Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis
Abstract
:1. Introduction
- The distributed parallel firefly algorithm (DPFA) was implemented and then a new enhanced distributed parallel firefly algorithm (EDPFA) based on the Taguchi method was proposed.
- The Taguchi method selected the better dimensions of different solutions to obtain a new solution, which was used as a new communication strategy for EDPFA.
- The proposed EDPFA was tested by using the CEC2013 suite and had better performance than the standard FA and DPFA.
- The proposed EDPFA was used to train the parameters of the BP neural network and improve the accuracy of the transformer fault diagnosis model based on the BP neural network.
2. Distributed Parallel Firefly Algorithm and Taguchi Method
2.1. Distributed Parallel Firefly Algorithm
2.1.1. The Mathematical Form of the DPFA
2.1.2. Communication Strategies
Algorithms 1: The pseudo code of the DPFA. |
Initialize the fireflies and divide them evenly into groups. 1: while do 2: for = 1: do 3: Calculate the light intensity at using and rank the fireflies 4: for = 1: do 5: for = 1: do 6: if () 7: Move firefly toward in the th subgroup in all dimensions by using Equation (3) 8: end if 9: Evaluate distance and update attractiveness. 10: end for 11: end for 12: if 13: Communication strategies: apply ; ; ; to update in all subgroups. 14: end if 15: 16: The global best firefly and the value of . |
2.2. The Taguchi Method
3. Enhanced DPFA and Communication Strategy
3.1. Operation Strategy of the Taguchi Method
3.2. New Communication Strategies
3.2.1. New Strategy 1
3.2.2. New Strategy 2
3.3. The Pseudocode of the EDPFA
Algorithms 2: The pseudocode of EDPFA. |
Objective function , ; Initializing a population of fireflies, ; Set the number of groups . 17: 18: for = 1: 19: Calculate the light intensity using and rank the fireflies. 20: for = 1: 21: for = 1: 22: if () 23: Move firefly toward in the subgroup in all dimensions by using Equation (3). 24: end if 25: Evaluate distance by Equation (2) and update attractiveness using Equation (1). 26: end for 27: end for 28: end for 29: if 30: Communication strategies: apply to update the worst solutions. 31: end if 32: 33: |
4. Experiment Using the EDPFA
4.1. Test Functions and Parameters Setting
4.2. Comparison with the Original FA and DPFA
4.3. Comparison with Other Algorithms
5. Application for Transformer Fault Diagnosis
5.1. Structure of Transformer Fault Diagnosis Model Based on a BP Neural Network
5.2. Structure of Transformer Fault Diagnosis Model Based on EDPFA-BP Neural Network
5.3. Experiment Process and Analysis
5.3.1. The Data Collection and Pretreatment
5.3.2. The Parameter Setting of a BP Neural Network
5.3.3. Experiment Results and Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fister, I., Jr.; Yang, X.S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013, arXiv:1307.4186. [Google Scholar]
- Blum, C.; Li, X. Swarm intelligence in optimization. In Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2008; pp. 43–85. [Google Scholar]
- Shang, J.; Tian, Y.; Liu, Y.; Liu, R. Production scheduling optimization method based on hybrid particle swarm optimization algorithm. J. Intell. Fuzzy Syst. 2018, 34, 955–964. [Google Scholar] [CrossRef]
- Osorio, C.; Chong, L. A computationally efficient simulation-based optimization algorithm for large-scale urban transportation problems. Transp. Sci. 2015, 49, 623–636. [Google Scholar] [CrossRef]
- Xu, X.; Rong, H.; Trovati, M.; Liptrott, M.; Bessis, N. CS-PSO: Chaotic particle swarm optimization algorithm for solving combinatorial optimization problems. Soft Comput. 2018, 22, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Pan, J.S.; Chu, S.C. A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access 2020, 8, 32018–32030. [Google Scholar] [CrossRef]
- Pan, J.S.; Shan, J.; Zheng, S.G.; Chu, S.C.; Chang, C.K. Wind power prediction based on neural network with optimization of adaptive multi-group salp swarm algorithm. Clust. Comput. 2021, 24, 2083–2098. [Google Scholar] [CrossRef]
- Abido, M.A. Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 2002, 17, 406–413. [Google Scholar] [CrossRef]
- Karna, S.K.; Sahai, R. An overview on Taguchi method. Int. J. Eng. Math. Sci. 2012, 1, 1–7. [Google Scholar]
- Roy, R.K. A Primer on the Taguchi Method; Society of Manufacturing Engineers: Southfield, MI, USA, 2010. [Google Scholar]
- Labani, M.; Moradi, P.; Jalili, M. A multi-objective genetic algorithm for text feature selection using the relative discriminative criterion. Expert Syst. Appl. 2020, 149, 113276. [Google Scholar] [CrossRef]
- Saucedo-Dorantes, J.J.; Jaen-Cuellar, A.Y.; Delgado-Prieto, M.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R.A. Condition monitoring strategy based on an optimized selection of high-dimensional set of hybrid features to diagnose and detect multiple and combined faults in an induction motor. Measurement 2021, 178, 109404. [Google Scholar] [CrossRef]
- Lin, H.L.; Chou, C.P. Optimization of the GTA welding process using combination of the Taguchi method and a neural-genetic approach. Mater. Manuf. Process. 2010, 25, 631–636. [Google Scholar] [CrossRef]
- Tsai, P.W.; Pan, J.S.; Chen, S.M.; Liao, B.Y. Enhanced parallel cat swarm optimization based on the Taguchi method. Expert Syst. Appl. 2012, 39, 6309–6319. [Google Scholar] [CrossRef]
- Subbaraj, P.; Rengaraj, R.; Salivahanan, S. Enhancement of self-adaptive real-coded genetic algorithm using Taguchi method for economic dispatch problem. Appl. Soft Comput. 2011, 11, 83–92. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178. [Google Scholar]
- Yang, X.S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Xue, X. A compact firefly algorithm for matching biomedical ontologies. Knowl. Inf. Syst. 2020, 62, 2855–2871. [Google Scholar] [CrossRef]
- Shan, J.; Chu, S.C.; Weng, S.W.; Pan, J.S.; Jiang, S.J.; Zheng, S.G. A parallel compact firefly algorithm for the control of variable pitch wind turbine. Eng. Appl. Artif. Intell. 2022, 111, 104787. [Google Scholar] [CrossRef]
- Farahani, S.M.; Abshouri, A.A.; Nasiri, B.; Meybodi, M. A Gaussian firefly algorithm. Int. J. Mach. Learn. Comput. 2011, 1, 448. [Google Scholar] [CrossRef] [Green Version]
- Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 89–98. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Suárez, M.O.; Paredes, F.; Johnson, F. Binary firefly algorithm for the set covering problem. In Proceedings of the 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), Barcelona, Spain, 18–21 June 2014; pp. 1–5. [Google Scholar]
- Sai, V.O.; Shieh, C.S.; Nguyen, T.T.; Lin, Y.C.; Horng, M.F.; Le, Q.D. Parallel Firefly Algorithm for Localization Algorithm in Wireless Sensor Network. In Proceedings of the 2015 Third International Conference on Robot, Vision and Signal Processing (RVSP), Kaohsiung, Taiwan, 18–20 November 2015. [Google Scholar] [CrossRef]
- Shan, J.; Pan, J.S.; Chang, C.K.; Chu, S.C.; Zheng, S.G. A distributed parallel firefly algorithm with communication strategies and its application for the control of variable pitch wind turbine. ISA Trans. 2021, 115, 79–94. [Google Scholar] [CrossRef]
- Apostolopoulos, T.; Vlachos, A. Application of the firefly algorithm for solving the economic emissions load dispatch problem. Int. J. Comb. 2010, 2011, 523806. [Google Scholar] [CrossRef] [Green Version]
- Patle, B.K.; Parhi, D.R.; Jagadeesh, A.; Kashyap, S.K. On firefly algorithm: Optimization and application in mobile robot navigation. World J. Eng. 2017, 14, 65–76. [Google Scholar] [CrossRef]
- Gokhale, S.S.; Kale, V.S. An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination. Int. J. Electr. Power Energy Syst. 2016, 78, 336–342. [Google Scholar] [CrossRef]
- Mahdavi-Meymand, A.; Zounemat-Kermani, M. A new integrated model of the group method of data handling and the firefly algorithm (GMDH-FA): Application to aeration modelling on spillways. Artif. Intell. Rev. 2020, 53, 2549–2569. [Google Scholar] [CrossRef]
- Wang, M.; Vandermaar, A.J.; Srivastava, K.D. Review of condition assessment of power transformers in service. IEEE Electr. Insul. Mag. 2002, 18, 12–25. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Shahidehpour, M.; Wu, Q.; Zhou, B.; Zhang, C.; Huang, W. A bi-level machine learning method for fault diagnosis of oil-immersed transformers with feature explainability. Int. J. Electr. Power Energy Syst. 2022, 134, 107356. [Google Scholar] [CrossRef]
- de Faria, H., Jr.; Costa, J.G.S.; Olivas, J.L.M. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renew. Sustain. Energy Rev. 2015, 46, 201–209. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, E.; Guo, P.J.; Ma, C. Application of improved particle swarm optimization BP neural network in transformer fault diagnosis. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 6971–6975. [Google Scholar]
- Benmahamed, Y.; Kherif, O.; Teguar, M.; Boubakeur, A.; Ghoneim, S.S. Accuracy improvement of transformer faults diagnostic based on DGA data using SVM-BA classifier. Energies 2021, 14, 2970. [Google Scholar] [CrossRef]
- Arshad, M.; Islam, S.M.; Khaliq, A. Fuzzy logic approach in power transformers management and decision making. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2343–2354. [Google Scholar] [CrossRef]
- Fei, S.; Zhang, X. Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Syst. Appl. 2009, 36, 11352–11357. [Google Scholar] [CrossRef]
- Wang, M.H.; Tseng, Y.F.; Chen, H.C.; Chao, K.H. A novel clustering algorithm based on the extension theory and genetic algorithm. Expert Syst. Appl. 2009, 36, 8269–8276. [Google Scholar] [CrossRef]
- Ou, M.; Wei, H.; Zhang, Y.; Tan, J. A dynamic adam based deep neural network for fault diagnosis of oil-immersed power transformers. Energies 2019, 12, 995. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.-B.; Wang, W.-F.; Xu, L.; Pan, J.-S.; Chu, S.-C. An Adaptive Parallel Arithmetic Optimization Algorithm for Robot Path Planning. J. Adv. Transp. 2021, 2021, 1–22. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization; Technical Report 201212; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2013; pp. 281–295. [Google Scholar]
- Tanabe, R.; Fukunaga, A. Evaluating the performance of SHADE on CEC 2013 benchmark problems. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1952–1959. [Google Scholar]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Chu, S.C.; Roddick, J.F.; Pan, J.S. A parallel particle swarm optimization algorithm with communication strategies. J. Inf. Sci. Eng. 2005, 21, 809–818. [Google Scholar]
- Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S. Multi-verse optimizer: Theory, literature review, and application in data clustering. In Nature-Inspired Optimizers; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–141. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.H.; Shi, J.Y.; Huang, F. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In Advances in Computer Science and Information Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 553–558. [Google Scholar]
- Sun, Y.J.; Zhang, S.; Miao, C.X.; Li, J.M. Improved BP neural network for transformer fault diagnosis. J. China Univ. Min. Technol. 2007, 17, 138–142. [Google Scholar] [CrossRef]
- Luo, Y.; Hou, Y.; Liu, G.; Tang, C. Transformer fault diagnosis method based on QIA optimization BP neural network. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017; pp. 1623–1626. [Google Scholar]
- Yan, C.; Li, M.; Liu, W. Transformer fault diagnosis based on BP-Adaboost and PNN series connection. Math. Probl. Eng. 2019, 2019, 1019845. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, Z.; Fan, X.; Xu, Q.; Lu, J.; He, T. Fault diagnosis of transformer based on BP neural network and ACS-SA. High Volt. Appar. 2018, 54, 134–139. [Google Scholar]
Number of Experiments | Considered Factors | |||
---|---|---|---|---|
A | B | C | D | |
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
Experiment Number | Dimensions | f(x) | |||
---|---|---|---|---|---|
1 | 1 | 2 | 3 | 0 | 14 |
2 | 1 | 0 | 4 | 3 | 26 |
3 | 1 | 3 | 0 | 2 | 14 |
4 | 2 | 2 | 4 | 2 | 28 |
5 | 2 | 0 | 0 | 0 | 4 |
6 | 2 | 3 | 3 | 3 | 31 |
7 | 3 | 2 | 0 | 3 | 22 |
8 | 3 | 0 | 3 | 2 | 22 |
9 | 3 | 3 | 4 | 0 | 34 |
Function | FA | DPFA | EDPFA | ||
---|---|---|---|---|---|
5.60 × 10−3 | 7.46 × 10−4 | 2.50 × 10−3 | |||
2.49 × 107 | 1.49 × 107 | 1.72 × 107 | |||
2.08 × 109 | 1.26 × 108 | 1.39 × 108 | |||
6.08 × 104 | 4.54 × 104 | 6.02 × 104 | |||
9.11 × 10 | 6.81 × 10 | 7.99 × 10 | |||
6.92 × 10 | 4.99 × 10 | 5.06 × 10 | |||
7.34 × 10 | 4.33 × 10 | 3.56 × 10 | |||
2.10 × 10 | 2.12 × 10 | 2.10 × 10 | |||
2.18 × 10 | 1.49 × 10 | 1.43 × 10 | |||
5.07 | 1.48 | 1.47 | |||
4.96 × 10 | 4.45 × 10 | 2.86 × 10 | |||
4.40 × 10 | 4.34 × 10 | 1.73 × 10 | |||
1.36 × 102 | 1.04 × 102 | 5.78 × 10 | |||
3.65 × 103 | 3.71 × 103 | 3.63 × 103 | |||
3.42 × 103 | 3.12 × 103 | 2.65 × 103 | |||
9.70 × 10−1 | 1.73 | 3.48 × 10−1 | |||
6.41 × 10 | 1.03 × 102 | 4.12 × 10 | |||
7.96 × 10 | 9.38 × 10 | 5.21 × 10 | |||
3.99 | 6.36 | 3.75 | |||
1.48 × 10 | 1.48 × 10 | 1.48 × 10 | |||
3.45 × 102 | 3.29 × 102 | 3.26 × 102 | |||
5.12 × 103 | 3.92 × 103 | 4.40 × 103 | |||
5.70 × 103 | 4.90 × 103 | 4.76 × 103 | |||
2.27 × 102 | 2.10 × 102 | 2.03 × 102 | |||
2.65 × 102 | 2.22 × 102 | 2.18 × 102 | |||
2.77 × 102 | 2.57 × 102 | 2.99 × 102 | |||
6.03 × 102 | 4.47 × 102 | 3.99 × 102 | |||
2.83 × 102 | 3.01 × 102 | 2.90 × 102 | |||
24/2/2 | 19/1/8 | - |
Name | Best (Tie Best) Performance | Similar Performance |
---|---|---|
FA | ||
PCFA | ||
DPCFA |
Function | PSO | PPSO | GA | EDPFA | |||
---|---|---|---|---|---|---|---|
9.56 × 10 | 4.96 × 10−1 | 3.74 × 10−3 | 2.50 × 10−3 | ||||
7.01 × 106 | 4.06 × 106 | 1.99 × 107 | 1.72 × 107 | ||||
9.16 × 109 | 2.32 × 109 | 3.71 × 108 | 1.39 × 108 | ||||
1.63 × 104 | 1.95 × 104 | 6.39 × 104 | 6.02 × 104 | ||||
1.09 × 102 | 4.19 × 10 | 4.11 × 10 | 7.99 × 10 | ||||
9.24 × 10 | 7.51 × 10 | 7.42 × 10 | 5.06 × 10 | ||||
1.37 × 102 | 1.06 × 102 | 4.37 × 10 | 3.56 × 10 | ||||
2.10 × 10 | 2.09 × 10 | 2.11 × 10 | 2.10 × 10 | ||||
3.25 × 10 | 3.16 × 10 | 1.32 × 10 | 1.43 × 10 | ||||
7.23 × 10 | 6.43 | 1.82 | 1.47 | ||||
2.66 × 102 | 2.23 × 102 | 3.09 × 10 | 2.86 × 10 | ||||
2.61 × 102 | 2.13 × 102 | 4.28 × 10 | 1.73 × 10 | ||||
3.66 × 102 | 3.16 × 102 | 5.52 × 10 | 5.78 × 10 | ||||
4.43 × 103 | 4.15 × 103 | 4.49 × 103 | 3.63 × 103 | ||||
4.35 × 103 | 3.97 × 103 | 3.05 × 103 | 2.65 × 103 | ||||
1.30 | 1.24 | 2.45 × 10−1 | 3.48 × 10−1 | ||||
2.70 × 102 | 1.96 × 102 | 4.56 × 10 | 4.12 × 10 | ||||
2.48 × 102 | 1.93 × 102 | 7.15 × 10 | 5.21 × 10 | ||||
2.17 × 10 | 1.22 × 10 | 3.99 | 3.75 | ||||
1.45 × 10 | 1.46 × 10 | 1.50 × 10 | 1.48 × 10 | ||||
3.76 × 102 | 3.56 × 102 | 3.03 × 102 | 3.26 × 102 | ||||
5.26 × 103 | 4.91 × 103 | 5.43 × 103 | 4.40 × 103 | ||||
5.52 × 103 | 5.19 × 103 | 5.27 × 103 | 4.76 × 103 | ||||
3.00 × 102 | 2.92 × 102 | 2.32 × 102 | 2.03 × 102 | ||||
3.36 × 102 | 3.26 × 102 | 2.78 × 102 | 2.18 × 102 | ||||
3.10 × 102 | 3.00 × 102 | 3.33 × 102 | 2.99 × 102 | ||||
1.17 × 103 | 1.16 × 103 | 4.87 × 102 | 3.99 × 102 | ||||
2.73 × 103 | 1.93 × 103 | 3.02 × 102 | 2.90 × 102 | ||||
24/1/3 | 23/0/5 | 24/0/4 | - | ||||
3.89 × 10−1 | 2.08 × 102 | 1.49 × 10−5 | 2.50 × 10−3 | ||||
7.64 × 106 | 7.28 × 107 | 1.52 × 107 | 1.72 × 107 | ||||
4.97 × 108 | 3.04 × 1010 | 1.03 × 109 | 1.39 × 108 | ||||
3.45 × 103 | 9.02 × 104 | 8.17 × 104 | 6.02 × 104 | ||||
7.22 | 4.56 × 102 | 6.04 × 10 | 7.99 × 10 | ||||
3.68 × 10 | 1.84 × 102 | 6.77 × 10 | 5.06 × 10 | ||||
6.97 × 10 | 4.47 × 102 | 1.38 × 102 | 3.56 × 10 | ||||
2.10 × 10 | 2.10 × 10 | 2.10 × 10 | 2.10 × 10 | ||||
2.01 × 10 | 3.90 × 10 | 3.06 × 10 | 1.43 × 10 | ||||
1.92 | 5.17 × 102 | 8.39 | 1.47 | ||||
1.01 × 102 | 5.07 × 102 | 2.44 × 102 | 2.86 × 10 | ||||
1.06 × 102 | 5.36 × 102 | 2.03 × 102 | 1.73 × 10 | ||||
1.94 × 102 | 6.53 × 102 | 3.19 × 102 | 5.78 × 10 | ||||
3.66 × 103 | 5.95 × 103 | 4.60 × 103 | 3.63 × 103 | ||||
3.75 × 103 | 5.53 × 103 | 4.41 × 103 | 2.65 × 103 | ||||
1.29 | 1.54 | 1.08 | 3.48 × 10−1 | ||||
2.10 × 102 | 7.03 × 102 | 3.00 × 102 | 4.12 × 10 | ||||
2.07 × 102 | 6.70 × 102 | 2.38 × 102 | 5.21 × 10 | ||||
1.09 × 10 | 1.03 × 102 | 1.90 × 10 | 3.75 | ||||
1.39 × 10 | 1.48 × 10 | 1.44 × 10 | 1.48 × 10 | ||||
3.02 × 102 | 5.17 × 102 | 2.89 × 102 | 3.26 × 102 | ||||
4.13 × 103 | 6.73 × 103 | 5.50 × 103 | 4.40 × 103 | ||||
4.10 × 103 | 7.16 × 103 | 4.64 × 103 | 4.76 × 103 | ||||
2.59 × 102 | 3.16 × 102 | 2.79 × 102 | 2.03 × 102 | ||||
2.73 × 102 | 3.24 × 102 | 3.32 × 102 | 2.18 × 102 | ||||
2.95 × 102 | 4.00 × 102 | 3.40 × 102 | 2.99 × 102 | ||||
8.19 × 102 | 1.36 × 103 | 1.08 × 103 | 3.99 × 102 | ||||
3.45 × 102 | 4.76 × 103 | 1.18 × 103 | 2.90 × 102 | ||||
18/1/9 | 26/2/0 | 21/1/6 | - |
Fault Types | |||||
---|---|---|---|---|---|
14.67 | 3.68 | 10.54 | 2.71 | 0.2 | NS |
7.5 | 5.7 | 3.4 | 2.6 | 3.2 | NS |
220 | 340 | 42 | 480 | 14 | NS |
30 | 110 | 137 | 52 | 22.3 | NS |
80 | 10 | 4 | 1.5 | 0 | NS |
46.13 | 11.57 | 33.14 | 8.52 | 0.63 | NS |
…… | |||||
345 | 112.25 | 27.5 | 51.5 | 58.75 | LED |
565 | 93 | 34 | 47 | 0 | LED |
550 | 53 | 34 | 20 | 0 | LED |
115.9 | 75 | 14.7 | 25.3 | 6.8 | LED |
78 | 161 | 86 | 353 | 10 | LED |
54 | 7 | 7.4 | 8.6 | 5.4 | LED |
…… | |||||
217.5 | 40 | 4.9 | 51.8 | 67.5 | AD |
1678 | 652.9 | 80.7 | 1005.9 | 419.1 | AD |
673.6 | 423.5 | 77.5 | 988.9 | 344.4 | AD |
60 | 40 | 6.9 | 110 | 70 | AD |
200 | 48 | 14 | 117 | 131 | AD |
46 | 37.2 | 8.3 | 107 | 71.9 | AD |
…… | |||||
181 | 262 | 210 | 528 | 0 | MLTO |
160 | 130 | 33 | 96 | 0 | MLTO |
4.32 | 193 | 118 | 125 | 0 | MLTO |
170 | 320 | 53 | 520 | 3.2 | MLTO |
27 | 90 | 42 | 63 | 0.2 | MLTO |
9259 | 8397 | 26,782 | 10,497 | −1 | MLTO |
…… | |||||
172.9 | 334.1 | 172.9 | 812.5 | 37.7 | HTO |
25.1 | 411.91 | 320.9 | 1832.8 | 18.4 | HTO |
56 | 286 | 96 | 928 | 7 | HTO |
274 | 376 | 55 | 1002 | 17 | HTO |
15 | 12 | 5.3 | 3.2 | 0.2 | HTO |
56 | 285 | 96 | 28 | 7 | HTO |
…… | |||||
980 | 73 | 58 | 12 | 0 | PD |
650 | 53 | 34 | 20 | 0 | PD |
1565 | 93 | 34 | 47 | 0 | PD |
24.32 | 16.36 | 1.67 | 30.18 | 27.47 | PD |
2587.2 | 7.882 | 4.704 | 1.4 | 0 | PD |
980 | 73 | 58 | 12 | 0 | PD |
Fault Types | NS | LED | AD | MLTO | HTO | PD |
---|---|---|---|---|---|---|
Code | 01 | 02 | 03 | 04 | 05 | 06 |
Transformer Fault Diagnosis Model | Accuracy (%) |
---|---|
BP neural network | 73.33% |
FA-BP neural network | 76.67% |
DPFA-BP neural network | 80.00% |
EDPFA-BP neural network | 84.44% |
Recall (%) | ||||||
---|---|---|---|---|---|---|
Transformer Fault Diagnosis Model | NS | LED | AD | MLTO | HTO | PD |
BP neural network | 60.00% | 75.00% | 84.00% | 44.44% | 80.65% | 33.33% |
FA-BP neural network | 70.00% | 75.00% | 84.00% | 55.56% | 80.65% | 66.66% |
DPFA-BP neural network | 70.00% | 75.00% | 88.00% | 77.78% | 80.65% | 66.66% |
EDPFA-BP neural network | 80.00% | 66.67% | 88.00% | 88.89% | 87.10% | 100% |
Precision (%) | ||||||
---|---|---|---|---|---|---|
Transformer Fault Diagnosis Model | NS | LED | AD | MLTO | HTO | PD |
BP neural network | 75.00% | 69.23% | 77.78% | 33.33% | 89.29% | 50% |
FA-BP neural network | 77.78% | 69.23% | 84.00% | 38.46% | 92.59% | 66.66% |
DPFA-BP neural network | 77.78% | 75.00% | 84.62% | 46.67% | 100% | 66.66% |
EDPFA-BP neural network | 88.89% | 80.00% | 81.48% | 61.54% | 100% | 75.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-J.; Chen, W.-G.; Shan, J.; Yang, Z.-Y.; Cao, L.-Y. Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis. Energies 2022, 15, 3017. https://doi.org/10.3390/en15093017
Li Z-J, Chen W-G, Shan J, Yang Z-Y, Cao L-Y. Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis. Energies. 2022; 15(9):3017. https://doi.org/10.3390/en15093017
Chicago/Turabian StyleLi, Zhi-Jun, Wei-Gen Chen, Jie Shan, Zhi-Yong Yang, and Ling-Yan Cao. 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis" Energies 15, no. 9: 3017. https://doi.org/10.3390/en15093017
APA StyleLi, Z. -J., Chen, W. -G., Shan, J., Yang, Z. -Y., & Cao, L. -Y. (2022). Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis. Energies, 15(9), 3017. https://doi.org/10.3390/en15093017