.0159 |
2015/2014 | 1.0719 | 1.0055 | 1.0865 | 0.9951 | 0.9908 | 0.9392 | 0.9557 | 1.0508 | 0.9877 | 1.0189 | 1.0964 | 1.0901 | 1.0241 |
2016/2015 | 1.0829 | 1.0069 | 1.0896 | 0.995 | 0.9901 | 0.9343 | 0.9523 | 1.0781 | 0.9857 | 1.0169 | 1.0993 | 1.0961 | 1.0273 |
Mean | 1.0247 | 1.0071 | 0.9948 | 0.9743 | 0.9987 | 0.9644 | 0.9848 | 0.9879 | 0.9907 | 1.0315 | 1.0275 | 0.9988 | 0.9994 |
Northwest | Northeast | Southwest | |||||||||||
Periods | Shannxi | Gansu | Qinghai | Ningxia | Xinjiang | Liaoning | Jilin | Heilongjiang | Inner Mongolia | Yunnan | Guangxi | Chongqing | SREB |
2006/2005 | 1.0306 | 1.0439 | 1.0182 | 1.0137 | 0.9359 | 0.9195 | 0.8002 | 0.8918 | 0.8852 | 0.9576 | 0.9470 | 1.1547 | 0.9710 |
2007/2006 | 1.0512 | 1.0788 | 0.9944 | 0.9155 | 1.0293 | 0.9306 | 0.9962 | 0.9580 | 0.9252 | 1.0063 | 0.9435 | 1.0250 | 0.9922 |
2008/2007 | 1.0532 | 1.0000 | 0.9979 | 0.9524 | 1.0155 | 0.9565 | 1.0120 | 0.9601 | 0.9620 | 1.0014 | 0.9534 | 1.0127 | 0.9900 |
2009/2008 | 0.9933 | 0.9813 | 0.9788 | 1.0054 | 1.0472 | 0.9876 | 1.0992 | 0.9984 | 0.9645 | 1.0097 | 0.9686 | 1.0249 | 0.9980 |
2010/2009 | 0.9864 | 1.0063 | 1.0247 | 0.9014 | 1.0231 | 0.9927 | 1.0082 | 0.8633 | 0.9882 | 1.0089 | 1.0169 | 0.8984 | 0.9770 |
2011/2010 | 0.9987 | 1.0067 | 1.0107 | 0.9684 | 1.0010 | 0.9956 | 0.9988 | 0.8981 | 0.9987 | 1.0003 | 1.0099 | 0.9655 | 0.9924 |
2012/2011 | 0.9999 | 0.9924 | 0.9890 | 0.9750 | 0.9985 | 0.9958 | 0.9967 | 0.9665 | 0.9876 | 0.9999 | 0.9999 | 0.9726 | 0.9895 |
2013/2012 | 0.9996 | 0.9504 | 0.9881 | 0.9725 | 0.9910 | 0.9992 | 0.9932 | 0.9716 | 0.9987 | 1.0002 | 1.0064 | 0.9798 | 0.9995 |
2014/2013 | 1.0000 | 1.0453 | 1.0126 | 0.9925 | 0.9904 | 0.9922 | 0.9919 | 0.9863 | 0.9772 | 1.0148 | 1.0028 | 0.9985 | 1.0005 |
2015/2014 | 0.9994 | 0.9887 | 1.0001 | 0.9518 | 0.9860 | 0.9857 | 0.9821 | 0.9996 | 0.9669 | 1.0145 | 1.0045 | 0.9855 | 0.9941 |
2016/2015 | 0.9925 | 0.9887 | 1.0001 | 0.9512 | 0.9824 | 0.9855 | 0.9820 | 0.9994 | 0.9668 | 1.0145 | 1.0043 | 0.9854 | 0.9881 |
Mean | 1.0095 | 1.0075 | 1.0013 | 0.9636 | 1.0000 | 0.9764 | 0.9873 | 0.9539 | 0.9655 | 1.0025 | 0.9870 | 1.0003 | 0.9902 |
Provinces | Technical Efficiency (TE) | Technical Progress (TP) | Pure Technological Efficiency (PTE) | Scale Efficiency (SE) | Carbon-Reduction Performance CRP |
Shannxi | 1.0247 | 1.0095 | 1.0022 | 1.0225 | 1.0344 |
Gansu | 1.0071 | 1.0025 | 1.0031 | 1.0040 | 1.0096 |
Qinghai | 0.9948 | 1.0013 | 0.9934 | 1.0014 | 0.9961 |
Ningxia | 0.9743 | 0.9636 | 0.9723 | 1.0021 | 0.9388 |
Xinjiang | 0.9987 | 1.0000 | 0.9883 | 1.0105 | 0.9987 |
Liaoning | 0.9704 | 0.9764 | 0.9632 | 1.0075 | 0.9475 |
Jilin | 0.9848 | 0.9803 | 0.9828 | 1.0020 | 0.9654 |
Heilongjiang | 0.9879 | 0.9839 | 0.9868 | 1.0011 | 0.9720 |
Inner Mongolia | 0.9907 | 0.9655 | 0.9853 | 1.0055 | 0.9565 |
Yunnan | 1.0315 | 1.0015 | 1.0287 | 1.0027 | 1.0330 |
Guangxi | 1.0275 | 0.9985 | 1.0021 | 1.0253 | 1.0260 |
Chongqing | 1.0019 | 1.0001 | 1.0014 | 1.0005 | 1.0020 |
Average | 0.9994 | 0.9902 | 0.9927 | 1.0069 | 0.9897 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Shan, J.; Long, H. Improving Transportation Technologies for Carbon Reduction in the Chinese Provinces along the Silk Road. Energies 2022, 15, 2718. https://doi.org/10.3390/en15082718
Zhang Q, Shan J, Long H. Improving Transportation Technologies for Carbon Reduction in the Chinese Provinces along the Silk Road. Energies. 2022; 15(8):2718. https://doi.org/10.3390/en15082718
Chicago/Turabian StyleZhang, Qiang, Jun Shan, and Hai Long. 2022. "Improving Transportation Technologies for Carbon Reduction in the Chinese Provinces along the Silk Road" Energies 15, no. 8: 2718. https://doi.org/10.3390/en15082718
APA StyleZhang, Q., Shan, J., & Long, H. (2022). Improving Transportation Technologies for Carbon Reduction in the Chinese Provinces along the Silk Road. Energies, 15(8), 2718. https://doi.org/10.3390/en15082718