Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review
Abstract
:1. Introduction
1.1. Previous Reviews
1.2. Aim and Structure of the Work
2. PV-T Collectors for Building Applications
2.1. Non-Integrated PV-T Collectors
2.1.1. Air-Based PV-T Collectors
2.1.2. Liquid-Based PV-T Collectors
2.1.3. Low-Concentrated PV-T Collectors
2.2. Building-Integrated PV-T Collectors
2.2.1. Opaque BIPV-T Collectors
2.2.2. Semi-Transparent BIPV-T Collectors
3. S-CCHP Systems
3.1. Non-Integrated S-CCHP Systems
3.1.1. Flat-Plate PV-T Systems
3.1.2. Low-Concentrated PV-T Systems
3.2. Building-Integrated S-CCHP Systems
4. Major Advancements and Further Work on PV-T Collectors and Systems for Building Applications
5. PV-T-Based S-CCHP Systems’ Potential and Discussion
6. Conclusions
- Air-based PV-T collectors are the simplest design and typically cheaper, although the thermal performance is lower compared to liquid-based PV-T collectors. Different thermal absorber designs have been proposed to improve heat transfer, including the addition of several fin configurations. The main applications include space heating and solar drying (particularly in the agriculture sector). These PV-T collectors are particularly suitable for building applications in medium and high latitude countries. Usually, these collectors are integrated with an air-source HP for space heating provision.
- Liquid-based PV-T collectors have a more complex design compared to air-based PV-T collectors and their cost is generally higher, but they have larger thermal efficiency and the thermal output has more applications, including space heating, water heating and solar cooling.
- The most common design for water-based PV-T collectors comprises a metallic sheet-and-tube absorber and parallel pipes, while in refrigerant-based PV-T collectors, a serpentine sheet-and-tube is typically used.
- Major advancements in liquid-based PV-T collectors include the addition of nanofluids or PCMs to enhance their performance. However, more theoretical and experimental research is required for a better understanding and development of the integration of nanofluids and PCMs in PV-T collectors.
- Refrigerant-based PV-T collectors usually have higher electrical efficiencies than air- or water-based PV-T collectors due to the lower operating temperature of the PV cells, but they have some disadvantages such as the high risk of refrigerant leakage, uneven refrigerant distribution in evaporation tubes, the potential induced degradation, delamination and UV degradation, or the need of a perfect seal in the refrigerant cycle to prevent air entering the system during operation. Heat-pipe PV-T collectors may have the potential to overcome some of these problems, but further research is required in their design and operation.
- Single-covered PV-T collectors appear like an interesting option when a significant thermal output is needed, while the best exergy gain is found for uncovered PV-T collectors.
- The thermal absorber design (including the fluid flow pattern) has a considerable impact on the cooling of the PV cells and the temperature of the thermal output of the collector. Recent research focused on the thermal absorber design and fabrication, to increase the heat transfer area and produce cost-competitive collectors, for instance, using flat-box or roll-bond designs.
- To cater to the demands of applications where high temperatures are required, achieving low emissivity is critical, which can be attained by applying suitable coatings, and PV-T collector evacuation then also becomes a critical factor for reducing convective thermal losses.
- The most suitable PV-T collector type to satisfy the space heating demand depends on the weather conditions and the space heating system, if available, among others.
- DHW provision appears to be the most common PV-T application at present.
- The larger complexity and risks of BIPV-T collectors compared to stand-alone PV-T collectors have acted to hinder their potential and uptake, so more research is required in the detailed modelling, analysis of any impacts on the building structure and integration methods for installation as well as more experimental assessments and long-term performance analyses.
- The most suitable combination of PV-T collector and H/C technology depends on the specific location (solar irradiance, ambient temperatures) and the specific application, among others.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ASHP | air-source heat pump |
a-Si | amorphous silicon |
a-Si:H | hydrogenated amorphous silicon |
AVT | average visible transmittance |
BIPV | building-integrated PV |
BIPV-T | building-integrated PV-T |
CdTe | cadmium telluride |
CFD | computational fluid dynamics |
CI(G)S | cooper indium (gallium) selenide |
COP | coefficient of performance |
CPV-T | concentrated PV-T |
c-Si | mono-crystalline silicon |
DHW | domestic hot water |
DX | direct-expansion |
ETC | evacuated tube collectors |
H/C | heating and cooling |
HIT | heterojunction intrinsic thin layer |
HP | heat pump |
HTF | heat transfer fluids |
IDX | indirect-expansion |
FPC | Flat-plate collectors |
GHG | greenhouse gas |
PCM | phase change material |
m-Si | multi-crystalline silicon |
PV | photovoltaic |
PV-T | photovoltaic-thermal |
PTC | parabolic through collectors |
RES | renewable energy sources |
SAHP | Solar-assisted heat pump |
S-CCHP | solar combined cooling, heating and power |
SH | space heating |
SHC | solar heating and cooling |
ST | solar thermal |
TCO | transparent conducting oxide |
TES | thermal energy storage |
TiO2 | titanium oxide |
ZnO | zinc oxide |
References
- European Commission. EU Energy in Figures; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- European Commission. An EU strategy on heating and cooling. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- European Commission. SET-Plan. In ISSUES PAPER on Strategic Targets in the Context of Action 5-Develop New Materials and Technologies for Energy Efficiency Solutions for Buildings-Cross-Cutting Heating and Cooling Technologies for Buildings; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- European Union. Energy in Figures—Statistical Pocketbook; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Buonomano, A.; Calise, F.; Palombo, A. Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation. Renew. Sustain. Energy Rev. 2018, 82, 1874–1908. [Google Scholar] [CrossRef]
- Weiss, W.; Biermayr, P. Potential of Solar Thermal in Europe. European Solar Thermal Industry Federation Federation (ESTIF). Available online: http://www.estif.org/policies/solar_thermal_potential_study_downloads/ (accessed on 10 April 2022).
- Herrando, M.; Markides, C.; Hellgardt, K. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Appl. Energy 2014, 122, 288–309. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Kalita, P.; Roy, O. Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development. Renew. Sustain. Energy Rev. 2018, 84, 111–130. [Google Scholar] [CrossRef]
- Joshi, S.S.; Dhoble, A.S. Photovoltaic -Thermal systems (PVT): Technology review and future trends. Renew. Sustain. Energy Rev. 2018, 92, 848–882. [Google Scholar] [CrossRef]
- Herrando, M.; Ramos, A.; Zabalza, I.; Markides, C. A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Appl. Energy 2019, 235, 1583–1602. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.; Chatzopoulou, M.A.; Guarracino, I.; Freeman, J.; Markides, C. Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Convers. Manag. 2017, 150, 838–850. [Google Scholar] [CrossRef]
- Guarracino, I.; Mellor, A.; Ekins-Daukes, N.J.; Markides, C.N. Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic / thermal (PVT) collectors. Appl. Therm. Eng. 2016, 101, 778–795. [Google Scholar] [CrossRef] [Green Version]
- Herrando, M.; Ramos, A.; Zabalza, I.; Markides, C.N. Energy Performance of a Solar Trigeneration System Based on a Novel Hybrid PVT Panel for Residential Applications. In Proceedings of the ISES Solar World Congress-IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, Abu Dhabi, United Arab Emirates, 29 October–2 November 2017; pp. 1090–1101. [Google Scholar]
- IEA. Task 60: PVT Systems: Application of PVT Collectors and New Solutions in HVAC Systems. Solar Heating and Cooling Programme (2018–2020). Available online: https://task60.iea-shc.org/ (accessed on 10 April 2022).
- Ge, T.; Wang, R.; Xu, Z.; Pan, Q.; Du, S.; Chen, X.; Ma, T.; Wu, X.; Sun, X.; Chen, J. Solar heating and cooling: Present and future development. Renew. Energy 2018, 126, 1126–1140. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. Review of solar refrigeration and cooling systems. Energy Build. 2013, 67, 286–297. [Google Scholar] [CrossRef]
- Ullah, K.; Saidur, R.; Ping, H.; Akikur, R.; Shuvo, N. A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 2013, 24, 499–513. [Google Scholar] [CrossRef]
- Ghafoor, A.; Munir, A. Worldwide overview of solar thermal cooling technologies. Renew. Sustain. Energy Rev. 2015, 43, 763–774. [Google Scholar] [CrossRef]
- Nkwetta, D.N.; Sandercock, J. A state-of-the-art review of solar air-conditioning systems. Renew. Sustain. Energy Rev. 2016, 60, 1351–1366. [Google Scholar] [CrossRef]
- Bataineh, K.; Taamneh, Y. Review and recent improvements of solar sorption cooling systems. Energy Build. 2016, 128, 22–37. [Google Scholar] [CrossRef]
- Leonzio, G. Solar systems integrated with absorption heat pumps and thermal energy storages: State of art. Renew. Sustain. Energy Rev. 2017, 70, 492–505. [Google Scholar] [CrossRef]
- Montagnino, F.M. Solar cooling technologies. Design, application and performance of existing projects. Sol. Energy 2017, 154, 144–157. [Google Scholar] [CrossRef]
- Wang, J.; Han, Z.; Guan, Z. Hybrid solar-assisted combined cooling, heating, and power systems: A review. Renew. Sustain. Energy Rev. 2020, 133, 110256. [Google Scholar] [CrossRef]
- Alobaid, M.; Hughes, B.; Calautit, J.K.; O’Connor, D.; Heyes, A. A review of solar driven absorption cooling with photovoltaic thermal systems. Renew. Sustain. Energy Rev. 2017, 76, 728–742. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Lin, S.; Bilbao, J.I.; White, S.D.; Sproul, A.B. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification. Renew. Sustain. Energy Rev. 2017, 67, 1–14. [Google Scholar] [CrossRef]
- Chow, T.T. A review on photovoltaic / thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Zondag, H.H. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev. 2008, 12, 891–959. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, X.; Smith, S.; Xu, J.; Yu, X. Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew. Sustain. Energy Rev. 2012, 16, 599–617. [Google Scholar]
- Michael, J.J.; Iniyan, S.; Goic, R. Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide. Renew. Sustain. Energy Rev. 2015, 51, 62–88. [Google Scholar] [CrossRef]
- Reddy, S.R.; Ebadian, M.A.; Lin, C.X. A review of PV–T systems: Thermal management and efficiency with single phase cooling. Int. J. Heat Mass Transf. 2015, 91, 861–871. [Google Scholar] [CrossRef]
- Kamel, R.S.; Fung, A.S.; Dash, P.R. Solar systems and their integration with heat pumps: A review. Energy Build. 2015, 87, 395–412. [Google Scholar] [CrossRef]
- Brahim, T.; Jemni, A. Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Sol. Energy 2017, 153, 540–561. [Google Scholar] [CrossRef]
- Sathe, T.M.; Dhoble, A. A review on recent advancements in photovoltaic thermal techniques. Renew. Sustain. Energy Rev. 2017, 76, 645–672. [Google Scholar] [CrossRef]
- Jia, Y.; Alva, G.; Fang, G. Development and applications of photovoltaic–thermal systems: A review. Renew. Sustain. Energy Rev. 2019, 102, 249–265. [Google Scholar] [CrossRef]
- Gupta, S.K.; Pradhan, S. A review of recent advances and the role of nanofluid in solar photovoltaic thermal (PV/T) system. Mater. Today Proc. 2021, 44, 782–791. [Google Scholar] [CrossRef]
- Rajoria, C.; Kumar, R.; Sharma, A.; Singh, D.; Suhag, S. Development of flat-plate building integrated photovoltaic/thermal (BIPV/T) system: A review. Mater. Today Proc. 2021, 46, 5342–5352. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef] [Green Version]
- Tagliafico, L.A.; Scarpa, F.; De Rosa, M. Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors—A review. Renew. Sustain. Energy Rev. 2014, 30, 526–537. [Google Scholar] [CrossRef]
- Suman, S.; Khan, M.K.; Pathak, M. Performance enhancement of solar collectors—A review. Renew. Sustain. Energy Rev. 2015, 49, 192–210. [Google Scholar] [CrossRef] [Green Version]
- Buker, M.S.; Riffat, S.B. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renew. Sustain. Energy Rev. 2016, 55, 399–413. [Google Scholar] [CrossRef]
- Settino, J.; Sant, T.; Micallef, C.; Farrugia, M.; Staines, C.S.; Licari, J.; Micallef, A. Overview of solar technologies for electricity, heating and cooling production. Renew. Sustain. Energy Rev. 2018, 90, 892–909. [Google Scholar] [CrossRef]
- Mohanraj, M.; Belyayev, Y.; Jayaraj, S.; Kaltayev, A. Research and developments on solar assisted compression heat pump systems—A comprehensive review (Part A: Modeling and modifications). Renew. Sustain. Energy Rev. 2018, 83, 90–123. [Google Scholar] [CrossRef]
- Wang, X.; Xia, L.; Bales, C.; Zhang, X.; Copertaro, B.; Pan, S.; Wu, J. A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources. Renew. Energy 2020, 146, 2472–2487. [Google Scholar] [CrossRef] [Green Version]
- Al-Alili, A.; Hwang, Y.; Radermacher, R. Review of solar thermal air conditioning technologies. Int. J. Refrig. 2014, 39, 4–22. [Google Scholar] [CrossRef]
- Hassan, H.; Mohamad, A. A review on solar cold production through absorption technology. Renew. Sustain. Energy Rev. 2012, 16, 5331–5348. [Google Scholar] [CrossRef]
- Boopathi Raja, V.; Shanmugam, V. A review and new approach to minimize the cost of solar assisted absorption cooling system. Renew. Sustain. Energy Rev. 2012, 16, 6725–6731. [Google Scholar] [CrossRef]
- Infante Ferreira, C.; Kim, D.S. Techno-economic review of solar cooling technologies based on location-specific data. Int. J. Refrig. 2014, 39, 23–37. [Google Scholar] [CrossRef]
- Allouhi, A.; Kousksou, T.; Jamil, A.; Bruel, P.; Mourad, Y.; Zeraouli, Y. Solar driven cooling systems: An updated review. Renew. Sustain. Energy Rev. 2015, 44, 159–181. [Google Scholar] [CrossRef]
- Zeyghami, M.; Goswami, D.Y.; Stefanakos, E. A review of solar thermo-mechanical refrigeration and cooling methods. Renew. Sustain. Energy Rev. 2015, 51, 1428–1445. [Google Scholar] [CrossRef]
- Siddiqui, M.U.; Said, S.A.M. A review of solar powered absorption systems. Renew. Sustain. Energy Rev. 2015, 42, 93–115. [Google Scholar] [CrossRef]
- Aliane, A.; Abboudi, S.; Seladji, C.; Guendouz, B. An illustrated review on solar absorption cooling experimental studies. Renew. Sustain. Energy Rev. 2016, 65, 443–458. [Google Scholar] [CrossRef]
- Salameh, T.; Zhang, D.; Juaidi, A.; Alami, A.H.; Al-Hinti, I.; Olabi, A.G. Review of solar photovoltaic cooling systems technologies with environmental and economical assessment. J. Clean. Prod. 2021, 326, 129421. [Google Scholar] [CrossRef]
- Almasri, R.A.; Abu-Hamdeh, N.H.; Esmaeil, K.K.; Suyambazhahan, S. Thermal solar sorption cooling systems, a review of principle, technology, and applications. Alex. Eng. J. 2022, 61, 367–402. [Google Scholar] [CrossRef]
- Tripanagnostopoulos, Y. Aspects and improvements of hybrid photovoltaic/thermal solar energy systems. Sol. Energy 2007, 81, 1117–1131. [Google Scholar] [CrossRef]
- Makki, A.; Omer, S.; Sabir, H. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew. Sustain. Energy Rev. 2015, 41, 658–684. [Google Scholar] [CrossRef]
- Alwaeli, A.H.A.; Sopian, K.; Kazem, H.A.; Chaichan, M.T. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renew. Sustain. Energy Rev. 2017, 77, 109–130. [Google Scholar] [CrossRef]
- Sultan, S.M.; Efzan, M.N.E. Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Sol. Energy 2018, 173, 939–954. [Google Scholar] [CrossRef]
- Tripanagnostopoulos, Y.; Nousia, T.; Souliotis, M.; Yianoulis, P. Hybrid photovoltaic/thermal solar systems. Sol. Energy 2002, 72, 217–234. [Google Scholar] [CrossRef]
- Kamthania, D.; Nayak, S.; Tiwari, G. Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating. Energy Build. 2011, 43, 2274–2281. [Google Scholar] [CrossRef]
- Bambrook, S.; Sproul, A. Maximising the energy output of a PVT air system. Sol. Energy 2012, 86, 1857–1871. [Google Scholar] [CrossRef]
- Agrawal, S.; Tiwari, G.N. Enviroeconomic analysis and energy matrices of glazed hybrid photovoltaic thermal module air collector. Sol. Energy 2013, 92, 139–146. [Google Scholar] [CrossRef]
- Agrawal, S.; Tiwari, G. Performance analysis in terms of carbon credit earned on annualized uniform cost of glazed hybrid photovoltaic thermal air collector. Sol. Energy 2015, 115, 329–340. [Google Scholar] [CrossRef]
- del Amo, A.; Martínez-Gracia, A.; Bayod-Rújula, A.A.; Antoñanzas, J. An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring. Appl. Energy 2017, 186, 140–151. [Google Scholar] [CrossRef]
- Shahsavar, A.; Ameri, M. Experimental investigation and modeling of a direct-coupled PV/T air collector. Sol. Energy 2010, 84, 1938–1958. [Google Scholar] [CrossRef]
- Tonui, J.; Tripanagnostopoulos, Y. Performance improvement of PV/T solar collectors with natural air flow operation. Sol. Energy 2008, 82, 1–12. [Google Scholar] [CrossRef]
- Daghigh, R.; Ruslan, M.; Sopian, K. Advances in liquid based photovoltaic/thermal (PV/T) collectors. Renew. Sustain. Energy Rev. 2011, 15, 4156–4170. [Google Scholar] [CrossRef]
- Ibrahim, A.; Othman, M.Y.; Ruslan, M.H.; Alghoul, M.A.; Yahya, M.; Zaharim, A.; Sopian, K. Performance of photovoltaic thermal collector (PVT) with different absorbers design. WSEAS Trans. Environ. Dev. 2009, 5, 321–330. [Google Scholar]
- Fraisse, G.; Ménézo, C.; Johannes, K. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type. Sol. Energy 2007, 81, 1426–1438. [Google Scholar] [CrossRef]
- Santbergen, R.; Rindt, C.; Zondag, H.; van Zolingen, R. Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors. Sol. Energy 2010, 84, 867–878. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Yazdi, M.H.; Ruslan, M.H.; Ibrahim, A.; Kazem, H.A. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers. Manag. 2014, 78, 641–651. [Google Scholar] [CrossRef]
- Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M. TESPI: Thermal Electric Solar Panel Integration. Sol. Energy 2011, 85, 2433–2442. [Google Scholar] [CrossRef]
- Zondag, H.; de Vries, D.; van Helden, W.; van Zolingen, R.; van Steenhoven, A. The yield of different combined PV-thermal collector designs. Sol. Energy 2003, 74, 253–269. [Google Scholar] [CrossRef]
- Zondag, H.; de Vries, D.; van Helden, W.; van Zolingen, R.; van Steenhoven, A. The thermal and electrical yield of a PV-thermal collector. Sol. Energy 2002, 72, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.; Zondag, H.A.; van Helden, W.G.J. Design of a Dual Flow Photovoltaic/Thermal Combi Panel. 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.5956&rep=rep1&type=pdf (accessed on 10 April 2022).
- Zhang, T.; Tan, Y.; Bai, L. Numerical simulation of a new district cooling system in cogeneration plants. Energy Procedia 2012, 14, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.J.; Lin, T.H.; Hung, W.C.; Sun, F.S. Performance evaluation of solar photovoltaic/thermal systems. Sol. Energy 2001, 70, 443–448. [Google Scholar] [CrossRef]
- Cristofari, C.; Notton, G.; Poggi, P.; Louche, A. Modelling and performance of a copolymer solar water heating collector. Sol. Energy 2002, 72, 99–112. [Google Scholar] [CrossRef]
- Cristofari, C.; Canaletti, J.; Notton, G.; Darras, C. Innovative patented PV/TH Solar Collector: Optimization and performance evaluation. Energy Procedia 2012, 14, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Ghaffari Mosanenzadeh, S.; Liu, M.W.; Osia, A.; Naguib, H.E. Thermal Composites of Biobased Polyamide with Boron Nitride Micro Networks. J. Polym. Environ. 2015, 23, 566–579. [Google Scholar] [CrossRef]
- Yoon, Y.; Oh, M.; Kim, A.; Kim, N. The Development of Thermal Conductive Polymer Composites for Heat Sink. J. Chem. Chem. Eng. 2012, 6, 515. [Google Scholar]
- Herrando, M.; Simón, R.; Guedea, I.; Fueyo, N. The challenges of solar hybrid PVT systems in the food processing industry. Appl. Therm. Eng. 2020, 184, 116235. [Google Scholar] [CrossRef]
- Herrando, M.; Markides, C.N. Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations. Appl. Energy 2016, 161, 512–532. [Google Scholar] [CrossRef] [Green Version]
- Axaopoulos, P.J.; Fylladitakis, E.D. Performance and economic evaluation of a hybrid photovoltaic/thermal solar system for residential applications. Energy Build. 2013, 65, 488–496. [Google Scholar] [CrossRef]
- Chow, T. Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Sol. Energy 2003, 75, 143–152. [Google Scholar] [CrossRef]
- Antonanzas, J.; del Amo, A.; Martinez-Gracia, A.; Bayod-Rujula, A.A.; Antonanzas-Torres, F. Towards the optimization of convective losses in photovoltaic–thermal panels. Sol. Energy 2015, 116, 323–336. [Google Scholar] [CrossRef]
- Dupeyrat, P.; Ménézo, C.; Fortuin, S. Study of the thermal and electrical performances of PVT solar hot water system. Energy Build. 2014, 68, 751–755. [Google Scholar] [CrossRef]
- Guarracino, I.; Freeman, J.; Ramos, A.; Kalogirou, S.A.; Ekins-Daukes, N.; Markides, C.N. Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions. Appl. Energy 2019, 240, 1014–1030. [Google Scholar] [CrossRef]
- Tripanagnostopoulos, Y.; Souliotis, M. Application Aspects of Hybrid PV/T Solar Systems. Ph.D. Thesis, University of Patras, Patras, Greece, 2002. [Google Scholar]
- Affolter, P.; Eisenmann, W.; Fechner, H.; Rommel, M.; Schaap, A.; Sorensen, H.; Zondag, H.A.; Van Helden, W.G.J.; Bakker, M.; Tripanagnostopoulos, Y. PVT roadmap: A European guide for the development and market introduction of PV-Thermal technology. In Proceedings of the European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 6–10 June 2005; Volume 6, p. 10. [Google Scholar]
- Kalogirou, S.A.; Tripanagnostopoulos, Y. Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Convers. Manag. 2006, 47, 3368–3382. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar Energy Engineering: Processes and Systems, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Hansen, J.; Sorensen, H. IEA SHC Task 35 PV/Thermal Solar Systems. In Proceedings of the World Renewable Energy Congress, Document Number DE2-3, Firenze, Italy, 19–25 August 2006. [Google Scholar]
- Wiesenfarth, M.; Philipps, S.P.; Bett, A.W.; Horowitz, K.; Kurtz, S. Current Status of Concentrator Photovoltaic (CPV) Technology; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2015.
- Buonomano, A.; De Luca, G.; Figaj, R.D.; Vanoli, L. Dynamic simulation and thermo-economic analysis of a PhotoVoltaic/Thermal collector heating system for an indoor–outdoor swimming pool. Energy Convers. Manag. 2015, 99, 176–192. [Google Scholar] [CrossRef]
- Wang, K.; Herrando, M.; Pantaleo, A.M.; Markides, C.N. Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres. Appl. Energy 2019, 254, 113657. [Google Scholar] [CrossRef]
- Wang, K.; Herrando, M.; Pantaleo, A.M.; Markides, C.N. Thermodynamic and economic assessments of a PVT-ORC combined heating and power system for swimming pools. In Proceedings of the 8th Heat Powered Cycles Conference, Bayreuth, Germany, 16–19 September 2018. [Google Scholar]
- Calise, F.; Dentice D’Accadia, M.; Vanoli, L. Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT). Energy Convers. Manag. 2012, 60, 214–225. [Google Scholar] [CrossRef]
- Herrando, M.; Ramos, A.; Freeman, J.; Zabalza, I.; Markides, C.N. Technoeconomic modelling and optimisation of solar combined heat and power systems based on flat-box PVT collectors for domestic applications. Energy Convers. Manag. 2018, 175, 67–85. [Google Scholar] [CrossRef]
- Vokas, G.; Christandonis, N.; Skittides, F. Hybrid photovoltaic-thermal systems for domestic heating and cooling—A theoretical approach. Sol. Energy 2006, 80, 607–615. [Google Scholar] [CrossRef]
- Tse, K.-K.; Chow, T.-T.; Su, Y. Performance evaluation and economic analysis of a full scale water-based photovoltaic/thermal (PV/T) system in an office building. Energy Build. 2016, 122, 42–52. [Google Scholar] [CrossRef]
- Kim, Y.; Thu, K.; Kaur, H.; Singh, C.; Choon, K. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation. Sol. Energy 2012, 86, 1378–1395. [Google Scholar] [CrossRef]
- Dubey, S.; Tiwari, G. Analysis of PV/T flat plate water collectors connected in series. Sol. Energy 2009, 83, 1485–1498. [Google Scholar] [CrossRef]
- Hobbi, A.; Siddiqui, K. Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS. Sol. Energy 2009, 83, 700–714. [Google Scholar] [CrossRef]
- Cristofari, C.; Notton, G.; Poggi, P.; Louche, A. Influence of the flow rate and the tank stratification degree on the performances of a solar flat-plate collector. Int. J. Therm. Sci. 2003, 42, 455–469. [Google Scholar] [CrossRef]
- Chow, T.; He, W.; Ji, J. Hybrid photovoltaic-thermosyphon water heating system for residential application. Sol. Energy 2006, 80, 298–306. [Google Scholar] [CrossRef]
- Chow, T.; Chan, A.; Fong, K.; Lin, Z.; He, W.; Ji, J. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application. Appl. Energy 2009, 86, 689–696. [Google Scholar] [CrossRef]
- Herrando, M.; Ramos, A.; Zabalza, I. Cost competitiveness of a novel PVT-based solar combined heating and power system: Influence of economic parameters and financial incentives. Energy Convers. Manag. 2018, 166, 758–770. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, X.; Ma, X.; Qiu, Z.; Ji, J.; Du, Z.; Yu, M. Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules. Appl. Energy 2016, 178, 484–495. [Google Scholar] [CrossRef]
- Keliang, L.; Jie, J.; Tin-Tai, C.; Gang, P.; Hanfeng, H.; Aiguo, J.; Jichun, Y. Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor—A case study in Tibet. Renew. Energy 2009, 34, 2680–2687. [Google Scholar] [CrossRef]
- Vaishak, S.; Bhale, P.V. Photovoltaic/thermal-solar assisted heat pump system: Current status and future prospects. Sol. Energy 2019, 189, 268–284. [Google Scholar] [CrossRef]
- de Keizer, C.; Bottse, J.; De Jong, M.; Folkerts, W. An overview of PVT modules on the European market and the barriers and opportunities for the Dutch Market. In Proceedings of the ISES EuroSun 2018 Conference, Rapperswil, Switzerland, 10–13 September 2018. [Google Scholar]
- Bakker, M.; Zondag, H.; Elswijk, M.; Strootman, K.; Jong, M. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump. Sol. Energy 2005, 78, 331–339. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Riffat, S.B.; Su, Y. Theoretical study of the performance of a novel PV/e roof module for heat pump operation. Energy Convers. Manag. 2011, 52, 603–614. [Google Scholar] [CrossRef]
- Ji, J.; He, H.; Chow, T.; Pei, G.; He, W.; Liu, K. Distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump. Int. J. Heat Mass Transf. 2009, 52, 1365–1373. [Google Scholar] [CrossRef]
- Ji, J.; Pei, G.; Chow, T.T.; Keliang, L.; Hanfeng, H.; Jianping, L.; Han, C. Experimental study of photovoltaic solar assisted heat pump system. Sol. Energy 2008, 82, 43–52. [Google Scholar] [CrossRef]
- Vaishak, S.; Bhale, P.V. Performance analysis of a heat pump-based photovoltaic/thermal (PV/T) system. Clean Technol. Environ. Policy 2020, 23, 1121–1133. [Google Scholar] [CrossRef]
- Tsai, H.-L. Modeling and validation of refrigerant-based PVT-assisted heat pump water heating (PVTA–HPWH) system. Sol Energy 2015, 122, 36–47. [Google Scholar] [CrossRef]
- Liang, R.; Pan, Q.; Wang, P.; Zhang, J. Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump. Energy 2018, 161, 744–752. [Google Scholar] [CrossRef]
- Xu, G.; Deng, S.; Zhang, X.; Yang, L.; Zhang, Y. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator. Sol. Energy 2009, 83, 1967–1976. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, R.; Riaz, A.; Zhang, J.; Chen, J. Experimental investigation on the tri-generation performance of roll-bond photovoltaic thermal heat pump system during summer. Energy Convers. Manag. 2019, 184, 91–106. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, R.; Zhang, J.; Riaz, A. Experimental study on the cogeneration performance of roll-bond-PVT heat pump system with single stage compression during summer. Appl. Therm. Eng. 2019, 149, 249–261. [Google Scholar] [CrossRef]
- Fang, G.; Hu, H.; Liu, X. Experimental investigation on the photovoltaic–thermal solar heat pump air-conditioning system on water-heating mode. Exp. Therm. Fluid Sci. 2010, 34, 736–743. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Xu, J.; Yu, X. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl. Energy 2013, 102, 1229–1245. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Abazeri, M. Transient simulation of a capacity-modulated, direct-expansion, solar-assisted heat pump. Sol. Energy 1987, 39, 421–428. [Google Scholar] [CrossRef]
- Everett, V.; Harvey, J.; Surve, S.; Thomsen, E.; Walter, D.; Vivar, M.; Le Leivre, P. Evaluation of electrical and thermal performance of a rooftop-friendly hybrid linear CPV-T micro-concentrator system. In Proceedings of the 40th ASES National Solar Conference, Raleigh, NC, USA, 17–20 May 2011; Volume 1, pp. 342–347. [Google Scholar]
- Surve, S.; Ratcliff, T.; Walter, D.; Le Leivre, P. Reliability Assessment of a Linear Pv-Thermal Microconcentrator Receiver Based on the Iec 62108. In Proceedings of the 40th ASES National Solar Conference, Raleigh, NC, USA, 17–20 May 2011. [Google Scholar]
- Chatterjee, A.; Bernal, E.; Seshadri, S.; Mayer, O.; Greaves, M. Linear Fresnel reflector based solar radiation concentrator for combined heating and power. AIP Conf. Proc. 2011, 1407, 257–261. [Google Scholar]
- Xu, G.; Zhang, X.; Deng, S. Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system. Appl. Therm. Eng. 2011, 31, 3689–3695. [Google Scholar] [CrossRef]
- Henemann, A. BIPV: Built-in solar energy. Renew. Energy Focus 2008, 9, 14–19. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Bayoumi, M. Impacts of window opening grade on improving the energy efficiency of a façade in hot climates. Build. Environ. 2017, 119, 31–43. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report; Fraunhofer Institute for Solar Energy Systems: Freiburg, Germany, 2012. [Google Scholar]
- Husain, A.A.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2019; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Pulli, E.; Rozzi, E.; Bella, F. Transparent photovoltaic technologies: Current trends towards upscaling. Energy Convers. Manag. 2020, 219, 112982. [Google Scholar] [CrossRef]
- Yin, H.; Yang, D.; Kelly, G.; Garant, J. Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings. Sol. Energy 2013, 87, 184–195. [Google Scholar] [CrossRef]
- Asefi, G.; Habibollahzade, A.; Ma, T.; Houshfar, E.; Wang, R. Thermal management of building-integrated photovoltaic/thermal systems: A comprehensive review. Sol. Energy 2021, 216, 188–210. [Google Scholar] [CrossRef]
- Sánchez-Palencia, P.; Martín-Chivelet, N.; Chenlo, F. Modeling temperature and thermal transmittance of building integrated photovoltaic modules. Sol. Energy 2019, 184, 153–161. [Google Scholar] [CrossRef]
- Bambara, J.; Athienitis, A.K. Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding. Renew. Energy 2019, 131, 1274–1287. [Google Scholar] [CrossRef]
- Yeop Myong, S.; Won Jeon, S. Design of esthetic color for thin-film silicon semi-transparent photovoltaic modules. Sol. Energy Mater. Sol. Cells 2015, 143, 442–449. [Google Scholar] [CrossRef]
- Koyunbaba, B.K.; Yilmaz, Z.; Ülgen, K. An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system. Energy Build. 2013, 67, 680–688. [Google Scholar] [CrossRef]
- Gevers, R.; Pretorius, J.; Van Rhyn, P. Novel approach to concentrating and harvesting solar radiation in hybrid transparent photovoltaic façade’s in Southern Africa. Renew. Energy Power Qual. J. 2015, 1, 245–250. [Google Scholar] [CrossRef]
- Ahmmed, S.; Aktar, A.; Rahman, F.; Hossain, J.; Ismail, A.B.M. A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik 2020, 223, 165625. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, L.; Peng, J.; Song, A. Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong. Energy Build. 2016, 128, 511–518. [Google Scholar] [CrossRef]
- Lu, L.; Law, K.M. Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong. Renew. Energy 2013, 49, 250–254. [Google Scholar] [CrossRef]
- Meraj, M.; Khan, M.E. Thermal modeling of opaque and semi-transparent photovoltaic (PV) module. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 12. [Google Scholar]
- Wong, P.; Shimoda, Y.; Nonaka, M.; Inoue, M.; Mizuno, M. Semi-transparent PV: Thermal performance, power generation, daylight modelling and energy saving potential in a residential application. Renew. Energy 2008, 33, 1024–1036. [Google Scholar] [CrossRef]
- Mishra, G.; Tiwari, G. Performance evaluation of 7.2 kWp standalone building integrated semi-transparent photovoltaic thermal system. Renew. Energy 2020, 146, 205–222. [Google Scholar] [CrossRef]
- Akata, E.A.; Martial, A.; Njomo, D.; Agrawal, B. Thermal energy optimization of building integrated semi-transparent photovoltaic thermal systems. Int. J. Renew. Energy Dev. 2015, 4, 113–123. [Google Scholar]
- Fung, T.Y.; Yang, H. Study on thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy Build. 2008, 40, 341–350. [Google Scholar] [CrossRef]
- Kamel, R.S.; Fung, A.S. Modelling and Characterization of Transparent Building Integrated PV/T Collector. Energy Procedia 2015, 78, 1871–1876. [Google Scholar] [CrossRef] [Green Version]
- Infield, D.; Mei, L.; Eicker, U. Thermal performance estimation for ventilated PV facades. Sol. Energy 2004, 76, 93–98. [Google Scholar] [CrossRef]
- Park, K.; Kang, G.; Kim, H.; Yu, G.; Kim, J. Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy 2010, 35, 2681–2687. [Google Scholar] [CrossRef]
- Ng, P.K.; Mithraratne, N. Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics. Renew. Sustain. Energy Rev. 2014, 31, 736–745. [Google Scholar] [CrossRef]
- Pérez-Alonso, J.; Pérez-García, M.; Pasamontes-Romera, M.; Callejón-Ferre, A.J. Performance analysis and neural modelling of a greenhouse integrated photovoltaic system. Renew. Sustain. Energy Rev. 2012, 16, 4675–4685. [Google Scholar] [CrossRef]
- Vats, K.; Tomar, V.; Tiwari, G. Effect of packing factor on the performance of a building integrated semitransparent photovoltaic thermal (BISPVT) system with air duct. Energy Build. 2012, 53, 159–165. [Google Scholar] [CrossRef]
- Heim, D.; Knera, D.; Machniewicz, A. Modelling of thermo-optical properties of amorphous and microcrystalline silicon semitransparent PV layer. Energy Procedia 2015, 78, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Chae, Y.T.; Kim, J.; Park, H.; Shin, B. Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Appl. Energy 2014, 129, 217–227. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, Y.; Jia, J.; Du, Z.; Shi, Z.; Han, J. The impact of indoor air distributions on the thermal performance of a single layer semi-transparent photovoltaic facade. Build. Simul. 2019, 12, 69–77. [Google Scholar] [CrossRef]
- Koyunbaba, B.K.; Yilmaz, Z. The comparison of Trombe wall systems with single glass, double glass and PV panels. Renew. Energy 2012, 45, 111–118. [Google Scholar] [CrossRef]
- Miyazaki, T.; Akisawa, A.; Kashiwagi, T. Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew. Energy 2005, 30, 281–304. [Google Scholar] [CrossRef]
- Alnaser, N.; Flanagan, R.; Alnaser, W. Potential of making—Over to sustainable buildings in the Kingdom of Bahrain. Energy Build. 2008, 40, 1304–1323. [Google Scholar] [CrossRef]
- Song, J.-H.; An, Y.-S.; Kim, S.-G.; Lee, S.-J.; Yoon, J.-H.; Choung, Y.-K. Power output analysis of transparent thin-film module in building integrated photovoltaic system (BIPV). Energy Build. 2008, 40, 2067–2075. [Google Scholar] [CrossRef]
- Olivieri, L.; Caamaño-Martín, E.; Moralejo-Vázquez, F.J.; Martín-Chivelet, N.; Olivieri, F.; Neila-Gonzalez, F.J. Energy saving potential of semi-transparent photovoltaic elements for building integration. Energy 2014, 76, 572–583. [Google Scholar] [CrossRef] [Green Version]
- Mercaldo, L.V.; Addonizio, M.L.; Noce MDella Veneri, P.D.; Scognamiglio, A.; Privato, C. Thin film silicon photovoltaics: Architectural perspectives and technological issues. Appl. Energy 2009, 86, 1836–1844. [Google Scholar] [CrossRef]
- Phani, G.; Tulloch, G.; Vittorio, D.; Skryabin, I. Titania solar cells: New photovoltaic technology. Renew. Energy 2001, 22, 303–309. [Google Scholar] [CrossRef]
- Mittelman, G.; Kribus, A.; Dayan, A. Solar cooling with concentrating photovoltaic/thermal (CPVT) systems. Energy Convers. Manag. 2007, 48, 2481–2490. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Palombo, A. Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model. Appl. Energy 2013, 103, 588–606. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Palombo AVanoli, L. Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors. Energy 2013, 61, 72–86. [Google Scholar] [CrossRef]
- Xu, Z.; Kleinstreuer, C. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers. Manag. 2014, 87, 504–512. [Google Scholar] [CrossRef]
- Eicker, U.; Dalibard, A. Photovoltaic–thermal collectors for night radiative cooling of buildings. Sol. Energy 2011, 85, 1322–1335. [Google Scholar] [CrossRef]
- Choi, H.-U.; Kim, Y.-B.; Son, C.-H.; Yoon, J.-I.; Choi, K.-H. Experimental study on the performance of heat pump water heating system coupled with air type PV/T collector. Appl. Therm. Eng. 2020, 178, 115427. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Quan, Z.; Tong, J. Application of a multi-function solar-heat pump system in residential buildings. Appl. Therm. Eng. 2018, 130, 922–937. [Google Scholar] [CrossRef]
- Herrando, M.; Coca-ortegón, A.; Guedea, I.; Fueyo, N. Solar Assisted Heat Pump Systems Based on Hybrid PVT Collectors for the Provision of Hot Water, Cooling and Electricity in Buildings. In Proceedings of the 13th International Conference on Solar Energy for Buildings and Industry, Virtual Conference, 1–3 September 2020. [Google Scholar]
- Herrando, M.; Coca-ortegón, A.; Guedea, I.; Fueyo, N. Experimental Study of a Solar System based on Hybrid PVT collectors for the provision of Heating, Cooling and Electricity in non-residential Buildings. In Proceedings of the 16th Conference on Sustainable Development of Energy, Water and Environment Systems, Dubrovnik, Croatia, 10–15 October 2021; pp. 1–14. [Google Scholar]
- Cui, Y.; Zhu, J.; Zoras, S.; Qiao, Y.; Zhang, X. Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system. Energy 2020, 206, 118108. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Figaj, R.D.; Vanoli, L. Thermoeconomic optimization of a solar-assisted heat pump based on transient simulations and computer Design of Experiments. Energy Convers. Manag. 2016, 125, 166–184. [Google Scholar] [CrossRef]
- Calise, F.; Figaj, R.D.; Vanoli, L. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis. Energy Convers. Manag. 2017, 149, 798–814. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Figaj, R.D.; Vanoli, L. A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization. Energy 2016, 95, 346–366. [Google Scholar] [CrossRef]
- Croci, L.; Molinaroli, L.; Quaglia, P. Dual Source Solar Assisted Heat Pump Model Development, Validation and Comparison to Conventional Systems. Energy Procedia 2017, 140, 408–422. [Google Scholar] [CrossRef]
- Gürlich, D.; Dalibard, A.; Eicker, U. Photovoltaic-thermal hybrid collector performance for direct trigeneration in a European building retrofit case study. Energy Build. 2017, 152, 701–717. [Google Scholar] [CrossRef]
- Mohanraj, M.; Gunasekar, N.; Velmurugan, V. Comparison of energy performance of heat pumps using a photovoltaic–thermal evaporator with circular and triangular tube configurations. Build. Simul. 2016, 9, 27–41. [Google Scholar] [CrossRef]
- Ji, J.; Liu, K.; Chow, T.-T.; Pei, G.; He, W.; He, H. Performance analysis of a photovoltaic heat pump. Appl. Energy 2008, 85, 680–693. [Google Scholar] [CrossRef]
- Chow, T.; Fong, K.; Pei, G.; Ji, J.; He, M. Potential use of photovoltaic-integrated solar heat pump system in Hong Kong. Appl. Therm. Eng. 2010, 30, 1066–1072. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Xu, P.; Zhao, X.; Xu, Y. Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions. Appl. Energy 2014, 135, 20–34. [Google Scholar] [CrossRef]
- Herrando, M.; Pantaleo, A.M.; Wang, K.; Markides, C.N. Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renew. Energy 2019, 143, 637–647. [Google Scholar] [CrossRef]
- Yousefi, H.; Ghodusinejad, M.H.; Kasaeian, A. Multi-objective optimal component sizing of a hybrid ICE + PV/T driven CCHP microgrid. Appl. Therm. Eng. 2017, 122, 126–138. [Google Scholar] [CrossRef]
- Koronaki, I.; Papoutsis, E.; Papaefthimiou, V. Thermodynamic modeling and exergy analysis of a solar adsorption cooling system with cooling tower in Mediterranean conditions. Appl. Therm. Eng. 2016, 99, 1027–1038. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Antonopoulos, K.A. Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types. Appl. Therm. Eng. 2016, 102, 749–759. [Google Scholar] [CrossRef]
- Papoutsis, E.; Koronaki, I.; Papaefthimiou, V. Numerical simulation and parametric study of different types of solar cooling systems under Mediterranean climatic conditions. Energy Build. 2017, 138, 601–611. [Google Scholar] [CrossRef]
- Sanaye, S.; Sarrafi, A. Optimization of combined cooling, heating and power generation by a solar system. Renew. Energy 2015, 80, 699–712. [Google Scholar] [CrossRef]
- Allouhi, A. A novel grid-connected solar PV-thermal/wind integrated system for simultaneous electricity and heat generation in single family buildings. J. Clean. Prod. 2021, 320, 128518. [Google Scholar] [CrossRef]
- Gagliano, A.; Tina, G.M.; Aneli, S.; Chemisana, D. Analysis of the performances of a building-integrated PV/Thermal system. J. Clean. Prod. 2021, 320, 128876. [Google Scholar] [CrossRef]
- University of Wisconsin. TRNSYS 2018—A Transient System Simulation Program; University of Wisconsin: Madison, WI, USA, 2018. [Google Scholar]
- Yadav, S.; Panda, S.; Tripathy, M. Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow. Renew. Energy 2018, 127, 11–23. [Google Scholar] [CrossRef]
- Asaee, S.R.; Nikoofard, S.; Ugursal, V.I.; Beausoleil-Morrison, I. Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock. Energy Build. 2017, 152, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Kamel, R.S.; Fung, A.S. Modeling, simulation and feasibility analysis of residential BIPV/T+ASHP system in cold climate—Canada. Energy Build. 2014, 82, 758–770. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Palombo, A.; Vicidomini, M. Adsorption chiller operation by recovering low-temperature heat from building integrated photovoltaic thermal collectors: Modelling and simulation. Energy Convers. Manag. 2017, 149, 1019–1036. [Google Scholar] [CrossRef]
- ESTIF. Solar Thermal Action Plan for Europe. In Heating & Cooling from the Sun; ESTIF: Ixelles, Belgium, 2007. [Google Scholar]
- Bellos, E.; Tzivanidis, C.; Moschos, K.; Antonopoulos, K.A. Energetic and financial evaluation of solar assisted heat pump space heating systems. Energy Convers. Manag. 2016, 120, 306–319. [Google Scholar] [CrossRef]
- EurObservER. Heat Pumps Barometer 2016-EurObserv’ER 2016. Available online: https://www.eurobserv-er.org/heat-pumps-barometer-2016/ (accessed on 17 March 2022).
- EurObservER. Heat Pumps Barometer 2021-EurObserv’ER 2021. Available online: https://www.eurobserv-er.org/heat-pumps-barometer-2021/ (accessed on 17 March 2022).
- Daikin. Magnitude|Magnetic Bearing Centrifugal Chiller|Daikin Applied. Available online: https://www.daikinapplied.com/products/chiller-products/magnitude (accessed on 17 March 2022).
- Arpagaus, C.; Bertsch, S.S.; Javed, A.; Schiffmann, J. Two-Stage Heat Pump using Oil-Free Turbocompressors—System Design and Simulation, Paper 2101. In Proceedings of the 16th International Refrigeration and Air Conditioning Conference at Purdue 2016, West Lafayette, IN, USA, 11–14 July 2016; pp. 1–10. [Google Scholar]
- Hadorn, J.-C. Solar And Heat Pump Systems IEA SHC Task 44 & HPP. In Proceedings of the EuroSun 2010, Graz, Austria, 28 September–1 October 2010. [Google Scholar]
- IEA-ETSAP; IRENA. Solar Heat for Industrial Processes-Technology Brief; IEA-ETSAP: Paris, France; IRENA: Abu Dhabi, United Arab Emirates, 2005. [Google Scholar]
- Abdul Hamid, S.; Yusof Othman, M.; Sopian, K.; Zaidi, S.H. An overview of photovoltaic thermal combination (PV/T combi) technology. Renew. Sustain. Energy Rev. 2014, 38, 212–222. [Google Scholar] [CrossRef]
- Henning, H.-M. Solar Cooling Position Paper IEA SHC Task 38 Solar Air-Conditioning and Refrigeration Solar Cooling Position Paper. 2011. Available online: https://www.iea-shc.org/data/sites/1/publications/IEA-SHC-Solar-Cooling-Position-Paper.pdf (accessed on 10 April 2022).
- Petersen, S.; Hansske, A.; Hennrich, C. Development of a 50kW absorption chiller. In Proceedings of the 23rd International Congress Refrigeration, Prague, Czech Republic, 21–26 August 2011. [Google Scholar]
- Paitazoglou, C.; Petersen, S. Energy Efficient Cooling with new Absorption Chiller Technology in Solar Cooling Systems and CHPC-Plants. In Proceedings of the EinB2017-6th International Conference on ENERGY Building, Athens, Greece, 21 October 2017. [Google Scholar]
- Albers, J.; Ziegler, F. Control strategies for absorption chillers in CHPC-plants ensuring low hot water return temperatures. In Proceedings of the Heat Powered Cycles Conference, Nottingham, UK, 26–29 June 2016. [Google Scholar]
- EU Project Report. Meeting Cooling Demands in SUMMER by Applying HEAT from Cogeneration Denmark. 2009. Available online: http://systemlab.dk/smartvarme/summerheat-dk.pdf (accessed on 10 April 2022).
- Jakob, U. Wo Steht die Solare Kühlung heute. Sonne, Wind Wärme, BVA Bielefelder Verlag Co KG 2012. Available online: https://www.kka-online.info/artikel/kka_Mit_Sonnenlicht_kuehlen_1595203.html (accessed on 15 March 2022).
PV Configuration | PV Technology | Best Research-Cell Efficiency (%) | AVT (%) | References |
---|---|---|---|---|
Cell cladding | c-Si | 26.1 | Opaque | [138,139,145,146,147,148] |
m-Si | 23.3 | Opaque | [149,150,151,152,153] | |
a-Si | 21.2 | - | [154,155] | |
CdTe/CIGS/HIT | 22.1/23.4/27.6 | Opaque | [156] | |
Thin-film | a-Si:H | 14.0 | 10–25% | [141,157,158,159,160,161,162,163,164] |
TCO (ZnO)/a:Si | 24.0/14.0 | <30% | [165] | |
TiO2 | 10.3 | <30% | [166] | |
Frame-integrated | CIS | 17.8 | <90% | [142] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrando, M.; Ramos, A. Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review. Energies 2022, 15, 3021. https://doi.org/10.3390/en15093021
Herrando M, Ramos A. Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review. Energies. 2022; 15(9):3021. https://doi.org/10.3390/en15093021
Chicago/Turabian StyleHerrando, María, and Alba Ramos. 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review" Energies 15, no. 9: 3021. https://doi.org/10.3390/en15093021
APA StyleHerrando, M., & Ramos, A. (2022). Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review. Energies, 15(9), 3021. https://doi.org/10.3390/en15093021