Study on the Effect of Spoiler Columns on the Heat Dissipation Performance of S-Type Runner Water-Cooling Plates
Abstract
:1. Introduction
2. Structural Design
3. Simulation
3.1. Parameter Setting of the Simulation Process
3.2. Mesh Independence Test
3.3. Analysis of Simulation Results
3.4. Relationship between Cooling Water Inlet Flow Rate and Maximum Static Temperature of Water-Cooled Plate Surface
3.5. Relationship between the Inlet Flow Rate and the Maximum Flow Rate Inside the Water-Cooled Plate
4. Experiment
4.1. Fabrication and Selection of Key Components for the Laboratory Bench
4.2. Experimental Procedure
4.2.1. The Relationship between Cooling Water Inlet Flow Rate and the Average Static Temperature of the Three Water-Cooled Plates’ Surface
4.2.2. Experimental Research on the Pressure Drop of Three Types of Water-Cooled Plates
4.3. Comparison of the Flow through a Water-Cooled Plate under Different Powers of the Pump
4.4. Analysis and Calculation of the Relationship between Energy Consumption and Heat Dissipation of the Water-Cooled Plate of the Design Group
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
η | Comprehensive evaluation index, 1 |
IGBT | Insulated gate bipolar transistor |
Q | Heat output, J |
W | Power consumption, J |
Differential pressure drop between inlet and outlet, Pa | |
t | Cooling time, s |
m | quantity of water-cooling plate, kg |
T | Maximum static temperature, °C |
Ql | Remaining calories |
Jc | Specific heat capacity, J (kg·°C) |
P1 | Heating power, W |
P | Pump power, W |
References
- Li, H.; Hu, Y.; Wang, K.; Quan, R.; Xia, G. Wind power converter IGBT power module dynamic junction temperature calculation and thermal distribution considering the influence of stray inductance. Trans. Chin. Soc. Electr. Eng. 2019, 34, 4242–4250. [Google Scholar]
- Reichl, J.; Berning, D.; Hefner, A.; Lai, J.-S. Six-pack IGBT dynamic electro-thermal model: Parameter extraction and validation. In Proceedings of the IEEE Applied Power Electronics Conference & Exposition, Anaheim, CA, USA, 22–26 February 2004. [Google Scholar]
- Choi, U.M.; Blaabjerg, F.; Lee, K.B. Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems. IEEE Trans. Power Electron. 2014, 30, 2517–2533. [Google Scholar]
- Liu, S. Design and Simulation of Liquid-Cooled Cold Plate Structure for Megawatt-Class Wind Power Converters. Ph.D. Thesis, Zhejiang Agriculture and Forestry University, Hangzhou, China, 2015. [Google Scholar]
- Tang, S. Optimal Design of Cold Plate Structure for Megawatt Wind Power Converter. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Fu, J.; Xu, X.; Li, R. Battery module thermal management based on liquid cold plate with heat transfer enhanced fin. Int. J. Energy Res. 2019, 43, 4312–4321. [Google Scholar]
- Om, N.I.; Zulkifli, R.; Gunnasegaran, P. Influence of the oblique fin arrangement on the fluid flow and thermal performance of liquid cold plate. Case Stud. Therm. Eng. 2018, 12, 717–727. [Google Scholar]
- Anbumeenakshi, C.; Thansekhar, M.R. Experimental Investigation of Header Shape and Inlet Configuration on Flow Maldistribution in Microchannel. Exp. Therm. Fluid Sci. 2016, 75, 156–161. [Google Scholar]
- Jin, L.; Lee, P.; Kong, X.; Fan, Y.; Chou, S. Ultra-thin minichannel LCP for EV battery thermal management. Appl. Energy 2014, 113, 1786–1794. [Google Scholar]
- Cao, J.; He, Y.; Feng, J.; Lin, S.; Ling, Z.; Zhang, Z.; Fang, X. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge. Appl. Energy 2020, 279, 115808. [Google Scholar]
- Shen, J.; Wang, Y.; Yu, G.; Li, H. Thermal Management of Prismatic Lithium-Ion Battery with Minichannel Cold Plate. J. Energy Eng. 2020, 146, 04019033.1–04019033.11. [Google Scholar]
- Li, J.; Xiao, W.; Ge, Y. Research on the shape and arrangement of heat sink fins of liquid-cooled cold plates. Fluid Mach. 2020, 48, 5. [Google Scholar]
- Ren, H.; Fang, J.; Zhang, G. Research on Heat Dissipation Characteristics of Microchannel Liquid-cooled Cold Plate. Radar Sci. Technol. 2021, 19, 6. [Google Scholar]
- Liu, H.; Li, P.; Van Lew, J.; Juarez-Robles, D. Experimental study of the flow distribution uniformity in flow distributors having novel flow channel bifurcation structures. Exp. Therm. Fluid Sci. 2012, 37, 142–153. [Google Scholar]
- Lu, G.; Zhao, J.; Lin, L.; Wang, X. A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins. Int. J. Heat Mass Transf. 2017, 111, 1071–1078. [Google Scholar]
- Zhao, Z.-N. Study of pressure and flow distribution of collector system-(I) Analytical solution in U-shaped arrangement. J. Sol. Energy 1999, 4, 377–384. [Google Scholar]
- Zhao, Z.-N. Study on pressure and flow distribution of collector system(II)-analytical solution in Z-shaped arrangement. J. Sol. Energy 2001, 3, 363–366. [Google Scholar]
- Wang, J.; Yan, W.; Li, S. Research on the optimization of the micro-channel structure of the electric vehicle battery cold plate. Automot. Eng. 2020, 42, 9. [Google Scholar]
- Yang, G.; Cheng, L.; Wei, Q. Numerical study on the flow and heat transfer characteristics of a series-parallel flow channel cold plate. J. China Acad. Electron. 2021, 16, 7. [Google Scholar]
- Hu, L.; Fang, Y.; Yang, W.; Xu, D.; Sun, L.; Li, K. Experimental study on heat transfer characteristics of direct cooling plates in parallel small channels. Acta Refrig. 2021, 42, 6. [Google Scholar]
Parameters | Numerical Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flow Rate (m/s) | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
Group a (°C) | 63.42 | 52.21 | 44.74 | 41.78 | 40.02 | 38.88 | 37.26 | 37.26 | 36.70 | 36.23 |
Group b (°C) | 46.55 | 39.96 | 35.86 | 34.29 | 33.45 | 32.90 | 32.52 | 32.24 | 32.02 | 31.84 |
Group c (°C) | 45.72 | 39.81 | 36.02 | 34.46 | 33.57 | 32.98 | 32.56 | 32.25 | 32.00 | 31.80 |
Parameters | Numerical Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flow Rate (m/s) | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
Group a (m/s) | 1.29 | 2.58 | 5.15 | 7.72 | 10.20 | 12.87 | 15.44 | 18.01 | 20.58 | 23.15 |
Group b (m/s) | 1.22 | 2.44 | 4.87 | 7.30 | 9.74 | 12.19 | 14.63 | 17.08 | 19.52 | 21.96 |
Group c (m/s) | 1.25 | 2.51 | 5.01 | 7.52 | 10.03 | 12.54 | 15.06 | 17.58 | 20.10 | 22.62 |
Parameters | Numerical Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flow Rate (m/s) | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
Group a (°C) | 58.13 | 45.96 | 37.23 | 36.41 | 37.56 | 33.25 | 31.12 | 32.26 | 30.16 | 29.65 |
Group b (°C) | 40.42 | 35.56 | 31.88 | 31.13 | 29.36 | 28.14 | 28.03 | 27.63 | 27.54 | 27.23 |
Group c (°C) | 39.92 | 35.81 | 30.02 | 30.46 | 29.02 | 27.98 | 26.46 | 27.35 | 27.24 | 27.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Hu, X.; Zhang, L.; Zhang, X.; Chen, F.; Mai, C. Study on the Effect of Spoiler Columns on the Heat Dissipation Performance of S-Type Runner Water-Cooling Plates. Energies 2022, 15, 3085. https://doi.org/10.3390/en15093085
Zheng X, Hu X, Zhang L, Zhang X, Chen F, Mai C. Study on the Effect of Spoiler Columns on the Heat Dissipation Performance of S-Type Runner Water-Cooling Plates. Energies. 2022; 15(9):3085. https://doi.org/10.3390/en15093085
Chicago/Turabian StyleZheng, Xiongfei, Xue Hu, Lixin Zhang, Xinwang Zhang, Feng Chen, and Chunliang Mai. 2022. "Study on the Effect of Spoiler Columns on the Heat Dissipation Performance of S-Type Runner Water-Cooling Plates" Energies 15, no. 9: 3085. https://doi.org/10.3390/en15093085
APA StyleZheng, X., Hu, X., Zhang, L., Zhang, X., Chen, F., & Mai, C. (2022). Study on the Effect of Spoiler Columns on the Heat Dissipation Performance of S-Type Runner Water-Cooling Plates. Energies, 15(9), 3085. https://doi.org/10.3390/en15093085