Voltage Readjustment Methodology According to Pressure and Temperature Applied to a High Temperature PEM Fuel Cell †
Abstract
:1. Introduction
- Simplified thermal management (easier cooling at higher ambient temperatures, which could be a real advantage for an aircraft on the airport tarmac in an arid zone).
- Moreover, compared to the LT-PEMFC, its main drawbacks are:
- Its longer start-up time (the fuel cell must be preheated to avoid the presence of liquid water harmful to the electrolyte) [13];
- Gas flow rates;
- Atmospheric pressure;
- Gas consumption by the H2/O2 redox reaction;
- External and internal leakage from the fuel cell.
- Thermal inertia;
- Thermal control parameters of the test bench;
- Forced convection in the fuel cell channels;
- Operating point (more or less exothermal);
- External temperature and the fuel cell insulator.
2. Experimentation
2.1. Material
- Voltage variations due to operating conditions at low currents are relatively smaller and therefore negligible;
- Positioning only on the voltage linear range can facilitate the identification of a linear model.
- Two PFA gaskets (thickness: 345 +/− 5 µm);
- Two graphite gas flow plates (two 1 mm segmented serpentine channels at the anode and three 1 mm segmented serpentine channels at the cathode;
- Two electrical current collectors (copper);
- Two clamping plates with fluid interfaces (with Belleville washers; clamping of the test box at 3 N.m and fluidic interfaces in ¼’’ DB);
- Two heating elements (of 80 ohms supplied in series at 2 × 110 V).
- An electronic load H&H PL306 (300/1000 W from 0 to 50 A);
- A Quality Source S402 power supply (5 V, 80 A, in series with the active load to allow its operation at low current);
- A discharge resistor (1 ohm, 1.3 W);
- A National Instrument (NI) DAQ-4461 board that drives the load via a NI-LabView interface performing electrochemical impedance spectrum analysis;
- The H2, N2 and air–fluid distribution equipment (filters, valves, flow regulators);
- Pressure sensors at the gas inlets of the fuel cell;
- Two phase separators by bubbling (the fuel cell gas outlets are slightly immersed in a volume of water to allow the recovery of phosphoric acid in case of electrolyte leakage);
- Micrometric valves at the gas outlets (manual back-pressure regulation).
2.2. Initial Test Phase and Characterizations
2.3. Design of Experiments in Pressure and Temperature
2.4. Results
3. Development of the Readjustment Method
3.1. Definition of an Empirical Model Variables
3.2. Application to Data and Model Accuracy
3.3. Generation of the Readjustment Factors
3.4. Application Examples
4. Discussions and Perspectives
4.1. Critics and Limitations
4.2. Reduced Design of Experiments at the Beginning and End of a Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Gössling, S.; Humpe, A. The global scale, distribution and growth of aviation: Implications for climate change. Glob. Environ. Change 2020, 65, 102194. [Google Scholar] [CrossRef]
- Global Market Forecast|Airbus. Available online: https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast (accessed on 15 March 2022).
- Boeing: Commercial Market Outlook. Available online: https://www.boeing.com/commercial/market/commercial-market-outlook/ (accessed on 15 March 2022).
- Hydrogen-Powered Aviation. Available online: https://www.fch.europa.eu/publications/hydrogen-powered-aviation (accessed on 14 September 2021).
- Winnefeld, C.; Kadyk, T.; Bensmann, B.; Krewer, U.; Hanke-Rauschenbach, R. Modelling and designing cryogenic hydrogen tanks for future aircraft applications. Energies 2018, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Gierens, K. Theory of contrail formation for fuel cells. Aerospace 2021, 8, 164. [Google Scholar] [CrossRef]
- Le Projet Collaboratif PIPAA, Piloté par Safran, Bénéficie D’une aide de 19,3 Millions D’euros Dans le Cadre du Programme d’Investissements d’Avenir (PIA) opéré par Bpifrance. Available online: https://www.safran-group.com/fr/espace-presse/projet-collaboratif-pipaa-pilote-safran-beneficie-dune-aide-193-millions-deuros-cadre-du-programme-2017-11-20 (accessed on 15 March 2022).
- Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan|Department of Energy. Available online: https://www.energy.gov/eere/fuelcells/downloads/report-doe-doe-workshop-fuel-cells-aviation-workshop-summary-and-action (accessed on 15 March 2022).
- Friedrich, K.A.; Kallo, J.; Schirmer, J.; Schmitthals, G. Fuel cell systems for aircraft application. ECS Trans. 2009, 25, 193. [Google Scholar] [CrossRef]
- Hooshyari, K.; Amini Horri, B.; Abdoli, H.; Fallah Vostakola, M.; Kakavand, P.; Salarizadeh, P. A review of recent developments and advanced applications of high-temperature polymer electrolyte membranes for PEM fuel cells. Energies 2021, 14, 5440. [Google Scholar] [CrossRef]
- Vang, J.R. HTPEM Fuel Cell Impedance: Mechanistic Modelling and Experimental Characterisation; Department of Energy Technology, Aalborg University: Aalborg, Denmark, 2014; ISBN 978-87-92846-47-1. [Google Scholar]
- Chandan, A.; Hattenberger, M.; El-kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B.G.; Ingram, A.; Bujalski, W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—A review. J. Power Sources 2013, 231, 264–278. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Baurmeister, J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J. Power Sources 2008, 176, 428–434. [Google Scholar] [CrossRef]
- Schmidt, T.J. High-temperature polymer electrolyte fuel cells: Durability insights. In Polymer Electrolyte Fuel Cell Durability; Büchi, F.N., Inaba, M., Schmidt, T.J., Eds.; Springer: New York, NY, USA, 2009; pp. 199–221. ISBN 978-0-387-85536-3. [Google Scholar]
- Authayanun, S.; Im-orb, K.; Arpornwichanop, A. A review of the development of high temperature proton exchange membrane fuel cells. Chin. J. Catal. 2015, 36, 473–483. [Google Scholar] [CrossRef]
- Scott, K.; Pilditch, S.; Mamlouk, M. Modelling and experimental validation of a high temperature polymer electrolyte fuel cell. J Appl Electrochem 2007, 37, 1245–1259. [Google Scholar] [CrossRef]
- Sood, R. Electrolytes Polymère Nano-Structurés à Base de Liquides Ioniques Pour les Piles à Combustible Hautes Températures. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2012. [Google Scholar]
- Kaserer, S.; Caldwell, K.M.; Ramaker, D.E.; Roth, C. Analyzing the Influence of H3PO4 as catalyst poison in high temperature PEM fuel cells using in-operando X-ray absorption spectroscopy. J. Phys. Chem. C 2013, 117, 6210–6217. [Google Scholar] [CrossRef]
- Rahim, Y.; Janßen, H.; Lehnert, W. Characterizing membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells using design of experiments. Int. J. Hydrog. Energy 2017, 42, 1189–1202. [Google Scholar] [CrossRef]
- Rigal, S.; Turpin, C.; Jaafar, A.; Chadourne, N.; Hordé, T.; Jollys, J.-B. Steady-state modelling of a HT-PEMFC under various operating conditions. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 439–445. [Google Scholar]
- Liu, S.; Rasinski, M.; Rahim, Y.; Zhang, S.; Wippermann, K.; Reimer, U.; Lehnert, W. Influence of operating conditions on the degradation mechanism in high-temperature polymer electrolyte fuel cells. J. Power Sources 2019, 439, 227090. [Google Scholar] [CrossRef]
- Yezerska, K.; Liu, F.; Dushina, A.; Sergeev, O.; Wagner, P.; Dyck, A.; Wark, M. Analysis of the regeneration behavior of high temperature polymer electrolyte membrane fuel cells after hydrogen starvation. J. Power Sources 2020, 449, 227562. [Google Scholar] [CrossRef]
- Rigal, S.; Turpin, C.; Jaafar, A.; Hordé, T.; Jollys, J.-B.; Chadourne, N. Ageing tests at constant currents and associated modeling of high temperature PEMFC MEAs. Fuel Cells 2020, 20, 272–284. [Google Scholar] [CrossRef]
- Rastedt, M.; Pinar, F.J.; Pilinski, N.; Dyck, A.; Wagner, P. Effect of operation strategies on phosphoric acid loss in HT-PEM Fuel Cells. ECS Trans. 2016, 75, 455–469. [Google Scholar] [CrossRef]
- Tingelöf, T.; Ihonen, J.K. A rapid break-in procedure for PBI fuel cells. Int. J. Hydrog. Energy 2009, 34, 6452–6456. [Google Scholar] [CrossRef]
- Waller, M.G.; Walluk, M.R.; Trabold, T.A. Performance of high temperature PEM fuel cell materials. Part 1: Effects of temperature, pressure and anode dilution. Int. J. Hydrog. Energy 2016, 41, 2944–2954. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, Z.; Zhou, W.; Chan, S.H.; Wang, Y. Dynamic performance of a high-temperature PEM fuel cell—An experimental study. Energy 2015, 90, 1949–1955. [Google Scholar] [CrossRef]
- Abdul Rasheed, R.K.; Liao, Q.; Caizhi, Z.; Chan, S.H. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). Int. J. Hydrog. Energy 2017, 42, 3142–3165. [Google Scholar] [CrossRef]
- Prokop, M.; Bystron, T.; Belsky, P.; Tucek, O.; Kodym, R.; Paidar, M.; Bouzek, K. Degradation kinetics of Pt during high-temperature PEM fuel cell operation part III: Voltage-dependent Pt degradation rate in single-cell experiments. Electrochim. Acta 2020, 363, 137165. [Google Scholar] [CrossRef]
- Kregar, A.; Tavčar, G.; Kravos, A.; Katrašnik, T. Predictive virtual modelling framework for performance and platinum degradation modelling of high temperature PEM fuel cells. Energy Procedia 2019, 158, 1817–1822. [Google Scholar] [CrossRef]
- Baudy, M.; Rondeau, O.; Jaafar, A.; Turpin, C.; Abbou, S.; Grignon, M.; Escande, A.; Rigal, S. Methodology for readjusting the voltage according to the operating conditions of a high temperature proton exchange membrane fuel cell. In Proceedings of the 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 9–10 December 2021. [Google Scholar] [CrossRef]
- Mench, M.M. Fuel Cell Engines; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; p. 409. [Google Scholar]
- Qi, Z.; Buelte, S. Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells. J. Power Sources 2006, 161, 1126–1132. [Google Scholar] [CrossRef]
- Modestov, A.D.; Tarasevich, M.R.; Filimonov, V.Y.; Zagudaeva, N.M. Degradation of High Temperature MEA with PBI-H3PO4 Membrane in a Life Test. Electrochim. Acta 2009, 54, 7121–7127. [Google Scholar] [CrossRef]
- Oono, Y.; Sounai, A.; Hori, M. Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J. Power Sources 2009, 189, 943–949. [Google Scholar] [CrossRef]
- Li, Q.; Aili, D.; Hjuler, H.A.; Jensen, J.O. High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status, and Perspectives; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-17082-4. [Google Scholar]
- Galbiati, S.; Baricci, A.; Casalegno, A.; Marchesi, R. Degradation in phosphoric acid doped polymer fuel cells: A 6000 h parametric investigation. Int. J. Hydrog. Energy 2013, 38, 6469–6480. [Google Scholar] [CrossRef]
- Søndergaard, T.; Cleemann, L.N.; Becker, H.; Steenberg, T.; Hjuler, H.A.; Seerup, L.; Li, Q.; Jensen, J.O. Long-term durability of PBI-based HT-PEM fuel cells: Effect of operating parameters. J. Electrochem. Soc. 2018, 165, F3053–F3062. [Google Scholar] [CrossRef] [Green Version]
- Büsselmann, J.; Rastedt, M.; Klicpera, T.; Reinwald, K.; Schmies, H.; Dyck, A.; Wagner, P. Analysis of HT-PEM MEAs’ long-term stabilities. Energies 2020, 13, 567. [Google Scholar] [CrossRef] [Green Version]
Temperature [°C] | [120; 160; 180; 140; 150; 155; 165; 170; 160] |
Inlet pressure [barA] | [1; 1.1; 1.3; 1.5; 1] |
Current Density [A/cm2] | [0.2; 0.4; 0.6; 0.8; 1] |
Models | UMod1 | UMod2 | UMod3 | UMod4 | |
---|---|---|---|---|---|
Param (Unit) | |||||
(mV/mbar) | 3.82 × 10−2 | 8.39 × 10−2 | 8.03 × 10−2 | 8.03 × 10−2 | |
(mV/°C) | 7.14 × 10−4 | 1.22 × 10−3 | 1.48 × 10−3 | 1.48 × 10−3 | |
(mV/h) | –9.22 × 10−6 | −2.70 × 10−5 | –2.12 × 10−5 | –2.12 × 10−5 | |
(mV/[A/cm2]) | –5.67 × 10−1 | −3.02 × 101 | –3.24 × 10−1 | –2.66 × 10−1 | |
(mV/mbar/[A/cm2]) | 7.07 × 10−2 | 0 | 0 | 0 | |
(mV/°C/[A/cm2]) | 1.27 | 0 | 0 | 0 | |
(mV/hour/[A/cm2]) | –1.95 × 10−2 | 0 | 0 | 0 | |
(mV) | 0 | 0 | 0 | −1.28 × 10−2 | |
(mV) | 0 | 0 | 1.73 × 10−2 | 0 | |
(mV) | 5.87 × 102 | 4.65 × 10−1 | 4.08 × 10−1 | 3.99 × 10−1 | |
Correlation coefficient r2 | 9.97 × 10−3 | 9.97 × 10−3 | 9.92 × 10−3 | 9.92 × 10−3 | |
Standard deviation σ | 4.05 × 10−3 | 2.76 × 10−3 | 7.80 × 10−3 | 7.75 × 10−3 |
Temperature [°C] | [160; 165] |
Outlet pressure [barA] | [1.00; 1.05] |
Current Density [A/cm2] | [0.2; 0.8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baudy, M.; Rondeau, O.; Jaafar, A.; Turpin, C.; Abbou, S.; Grignon, M. Voltage Readjustment Methodology According to Pressure and Temperature Applied to a High Temperature PEM Fuel Cell. Energies 2022, 15, 3031. https://doi.org/10.3390/en15093031
Baudy M, Rondeau O, Jaafar A, Turpin C, Abbou S, Grignon M. Voltage Readjustment Methodology According to Pressure and Temperature Applied to a High Temperature PEM Fuel Cell. Energies. 2022; 15(9):3031. https://doi.org/10.3390/en15093031
Chicago/Turabian StyleBaudy, Mathieu, Olivier Rondeau, Amine Jaafar, Christophe Turpin, Sofyane Abbou, and Mélanie Grignon. 2022. "Voltage Readjustment Methodology According to Pressure and Temperature Applied to a High Temperature PEM Fuel Cell" Energies 15, no. 9: 3031. https://doi.org/10.3390/en15093031
APA StyleBaudy, M., Rondeau, O., Jaafar, A., Turpin, C., Abbou, S., & Grignon, M. (2022). Voltage Readjustment Methodology According to Pressure and Temperature Applied to a High Temperature PEM Fuel Cell. Energies, 15(9), 3031. https://doi.org/10.3390/en15093031