A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan
Abstract
:1. Introduction
2. Literature Review
3. Methods and Study Data
Model for the Variables
4. Results and Discussion
4.1. Descriptive and Correlation Analysis
4.2. Multicollinearity Test Using Variance Inflation Factor (VIF)
4.3. Stationary Test among Variables
4.4. Optimal Lag Length Criteria
4.5. Bounds Testing in Directive to Confirm the Cointegration
4.6. ARDL Technique Outcomes
4.7. Cointegration Regression Analysis
5. Conclusions and Policy Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zhang, B.; Wang, B. Renewable energy consumption, economic growth and human development index in Pakistan: Evidence form simultaneous equation model. J. Clean. Prod. 2018, 184, 1081–1090. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Hanif, I.; Aziz, B.; Chaudhry, I.S. Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renew. Energy 2019, 143, 586–595. [Google Scholar] [CrossRef]
- Al Asbahi, A.A.M.H.; Gang, F.Z.; Iqbal, W.; Abass, Q.; Mohsin, M.; Iram, R. Novel approach of principal component analysis method to assess the national energy performance via Energy Trilemma Index. Energy Rep. 2019, 5, 704–713. [Google Scholar] [CrossRef]
- Baloch, Z.A.; Tan, Q.; Iqbal, N.; Mohsin, M.; Abbas, Q.; Iqbal, W.; Chaudhry, I.S. Trilemma assessment of energy intensity, efficiency, and environmental index: Evidence from BRICS countries. Environ. Sci. Pollut. Res. 2020, 27, 34337–34347. [Google Scholar] [CrossRef]
- Abbasi, K.; Jiao, Z.; Shahbaz, M.; Khan, A. Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis. Energy Explor. Exploit. 2020, 38, 1946–1967. [Google Scholar] [CrossRef]
- Kahia, M.; Aïssa, M.S.B.; Lanouar, C. Renewable and non-renewable energy use-economic growth nexus: The case of MENA net oil importing countries. Renew. Sustain. Energy Rev. 2017, 71, 127–140. [Google Scholar] [CrossRef]
- Rahman, M.M.; Velayutham, E. Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew. Energy 2020, 147, 399–408. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ozturk, I.; Radulescu, M. Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan’s economic growth. Environ. Sci. Pollut. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Alper, A.; Oguz, O. The role of renewable energy consumption in economic growth: Evidence from asymmetric causality. Renew. Sustain. Energy Rev. 2016, 60, 953–959. [Google Scholar] [CrossRef]
- Jamel, L.; Derbali, A. Do energy consumption and economic growth lead to environmental degradation? Evidence from Asian economies. Cogent Econ. Financ. 2016, 4, 1170653. [Google Scholar] [CrossRef] [Green Version]
- Adewuyi, A.O.; Awodumi, O.B. Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model. Energy 2017, 119, 453–471. [Google Scholar] [CrossRef]
- Aneja, R.; Banday, U.J.; Hasnat, T.; Koçoglu, M. Renewable and non-renewable energy consumption and economic growth: Empirical evidence from panel error correction model. Jindal J. Bus. Res. 2017, 6, 76–85. [Google Scholar] [CrossRef]
- Ito, K. CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. Int. Econ. 2017, 151, 1–6. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb, T.T.Y.; Furqan, M. Industrialization, urbanization and CO2 emissions in Saudi Arabia: Asymmetry analysis. Energy Rep. 2020, 6, 1553–1560. [Google Scholar] [CrossRef]
- Ahmed, Z.; Wang, Z.; Ali, S. Investigating the non-linear relationship between urbanization and CO2 emissions: An empirical analysis. Air Qual. Atmos. Health 2019, 12, 945–953. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J.; Ali, M.I.; Hossain, M.R.; Al-Azami, K.S.; Akbar, D.; Gedikli, A. Urbanization-globalization-CO2 emissions nexus revisited: Empirical evidence from South Africa. Heliyon 2019, 5, e01974. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Z.; Ning, X.; Li, L. Gauging the impacts of urbanization on CO2 emissions from the construction industry: Evidence from China. J. Environ. Manag. 2021, 288, 112440. [Google Scholar] [CrossRef]
- Yao, F.; Zhu, H.; Wang, M. The impact of multiple dimensions of urbanization on CO2 emissions: A spatial and threshold analysis of panel data on China’s prefecture-level cities. Sustain. Cities Soc. 2021, 73, 103113. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Halkos, G.; Mishra, S. Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS. Sustain. Dev. 2022, 30, 227–240. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J.; Hou, B.; Song, X.; Zhang, X. Impact of China’s urbanization on water use and energy consumption: An econometric method and spatiotemporal analysis. Water 2018, 10, 1323. [Google Scholar] [CrossRef] [Green Version]
- Al-Mulali, U.; Fereidouni, H.G.; Lee, J.Y.; Sab, C.N.B.C. Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries. Renew. Sustain. Energy Rev. 2013, 23, 107–112. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, Y.E.; Wu, B.W. Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- Liang, W.; Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput. Inform. Syst. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Lin, B.; Ahmad, I. Analysis of energy related carbon dioxide emission and reduction potential in Pakistan. J. Clean. Prod. 2017, 143, 278–287. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Wang, T.; Zhang, T. Urbanization, economic growth, and environmental pollution: Partial differential analysis based on the spatial Durbin model. Manag. Environ. Qual. Int. J. 2019, 30, 483–494. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Chishti, M.Z.; Ozturk, I.; Irfan, M.; Ahmad, M. Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China: Another outlook. Environ. Sci. Pollut. Res. 2021, 28, 17319–17330. [Google Scholar] [CrossRef]
- Naradda Gamage, S.K.; Hewa Kuruppuge, R.; Haq, I.U. Energy consumption, tourism development, and environmental degradation in Sri Lanka. Energy Sources Part B Econ. Plan. Policy 2017, 12, 910–916. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Çetin, M.; Ecevit, E. Urbanization, energy consumption and CO2 emissions in Sub-Saharan countries: A panel cointegration and causality analysis. J. Econ. Dev. Stud. 2015, 3, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Bayar, Y.; Sasmaz, M.U.; Ozkaya, M.H. Impact of trade and financial globalization on renewable energy in EU transition economies: A bootstrap panel granger causality test. Energies 2020, 14, 19. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banday, U.J.; Aneja, R. Renewable and non-renewable energy consumption, economic growth and carbon emission in BRICS: Evidence from bootstrap panel causality. Int. J. of Ener. Sec. Manag. 2019, 14, 248–260. [Google Scholar] [CrossRef]
- Fan, J.L.; Wang, Q.; Yu, S.; Hou, Y.B.; Wei, Y.M. The evolution of CO2 emissions in international trade for major economies: A perspective from the global supply chain. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 1229–1248. [Google Scholar] [CrossRef]
- Wen, M.; Li, M.; Erum, N.; Hussain, A.; Xie, H.; ud din Khan, H.S. Revisiting environmental kuznets curve in relation to economic development and energy carbon emission efficiency: Evidence from Suzhou, China. Energies 2021, 15, 62. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Hanif, I. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2018, 25, 15057–15067. [Google Scholar] [CrossRef]
- Mohsin, M.; Kamran, H.W.; Nawaz, M.A.; Hussain, M.S.; Dahri, A.S. Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies. J. Environ. Manag. 2021, 284, 111999. [Google Scholar] [CrossRef]
- Zafar, M.W.; Shahbaz, M.; Hou, F.; Sinha, A. From nonrenewable to renewable energy and its impact on economic growth: The role of research & development expenditures in Asia-Pacific Economic Cooperation countries. J. Clean. Prod. 2019, 212, 1166–1178. [Google Scholar]
- Dar, M.R.; Azeem, M.; Ramzan, M. Impact of energy consumption on Pakistan’s economic growth. Int. J. Hum. Soc. Sci. Invent. 2013, 2, 51–60. [Google Scholar]
- Khan, M.K.; Teng, J.Z.; Khan, M.I. Effect of energy consumption and economic growth on carbon dioxide emissions in Pakistan with dynamic ARDL simulations approach. Environ. Sci. Pollut. Res. 2019, 26, 23480–23490. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, T.; Wang, Y.; Shi, Z. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environ. Impact Assess. Rev. 2015, 55, 45–53. [Google Scholar] [CrossRef]
- Wang, S.H.; Huang, S.L.; Huang, P.J. Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landsc. Urban Plan. 2018, 169, 22–36. [Google Scholar] [CrossRef]
- Zhou, Y.; Shan, Y.; Liu, G.; Guan, D. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl. Energy 2018, 228, 1683–1692. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Xie, R.; Fang, J.; Liu, Y. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities. J. Clean. Prod. 2018, 172, 1096–1110. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.; Wang, Z. Agglomeration effect of CO2 emissions and emissions reduction effect of technology: A spatial econometric perspective based on China’s province-level data. J. Clean. Prod. 2018, 204, 96–106. [Google Scholar] [CrossRef]
- Yu, Y.; Du, Y. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’ economy in China. Atmos. Pollut. Res. 2019, 10, 152–161. [Google Scholar] [CrossRef]
- Fan, J.L.; Zhang, X.; Wang, J.D.; Wang, Q. Measuring the impacts of international trade on carbon emissions intensity: A global value chain perspective. Emerg. Mark. Financ. Trade 2021, 57, 972–988. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Rjoub, H.; Panait, M.; Popescu, C. Asymmetric impact of international trade on consumption-based carbon emissions in MINT nations. Energies 2021, 14, 6581. [Google Scholar] [CrossRef]
- Kihombo, S.; Vaseer, A.I.; Ahmed, Z.; Chen, S.; Kirikkaleli, D.; Adebayo, T.S. Is there a tradeoff between financial globalization, economic growth, and environmental sustainability? An advanced panel analysis. Environ. Sci. Pollut. Res. 2022, 29, 3983–3993. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.C. The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries. Mitig. Adapt. Strateg. Glob. Change 2018, 23, 1351–1365. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.; Zhu, H.; Huang, C.; Tian, Z. The heterogeneous effects of FDI and foreign trade on CO2 emissions: Evidence from China. Math. Probl. Eng. 2019, 2019, 9612492. [Google Scholar] [CrossRef] [Green Version]
- Hasanov, F.J.; Liddle, B.; Mikayilov, J.I. The impact of international trade on CO2 emissions in oil exporting countries: Territory vs. consumption emissions accounting. Energy Econ. 2018, 74, 343–350. [Google Scholar] [CrossRef]
- Yuping, L.; Ramzan, M.; Xincheng, L.; Murshed, M.; Awosusi, A.A.; BAH, S.I.; Adebayo, T.S. Determinants of carbon emissions in Argentina: The roles of renewable energy consumption and globalization. Energy Rep. 2021, 7, 4747–4760. [Google Scholar] [CrossRef]
- Dauda, L.; Long, X.; Mensah, C.N.; Salman, M.; Boamah, K.B.; Ampon-Wireko, S.; Dogbe, C.S.K. Innovation, trade openness and CO2 emissions in selected countries in Africa. J. Clean. Prod. 2021, 281, 125143. [Google Scholar] [CrossRef]
- Hu, H.; Xie, N.; Fang, D.; Zhang, X. The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries. Appl. Energy 2018, 211, 1229–1244. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Al-Mulali, U. Oil consumption, CO2 emission and economic growth in MENA countries. Energy 2011, 36, 6165–6171. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Youssef, A.B.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W. The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth. Energy Policy 2013, 55, 483–489. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Yi, W.C.; Li, B.W. The impact of urbanization on carbon emission: Empirical evidence in Beijing. Energy Procedia 2015, 75, 2963–2968. [Google Scholar] [CrossRef] [Green Version]
- Farhani, S.; Ozturk, I. Causal relationship between CO2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. Environ. Sci. Pollut. Res. 2015, 22, 15663–15676. [Google Scholar] [CrossRef]
- Ali, H.S.; Law, S.H.; Zannah, T.I. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO2 emissions in Nigeria. Environ. Sci. Pollut. Res. 2016, 23, 12435–12443. [Google Scholar] [CrossRef]
- Sulaiman, C.; Abdul-Rahim, A.S. The relationship between CO2 emission, energy consumption and economic growth in Malaysia: A three-way linkage approach. Environ. Sci. Pollut. Res. 2017, 24, 25204–25220. [Google Scholar] [CrossRef]
- Cetin, M.; Ecevit, E.; Yucel, A.G. The impact of economic growth, energy consumption, trade openness, and financial development on carbon emissions: Empirical evidence from Turkey. Environ. Sci. Pollut. Res. 2018, 25, 36589–36603. [Google Scholar] [CrossRef]
- Rehman, A.; Rauf, A.; Ahmad, M.; Chandio, A.A.; Deyuan, Z. The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 21760–21773. [Google Scholar] [CrossRef]
- Khan, M.K.; Khan, M.I.; Rehan, M. The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. Financ. Innov. 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Ma, H.; Ozturk, I. Do industrialization, energy importations, and economic progress influence carbon emission in Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 45840–45852. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Jin, T.; Kim, J. What is better for mitigating carbon emissions–Renewable energy or nuclear energy? A panel data analysis. Renew. Sustain. Energy Rev. 2018, 91, 464–471. [Google Scholar] [CrossRef]
- Vo, D.H.; Vo, A.T.; Ho, C.M.; Nguyen, H.M. The role of renewable energy, alternative and nuclear energy in mitigating carbon emissions in the CPTPP countries. Renew. Energy 2020, 161, 278–292. [Google Scholar] [CrossRef]
- Azam, A.; Rafiq, M.; Shafique, M.; Zhang, H.; Yuan, J. Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis. Energy 2021, 219, 119592. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ozturk, I.; Ahmad, M.; Rauf, A.; Irfan, M. Another outlook to sector-level energy consumption in Pakistan from dominant energy sources and correlation with economic growth. Environ. Sci. Pollut. Res. 2021, 28, 33735–33750. [Google Scholar] [CrossRef]
- Tugcu, C.T.; Ozturk, I.; Aslan, A. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 2012, 34, 1942–1950. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R. The impact of renewable energy consumption to economic growth: A panel data application. Energy Econ. 2016, 53, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, E.; Saraç, Ş.; Aslan, A. Energy consumption and economic growth in the USA: Evidence from renewable energy. Renew. Sustain. Energy Rev. 2012, 16, 6770–6774. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, P. On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach. Energy Econ. 2018, 71, 238–252. [Google Scholar] [CrossRef]
- Ehigiamusoe, K.U.; Lean, H.H. Effects of energy consumption, economic growth, and financial development on carbon emissions: Evidence from heterogeneous income groups. Environ. Sci. Pollut. Res. 2019, 26, 22611–22624. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Du, L.; Lu, J.; Wang, J.; Li, H.Z.; Hashmi, M.Z. Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve? Energy 2017, 123, 164–172. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Rasoulinezhad, E.; Saboori, B. Panel estimation for renewable and non-renewable energy consumption, economic growth, CO2 emissions, the composite trade intensity, and financial openness of the commonwealth of independent states. Environ. Sci. Pollut. Res. 2018, 25, 17354–17370. [Google Scholar] [CrossRef] [PubMed]
- Siddique, H.M.A.; Majeed, D.M.T.; Ahmad, D.H.K. The impact of urbanization and energy consumption on CO2 emissions in South Asia. South Asian Stud. 2020, 31, 745–757. [Google Scholar]
- Gao, J.; Zhang, L. Does biomass energy consumption mitigate CO2 emissions? The role of economic growth and urbanization: Evidence from developing Asia. J. Asia Pac. Econ. 2021, 26, 96–115. [Google Scholar] [CrossRef]
Name of Authors | Study Variables | Data Range | Methods | Study Findings |
---|---|---|---|---|
Menyah & Wolde-Rufael (2010) [58] | RE, NE, GDP, CO2e | 1960–2007 | Granger causality test | NE → CO2e Re ≠ CO2e |
Al-Mulali (2011) [59] | OC, EG, CO2e | 1980–2009 | Panel model with cointegration | OC → CO2e EG → CO2e |
Arouri et al. (2012) [60] | EC, EG, CO2e | 1981–2005 | Bootstrap panel unit root tests and cointegration techniques | EC → CO2e EG ≠ CO2e |
Lee (2013) [61] | FDI, EG, EC, CO2e | 1971–2009 | Cointegration tests | FDI → EG FDI ≠ CO2e FDI ≠ EC |
Shafiei & Salim (2014) [62] | UR, NRE, RE, CO2e | 1980–2011 | STIRPAT model | UR → CO2e NRE → CO2e RE ≠ CO2e |
Zhang et al. (2015) [63] | UR, PCEC, CO2e | 1980–2013 | ARDL approach | UR → CO2e PCEC ≠ CO2e |
Farhani & Ozturk (2015) [64] | RGDP, EC, FD, TO, UR, CO2e | 1971–2012 | ARDL and error correction method | RGDP → CO2e EC → CO2e TO → CO2e UR → CO2e FD → CO2e |
Ali et al. (2016) [65] | UR, EG, EC, TO, CO2e | 1971–2011 | ARDL approach | UR & TO ≠ CO2e EG & EC→ CO2e |
Sulaiman & Abdul-Rahim (2017) [66] | EC, EG, CO2e | 1975–2015 | ARDL and vector error correction model | EC & EG → CO2e |
Cetin et al. (2018) [67] | EG, EC, TO, FD, CO2e | 1960–2013 | ARDL and VECM Granger causality | EG, EC, TO & FD → CO2e |
Rehman et al. (2019) [68] | EPC, REO, RE, FFEC, EC, GDPPC, CO2e | 1990–2017 | ARDL bounds testing approach to cointegration | EPC, REO & CO2e → GDPPC RE, FFEC & EC ≠ GDPPC |
Khan et al. (2020) [69] | EC, EG, CO2e | 1965–2015 | ARDL technique | EC & EG → CO2e |
Rehman et al. (2021) [70] | INDS, EI, CI, EG, GCF, CO2e | 1971–2019 | Quantile regression analysis | INDS, EI, CI and GCF → CO2e EG ≠ CO2e |
Study Variables | Log-Form | Unit of Measurements | Data Sources | URL Links |
---|---|---|---|---|
CO2 emission | LnCO2e | In kt (kiloton) | WDI | https://data.worldbank.org/country/bhutan (accessed on 20 January 2022) |
Renewable Energy Consumption | LnRECO | In % of total final energy consumption | WDI | |
Economic Growth | LnECGR | In annual % | WDI | |
Urbanization | LnURBA | In annual % | WDI |
LnCO2e | LnRECO | LnECGR | LnURBA | LnTRAD | |
---|---|---|---|---|---|
Mean | 5.629 | 4.515 | 1.875 | 1.582 | 4.430 |
Median | 5.886 | 4.520 | 1.843 | 1.666 | 4.416 |
Maximum | 7.244 | 4.563 | 3.369 | 2.076 | 4.758 |
Minimum | 3.245 | 4.395 | 0.686 | 1.025 | 4.112 |
Std. Dev. | 1.113 | 0.050 | 0.531 | 0.358 | 0.191 |
Skewness | −0.491 | −1.062 | 0.257 | −0.108 | 0.150 |
Kurtosis | 2.474 | 3.193 | 3.782 | 1.447 | 2.097 |
Jarque–Bera | 2.071 | 7.590 | 1.463 | 4.093 | 1.508 |
Probability | 0.354 | 0.022 | 0.481 | 0.129 | 0.470 |
LnCO2e | 1.000 | ||||
LnRECO | −0.865 | 1.000 | |||
LnECGR | −0.216 | 0.237 | 1.000 | ||
LnURBA | −0.825 | 0.769 | 0.240 | 1.000 | |
LnTRAD | 0.629 | −0.363 | −0.093 | −0.663 | 1.000 |
Variables | Coefficient Variance | Uncentered VIF | Centered VIF |
---|---|---|---|
LnRECO | 4.997 | 21,965.20 | 2.722 |
LnECGR | 0.018 | 14.770 | 1.073 |
LnURBA | 0.157 | 89.449 | 4.262 |
LnTRAD | 0.258 | 1095.222 | 1.983 |
C | 85.609 | 18,452.44 | NA |
[ADF-Tests (at the Level)] I(0) | |||||
---|---|---|---|---|---|
LnCO2e | LnRECO | LnECGR | LnURBA | LnTRAD | |
Test statistics and p-values * | −1.702 | 1.584 | −4.896 | −1.243 | −1.973 |
(0.422) | (0.999) | (0.000) | (0.645) | (0.296) | |
[At the first difference] I(1) | |||||
Test statistics and p-values * | −7.687 | −4.790 | −7.166 | −3.075 | −6.009 |
(0.000) | (0.000) | (0.000) | (0.037) | (0.000) | |
[P-P-test (at the level)] I(0) | |||||
Test statistics and p-values * | −1.785 | 1.519 | −6.000 | −0.848 | −1.862 |
(0.382) | (0.999) | (0.000) | (0.793) | (0.345) | |
[At the first difference] I(1) | |||||
Test statistics and p-values * | −7.687 | −4.790 | −18.332 | −3.075 | −6.371 |
(0.000) | (0.000) | (0.000) | (0.037) | (0.000) | |
(0.000) |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | 49.062 | NA | 6.36 × 10−8 | −2.381 | −2.164 | −2.305 |
1 | 194.632 | 243.927 | 9.53 × 10−11 | −8.899 | −7.592 * | −8.438 |
2 | 228.717 | 47.903 * | 6.31 × 10−11 | −9.390 | −6.995 | −8.545 * |
3 | 258.568 | 33.885 | 6.00 × 10−11 | −9.652 * | −6.169 | −8.424 |
[F-Bounds Test Statistics] | F-Bounds No Relationship at Levels | |||
---|---|---|---|---|
T-Stat. | Value | Significance | At I(0) | At I(1) |
F-Stat. | [5.075] | [10%] | [2.2] | [3.09] |
k | 4 | [5%] | [2.56] | [3.49] |
[2.5%] | [2.88] | [3.87] | ||
[1%] | [3.29] | [4.37] |
N-Hypothesis | T-Test Values | C-Values at 0.05 | p-Values | N-Hypothesis | M- Eigen Values | C-Values at 0.05 | p-Values |
---|---|---|---|---|---|---|---|
r ≤ 0 * | 71.002 | 69.818 | 0.040 | r ≤ 0 * | 30.210 | 33.876 | 0.128 |
r ≤ 1 | 40.791 | 47.856 | 0.195 | r ≤ 1 * | 18.216 | 27.584 | 0.477 |
r ≤ 2 | 22.575 | 29.797 | 0.267 | r ≤ 2 | 16.463 | 21.131 | 0.198 |
r ≤ 3 | 6.111 | 15.494 | 0.682 | r ≤ 3 | 6.100 | 14.264 | 0.600 |
r ≤ 4 | 0.011 | 3.841 | 0.916 | r ≤ 4 | 0.011 | 3.841 | 0.916 |
Panel A: Short-Run Outcomes | |||||
---|---|---|---|---|---|
Variables | Coefficients | S-Error | t-Stat. | Prob-Values | |
C | 5.716 | 7.536 | 0.758 | 0.453 | |
LnCO2e(−1) | −0.132 | 0.087 | −1.516 | 0.139 | |
LnRECO(−1) | −0.923 | 1.782 | −0.517 | 0.608 | |
LnECGR(−1) | 0.209 | 0.091 | 2.286 | 0.029 | |
LnURBA | −0.205 | 0.185 | −1.106 | 0.276 | |
LnTRAD | −0.182 | 0.312 | −0.583 | 0.563 | |
D(RECO) | −9.929 | 3.574 | −2.778 | 0.009 | |
D(ECGR) | 0.094 | 0.063 | 1.491 | 0.145 | |
CointEq(−1) | −0.132 | 0.028 | −4.628 | 0.000 | |
Panel B: Long-Run Outcomes | |||||
LnRECO | −6.959 | 10.154 | −0.685 | 0.498 | |
LnECGR | 1.578 | 1.332 | 1.184 | 0.005 | |
LnURBA | −1.550 | 1.730 | −0.896 | 0.376 | |
LnTRAD | −1.377 | 3.015 | −0.456 | 0.651 | |
C | 43.083 | 37.857 | 1.138 | 0.263 | |
R-squared | 0.971 | M-dependent var | 5.690 | ||
Adj-R2 | 0.964 | SD-dependent var | 1.058 | ||
S.E. of regression | 0.198 | AIC | −0.217 | ||
S-squared resid | 1.218 | SC | 0.123 | ||
Log-likelihood | 12.248 | HQC | −0.095 | ||
F-stat. | 150.211 | D-Watson stat | 2.407 | ||
Prob(F-stat.) | 0.000 |
(FMOLS—Fully Modified Least Squares) | (DOLS—Dynamic Least Squares) | ||||||
---|---|---|---|---|---|---|---|
Variables | Coefficients | t-Stat. | p-Values | Variables | Coefficients | t-Stat. | p-Values |
LnRECO | −15.134 | −4.709 | 0.000 | LnRECO | −16.229 | −3.102 | 0.005 |
LnECGR | 0.034 | −0.176 | 0.861 | LnECGR | 0.601 | −1.109 | 0.280 |
LnURBA | −0.088 | −0.154 | 0.878 | LnURBA | −0.401 | 0.373 | 0.712 |
LnTRAD | −2.043 | 2.783 | 0.008 | LnTRAD | −2.477 | 2.232 | 0.037 |
C | 65.143 | 4.896 | 0.000 | C | 68.471 | 3.168 | 0.004 |
R-squared (0.876) Adj-R2 (0.861) S.E. of regression (0.393) Long-run variance (0.383) | M-dependent var (5.690) S.D. dependent var (1.058) S-squared resid (5.257) | R-squared (0.924) Adj-R2 (0.864)S.E. of regression (0.364) Long-run variance (0.336) | M-dependent var (5.707) S.D. dependent var (0.990) S-squared resid (2.663) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; Alam, M.M.; Radulescu, M.; Alvarado, R.; Mihai, D.; Brutu, M. A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan. Energies 2022, 15, 2984. https://doi.org/10.3390/en15092984
Rehman A, Alam MM, Radulescu M, Alvarado R, Mihai D, Brutu M. A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan. Energies. 2022; 15(9):2984. https://doi.org/10.3390/en15092984
Chicago/Turabian StyleRehman, Abdul, Mohammad Mahtab Alam, Magdalena Radulescu, Rafael Alvarado, Daniela Mihai, and Madalina Brutu. 2022. "A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan" Energies 15, no. 9: 2984. https://doi.org/10.3390/en15092984
APA StyleRehman, A., Alam, M. M., Radulescu, M., Alvarado, R., Mihai, D., & Brutu, M. (2022). A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan. Energies, 15(9), 2984. https://doi.org/10.3390/en15092984