New Insights into Abnormal Combustion Phenomena Induced by Diesel Spray-Wall Impingement under Engine-Relevant Conditions
Abstract
:1. Introduction
2. Experimental Setup and Methodology
2.1. Experimental Setup
2.2. Methodologies
3. Results and Discussion
3.1. Pressure Characteristics of Abnormal Combustion
3.2. Optical Diagnostics on Abnormal Combustion
3.3. Fundamental Mechanism for Abnormal Combustion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Lou, D.; Tan, P.; Hu, Z.; Liu, S.; Yang, Z. Experimental Study on Diesel Spray Characteristics at Different Altitudes. SAE Tech. Paper. 2018. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, F.; An, Y.; Gao, H.; Du, W.; Gao, Y.; Lou, J. Effect of wall surface temperature on ignition and combustion characteristics of diesel fuel spray impingement. Appl. Therm. Eng. 2018, 137, 47–53. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.; Li, W.; Wei, H.; Pan, M.; Wang, X.; Wu, H. Optical experiments on diesel knock for high altitude engines under spray impingement conditions. Fuel 2020, 278, 118268. [Google Scholar] [CrossRef]
- Wang, X.; Wei, H.; Pan, J.; Hu, Z.; Zheng, Z.; Pan, M. Analysis of Diesel Knock for High-Altitude Heavy-Duty Engines Using Optical Rapid Compression Machines. Energies 2020, 13, 3080. [Google Scholar] [CrossRef]
- Wu, H.; Cao, W.; Li, H.; Shi, Z.; Zhao, R.; Zhang, L.; Li, X. Wall Temperature Effects on Ignition Characteristics of Liquid-phase Spray Impingement for Heavy-duty Diesel Engine at Low Temperatures. Combust. Sci. Technol. 2021, 1–16. [Google Scholar] [CrossRef]
- Dec, J.E.; Tree, D.R. Diffusion-flame/wall interactions in a heavy-duty DI diesel engine. SAE Trans. 2001, 1, 1599–1617. [Google Scholar]
- Li, K.; Nishida, K.; Ogata, Y.; Shi, B. Effect of flat-wall impingement on diesel spray combustion. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 535–549. [Google Scholar] [CrossRef]
- Ma, T.; Feng, L.; Wang, H.; Liu, H.; Yao, M. Analysis of near wall combustion and pollutant migration after spray impingement. Int. J. Heat Mass Transf. 2019, 141, 569–579. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Z.; Li, Y.; Wu, H. Experimental study on the combustion characteristics of impinging diesel spray at low temperature environment. Appl. Therm. Eng. 2019, 148, 1233–1245. [Google Scholar] [CrossRef]
- Fansler, T.D.; Trujillo, M.F.; Curtis, E.W. Spray-wall interactions in direct-injection engines: An introductory overview. Int. J. Engine Res. 2020, 21, 241–247. [Google Scholar] [CrossRef]
- Drake, M.C.; Fansler, T.D.; Solomon, A.S.; Szekely, G.A., Jr. Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine. SAE Trans. 2003, 1, 762–783. [Google Scholar]
- Wang, Z.; Liu, H.; Reitz, R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Pan, J.; Hu, Z.; Wei, H.; Pan, M.; Liang, X.; Shu, G.; Zhou, L. Understanding strong knocking mechanism through high-strength optical rapid compression machines. Combust. Flame 2019, 202, 1–15. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. Classification of Regimes of Exother mic Reactions Depending on the Initial Conditions. Combust. Flame 1980, 39, 211. [Google Scholar] [CrossRef]
- Gu, X.J.; Emerson, D.R.; Bradley, D. Modes of reaction front propagation from hot spots. Combust. Flame 2013, 133, 63–74. [Google Scholar] [CrossRef]
- Bradley, D.; Kalghatgi, G.T. Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 2009, 156, 2307–2318. [Google Scholar] [CrossRef]
- Savard, B.; Hawkes, E.R.; Aditya, K.; Wang, H.; Chen, J.H. Regimes of premixed turbulent spontaneous ignition and deflagration under gas-turbine reheat combustion conditions. Combust. Flame 2019, 208, 402–419. [Google Scholar] [CrossRef]
- Dai, P.; Chen, Z.; Chen, S.; Ju, Y. Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 2015, 35, 3045–3052. [Google Scholar] [CrossRef]
- Qi, C.; Dai, P.; Yu, H.; Chen, Z. Different modes of reaction front propagation in n-heptane/air mixture with concentration non-uniformity. Proc. Combust. Inst. 2017, 36, 3633–3641. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Z.; Wang, J.; He, X. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock. Combust. Flame 2015, 162, 4119–4128. [Google Scholar] [CrossRef]
- Tanoue, K.; Jimoto, T.; Kimura, T.; Yamamoto, M.; Hashimoto, J. Effect of initial temperature and fuel properties on knock characteristics in a rapid compression and expansion machine. Proc. Combust. Inst. 2017, 36, 3523–3531. [Google Scholar] [CrossRef]
- Erdoğan, S.; Balki, M.K.; Sayin, C. The effect on the knock intensity of high viscosity biodiesel use in a DI diesel engine. Fuel 2019, 253, 1162–1167. [Google Scholar] [CrossRef]
- Wei, H.; Hu, Z.; Pan, J.; Wang, X.; Zhou, L.; Liu, F. Effect of fuel properties on knocking combustion in an optical rapid compression machine. Energ. Fuel 2019, 33, 12714–12722. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, M.; Tang, C.; Liu, Y.; Zhang, P.; Huang, Z. Promoting “adiabatic core” approximation in a rapid compression machine by an optimized creviced piston design. Fuel 2019, 251, 328–340. [Google Scholar] [CrossRef]
- Luo, H.; Nishida, K.; Ogata, Y. Evaporation characteristics of fuel adhesion on the wall after spray impingement under different conditions through RIM measurement system. Fuel 2019, 258, 116163. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Fuel type | Straight-run diesel |
Viscosity (mm2/s) @ 20 °C | 2.34 |
Flash point (°C) | 62.0 |
Density(kg/m3) @ 20 °C | 817.0 |
Cetane number | 52.0 |
Low heating value (MJ/kg) | 42.84 |
Distillation of 50% (°C) | 245.5 |
Distillation of 90% (°C) | 328.4 |
(mm) | |||||||
---|---|---|---|---|---|---|---|
70 | 0.65 | 343 | 20 | 5 | 0.32 | 20–100 | 1.5, 2.0 |
70 | 1.30 | 343 | 40 | 860 ± 5 | 0.32 | 20–100 | 1.5, 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Pan, J.; Li, W.; Wang, X.; Wei, H.; Pan, J. New Insights into Abnormal Combustion Phenomena Induced by Diesel Spray-Wall Impingement under Engine-Relevant Conditions. Energies 2022, 15, 2941. https://doi.org/10.3390/en15082941
Li Z, Pan J, Li W, Wang X, Wei H, Pan J. New Insights into Abnormal Combustion Phenomena Induced by Diesel Spray-Wall Impingement under Engine-Relevant Conditions. Energies. 2022; 15(8):2941. https://doi.org/10.3390/en15082941
Chicago/Turabian StyleLi, Zhijie, Jie Pan, Wei Li, Xiangting Wang, Haiqiao Wei, and Jiaying Pan. 2022. "New Insights into Abnormal Combustion Phenomena Induced by Diesel Spray-Wall Impingement under Engine-Relevant Conditions" Energies 15, no. 8: 2941. https://doi.org/10.3390/en15082941
APA StyleLi, Z., Pan, J., Li, W., Wang, X., Wei, H., & Pan, J. (2022). New Insights into Abnormal Combustion Phenomena Induced by Diesel Spray-Wall Impingement under Engine-Relevant Conditions. Energies, 15(8), 2941. https://doi.org/10.3390/en15082941