A Novel Hybrid Transfer Learning Framework for Dynamic Cutterhead Torque Prediction of the Tunnel Boring Machine
Abstract
:1. Introduction
2. The Proposed Dynamic Cutterhead Torque Prediction Framework
2.1. Overall Framework
2.2. Clustering Based on the Relationship among Attributes
2.3. Extracting Public Knowledge from Historical Dataset
2.4. Dynamic Cutterhead Torque Prediction Based on Transfer Learning
3. Numerical Experiments
3.1. Experimental Settings
3.2. Experiments and Results
4. Discussion
4.1. Analysis of the Number of Fresh Training Sizes
4.2. Analysis of Regularization Parameters
4.3. Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter (Unit) | Parameter (Unit) |
---|---|
Temperature of oil tank (°C) | Temperature of gear oil (°C) |
Rotation speed of cutterhead(r/min) | Cutter power (kw) |
Propelling pressure (bar) | Propelling pressure of A group (bar) |
Propelling pressure of B group (bar) | Propelling pressure of C group (bar) |
Propelling pressure of D group (bar) | Pressure of equipment bridge (bar) |
Pressure of articulation system (bar) | Pressure of shield tail seal at top right front (bar) |
Pressure of shield tail seal at right front (bar) | Pressure of shield tail seal at left front (bar) |
Pressure of shield tail seal at top right back (bar) | Pressure of shield tail seal at right back (bar) |
Pressure of shield tail seal at bottom back (bar) | Pressure of shield tail seal at left front (bar) |
Pressure of shield tail seal at top left front (bar) | Pressure of shield tail seal at left back (bar) |
Pressure of shield tail seal at top left back (bar) | Pressure of shield tail seal at right back (bar) |
Rolling angle (°) | Pressure of screw pump at back (bar) |
Pressure of chamber at top left (bar) | Pressure of chamber at bottom left (bar) |
Pressure of chamber at bottom right (bar) | Bentonite pressure (bar) |
Temperature of screw conveyor (°C) | Pitch angle (°) |
Thrust of cutterhead (kN) | Advance velocity (mm/min) |
Torque of cutterhead (kNm) | Displacement of A group of thrust cylinders (mm) |
Displacement of B group of thrust cylinders (mm) | Displacement of C group of thrust cylinders (mm) |
Displacement of D group of thrust cylinders (mm) | Displacement of articulated system at top right (mm) |
Displacement of articulated system at left (mm) | Displacement of articulated system at top left (mm) |
Displacement of articulated system at right (mm) | Bentonite pressure of shield shell (bar) |
Pressure of screw conveyor at front (bar) | Pressure of screw pump (bar) |
References
- Zheng, Y.L.; Zhang, Q.B.; Zhao, J. Challenges and opportunities of using tunnel boring machines in mining. Tunn. Undergr. Space Technol. 2016, 57, 287–299. [Google Scholar] [CrossRef]
- Delisio, A.; Zhao, J.; Einstein, H.H. Analysis and prediction of TBM performance in blocky rock conditions at the Lötschberg Base Tunnel. Tunn. Undergr. Space Technol. 2013, 33, 131–142. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; Wang, L.; Zhang, J.; Song, X. Multidisciplinary design optimization of tunnel boring machine considering both structure and control parameters under complex geological conditions. Struct. Multidiscip. Optim. 2016, 54, 1073–1092. [Google Scholar] [CrossRef]
- Wang, L.; Gong, G.; Shi, H.; Yang, H. Modeling and analysis of thrust force for EPB shield tunneling machine. Autom. Constr. 2012, 27, 138–146. [Google Scholar] [CrossRef]
- Hassanpour, J.; Rostami, J.; Khamehchiyan, M.; Bruland, A. Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: A case history of Nowsood water conveyance tunnel. Geomech. Geoeng. 2009, 4, 287–297. [Google Scholar] [CrossRef]
- Delisio, A.; Zhao, J. A new model for TBM performance prediction in blocky rock conditions. Tunn. Undergr. Space Technol. 2014, 43, 440–452. [Google Scholar] [CrossRef]
- Yagiz, S. New equations for predicting the field penetration index of tunnel boring machines in fractured rock mass. Arab. J. Geosci. 2017, 10, 33. [Google Scholar] [CrossRef]
- Rostami, J. Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground. Tunn. Undergr. Space Technol. 2016, 57, 173–182. [Google Scholar] [CrossRef]
- Shreyas, S.K.; Dey, A. Application of soft computing techniques in tunnelling and underground excavations: State of the art and future prospects. Innov. Infrastruct. Solut. 2019, 4, 46. [Google Scholar] [CrossRef]
- Shahrour, I.; Zhang, W. Use of soft computing techniques for tunneling optimization of tunnel boring machines. Undergr. Space 2021, 6, 233–239. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, M.; Hu, G.; Song, X.; Zhang, C.; Tao, D.; Wu, W. A Data-Driven Framework for Tunnel Geological-Type Prediction Based on TBM Operating Data. IEEE Access 2019, 7, 66703–66713. [Google Scholar] [CrossRef]
- Avunduk, E.; Copur, H. Empirical modeling for predicting excavation performance of EPB TBM based on soil properties. Tunn. Undergr. Space Technol. 2018, 71, 340–353. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, Z.; Huang, G.; Cai, Z.; Kang, Y. Mechanical characterization of the load distribution on the cutterhead-ground interface of shield tunneling machines. Tunn. Undergr. Space Technol. 2015, 47, 106–113. [Google Scholar] [CrossRef]
- Faramarzi, L.; Kheradmandian, A.; Azhari, A. Evaluation and Optimization of the Effective Parameters on the Shield TBM Performance: Torque and Thrust—Using Discrete Element Method (DEM). Geotech. Geol. Eng. 2020, 38, 2745–2759. [Google Scholar] [CrossRef]
- Leng, S.; Lin, J.R.; Hu, Z.Z.; Shen, X. A Hybrid Data Mining Method for Tunnel Engineering Based on Real-Time Monitoring Data from Tunnel Boring Machines. IEEE Access 2020, 8, 90430–90449. [Google Scholar] [CrossRef]
- Sun, W.; Shi, M.; Zhang, C.; Zhao, J.; Song, X. Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data. Autom. Constr. 2018, 92, 23–34. [Google Scholar] [CrossRef]
- Kong, X.; Ling, X.; Tang, L.; Tang, W.; Zhang, Y. Random forest-based predictors for driving forces of earth pressure balance (EPB) shield tunnel boring machine (TBM). Tunn. Undergr. Space Technol. 2022, 122, 104373. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.; Zhou, H.; Zhang, J.; Shen, W.; Shao, J. Prediction of TBM cutterhead speed and penetration rate for high-efficiency excavation of hard rock tunnel using CNN-LSTM model with construction big data. Arab. J. Geosci. 2022, 15, 280. [Google Scholar] [CrossRef]
- Qin, C.; Shi, G.; Tao, J.; Yu, H.; Jin, Y.; Lei, J.; Liu, C. Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network. Mech. Syst. Signal Process. 2021, 151, 107386. [Google Scholar] [CrossRef]
- Suwansawat, S.; Einstein, H.H. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunn. Undergr. Space Technol. 2006, 21, 133–150. [Google Scholar] [CrossRef]
- Lau, S.C.; Lu, M.; Ariaratnam, S.T. Applying radial basis function neural networks to estimate next-cycle production rates in tunnelling construction. Tunn. Undergr. Space Technol. 2010, 25, 357–365. [Google Scholar] [CrossRef]
- Gao, X.; Shi, M.; Song, X.; Zhang, C.; Zhang, H. Recurrent neural networks for real-time prediction of TBM operating parameters. Autom. Constr. 2019, 98, 225–235. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.; Zhu, S.; Armaghani, D.J.; Li, C.; Nguyen, H.; Yagiz, S. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Eng. Appl. Artif. Intell. 2021, 97, 104015. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63, 29–43. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating TBM advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019, 11, 779–789. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl.-Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, R.; Zhou, Y. Transfer learning for short-term wind speed prediction with deep neural networks. Renew. Energy 2016, 85, 83–95. [Google Scholar] [CrossRef]
- Ye, R.; Dai, Q. A novel transfer learning framework for time series forecasting. Knowl.-Based Syst. 2018, 156, 74–99. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, L.; Sun, W.; Song, X. A fuzzy c-means algorithm guided by attribute correlations and its application in the big data analysis of tunnel boring machine. Knowl.-Based Syst. 2019, 182, 104859. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2021, 4347, 1–20. [Google Scholar] [CrossRef]
- Song, X.; Shi, M.; Wu, J.; Sun, W. A new fuzzy c-means clustering-based time series segmentation approach and its application on tunnel boring machine analysis. Mech. Syst. Signal Process. 2019, 133, 106279. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Liu, T.; Tao, D. On better exploring and exploiting task relationships in multitask learning: Joint model and feature learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1975–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; An, X.; Qiao, X.; Zhu, L. Multi-task least-squares support vector machines. Multimed. Tools Appl. 2014, 71, 699–715. [Google Scholar] [CrossRef]
- Evgeniou, T.; Pontil, M. Regularized Multi–Task Learning. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 22–25 August 2004. [Google Scholar]
- Ma, J.; Theiler, J.; Perkins, S. Accurate On-line Support Vector Regression. Neural Comput. 2003, 15, 2683–2703. [Google Scholar] [CrossRef]
Parameters | Value | Unit |
---|---|---|
Cutterhead diameter | 6680 | mm |
Maximum torque | 8322 | kNm |
Rated power of drive motor | 160 | kW |
Number of drive motors | 8 | 1 |
Datasets | RF | LSTM | SVR | Lasso | OSVR | TRLS-SVR |
---|---|---|---|---|---|---|
1 | 0.43 | 0.68 | 0.73 | 0.55 | 0.58 | 0.83 |
2 | −9.86 | −1.60 | 0.31 | −1.33 | 0.55 | 0.85 |
3 | −2.10 | −1.21 | −3.27 | −0.84 | 0.46 | 0.85 |
4 | −0.43 | 0.56 | 0.46 | 0.74 | 0.77 | 0.85 |
5 | −3.17 | −0.39 | −0.64 | 0.15 | 0.45 | 0.77 |
Datasets | RF | LSTM | SVR | Lasso | OSVR | TRLS-SVR |
---|---|---|---|---|---|---|
1 | 172.49 | 123.69 | 116.54 | 135.93 | 98.61 | 81.37 |
2 | 493.13 | 231.81 | 108.57 | 213.93 | 71.23 | 38.00 |
3 | 264.91 | 218.95 | 298.31 | 186.23 | 77.73 | 49.12 |
4 | 215.99 | 152.91 | 163.10 | 93.97 | 75.85 | 58.91 |
5 | 461.49 | 271.95 | 287.26 | 172.69 | 121.41 | 89.31 |
Datasets | RF | LSTM | SVR | Lasso | OSVR | TRLS-SVR |
---|---|---|---|---|---|---|
1 | 205.35 | 153.85 | 143.10 | 183.64 | 176.36 | 111.59 |
2 | 549.17 | 268.61 | 138.01 | 254.49 | 111.35 | 65.46 |
3 | 309.10 | 260.87 | 362.76 | 238.04 | 128.90 | 67.80 |
4 | 311.40 | 173.49 | 190.99 | 133.39 | 124.72 | 101.36 |
5 | 553.55 | 319.28 | 346.48 | 249.76 | 200.65 | 129.36 |
Datasets | RF | LSTM | SVR | Lasso | OSVR | TRLS-SVR |
---|---|---|---|---|---|---|
1 | 9.18% | 6.53% | 6.51% | 7.85% | 6.31% | 4.45% |
2 | 22.19% | 10.45% | 5.04% | 9.69% | 3.38% | 1.82% |
3 | 15.89% | 14.05% | 18.18% | 11.58% | 5.14% | 3.09% |
4 | 13.56% | 10.53% | 10.64% | 7.26% | 5.78% | 4.65% |
5 | 21.09% | 11.33% | 12.22% | 8.05% | 5.79% | 4.04% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.; Zhang, T.; Song, X. A Novel Hybrid Transfer Learning Framework for Dynamic Cutterhead Torque Prediction of the Tunnel Boring Machine. Energies 2022, 15, 2907. https://doi.org/10.3390/en15082907
Fu T, Zhang T, Song X. A Novel Hybrid Transfer Learning Framework for Dynamic Cutterhead Torque Prediction of the Tunnel Boring Machine. Energies. 2022; 15(8):2907. https://doi.org/10.3390/en15082907
Chicago/Turabian StyleFu, Tao, Tianci Zhang, and Xueguan Song. 2022. "A Novel Hybrid Transfer Learning Framework for Dynamic Cutterhead Torque Prediction of the Tunnel Boring Machine" Energies 15, no. 8: 2907. https://doi.org/10.3390/en15082907
APA StyleFu, T., Zhang, T., & Song, X. (2022). A Novel Hybrid Transfer Learning Framework for Dynamic Cutterhead Torque Prediction of the Tunnel Boring Machine. Energies, 15(8), 2907. https://doi.org/10.3390/en15082907