Three-Dimensional Numerical Characterization of High-Temperature Superconductor Bulks Subjected to Rotating Magnetic Fields
Abstract
:1. Introduction
2. Numerical Modeling Framework
2.1. H-Formulation Model
2.2. Rotating Magnetic Fields
2.3. Model Validation
3. Magnetization of HTS
3.1. Magnetic Field Applied in XOY Plane
3.2. Magnetic Field Applied in XOZ Plane
3.3. Magnetic Field Applied in YOZ Plane
3.4. AC Loss Distribution
4. Demagnetization of HTS Trapped Field Magnets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soomro, W.A.; Guo, Y.; Lu, H.Y.; Jin, J.X. Advancements and Impediments in Applications of High-Temperature Superconducting Material. In Proceedings of the 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 16–18 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, M. A new world record for a superconducting trapped field magnet. Supercond. Sci. Technol. 2019, 32, 070502. [Google Scholar] [CrossRef]
- Zhou, D.; Izumi, M.; Miki, M.; Felder, B.; Ida, T.; Kitano, M. An overview of rotating machine systems with high-temperature bulk superconductors. Supercond. Sci. Technol. 2012, 25, 103001. [Google Scholar] [CrossRef]
- Bause, R.; Ainslie, M.D.; Corduan, M.; Boll, M.; Filipenko, M.; Noe, M. Electromagnetic design of a superconducting electric machine with bulk HTS material. arXiv 2019, arXiv:1903.08906. [Google Scholar]
- Moon, H.; Kim, Y.-C.; Park, H.-J.; Park, M.; Yu, I.-K. Development of a MW-Class 2G HTS Ship Propulsion Motor. IEEE Trans. Appl. Supercond. 2016, 26, 5203805. [Google Scholar] [CrossRef]
- Chen, W.; Xu, Y.; Wang, Z.; Ren, L.; Shi, J.; Tang, Y. Levitation Force Computation of HTS/PM System Based on $H$ -Formulation. IEEE Trans. Magn. 2018, 54, 7402805. [Google Scholar] [CrossRef]
- Braginski, A.I. Superconductor Electronics: Status and Outlook. J. Supercond. Nov. Magn. 2018, 32, 23–44. [Google Scholar] [CrossRef] [Green Version]
- Zan, G.; Wu, T.; Zhu, F.; He, P.; Cheng, Y.; Chai, S.; Wang, Y.; Huang, X.; Zhang, W.; Wan, Y.; et al. A biomimetic conductive super-foldable material. Matter 2021, 4, 3232–3247. [Google Scholar] [CrossRef]
- Zan, G.; Wu, T.; Zhang, Z.; Li, J.; Zhou, J.; Zhu, F.; Chen, H.; Wen, M.; Yang, X.; Peng, X.; et al. Bioinspired Nanocomposites with Self-Adaptive Stress Dispersion for Super-Foldable Electrodes. Adv. Sci. 2021, 9, 2103714. [Google Scholar] [CrossRef]
- Smith, J.P.; Mazin, B.A.; Walter, A.B.; Daal, M.; Bailey, J.I.; Bockstiegel, C.; Zobrist, N.; Swimmer, N.; Steiger, S.; Fruitwala, N. Flexible Coaxial Ribbon Cable for High-Density Superconducting Microwave Device Arrays. IEEE Trans. Appl. Supercond. 2020, 31, 2500105. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Wang, H.; Zhang, B.; Qian, X.; Wang, H. Superconducting Iron Chalcogenide Thin Films Integrated on Flexible Mica Substrates. IEEE Trans. Appl. Supercond. 2019, 29, 7500604. [Google Scholar] [CrossRef]
- Gimaev, R.; Spichkin, Y.; Kovalev, B.; Kamilov, K.; Zverev, V.; Tishin, A. Review on magnetic refrigeration devices based on HTSC materials. Int. J. Refrig. 2019, 100, 1–12. [Google Scholar] [CrossRef]
- Vanderbemden, P.; Hong, Z.; Coombs, T.A.; Ausloos, M.; Babu, N.H.; Cardwell, D.A.; Campbell, A.M. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields. Supercond. Sci. Technol. 2007, 20, S174–S183. [Google Scholar] [CrossRef]
- Qiu, M.; Lin, L.; Zhang, G.; Wang, Y.; Xiao, L. Flux dynamic behavior inside HTS bulks under rotating magnetic field. IEEE Trans. Appl. Supercond. 2002, 12, 1163–1166. [Google Scholar] [CrossRef]
- Qiu, M.; Huo, H.; Xu, Z.; Xia, D.; Lin, L. Electromagnetic Phenomena in HTS Bulk Subjected to a Rotating Field. IEEE Trans. Appl. Supercond. 2004, 14, 1898–1901. [Google Scholar] [CrossRef]
- Lousberg, G.P.; Ausloos, M.; Geuzaine, C.; Dular, P.; Vanderbemden, P.; Vanderheyden, B. Numerical simulation of the magnetization of high-temperature superconductors: A 3D finite element method using a single time-step iteration. Supercond. Sci. Technol. 2009, 22, 055005. [Google Scholar] [CrossRef]
- Amemiya, N.; Murasawa, S.-I.; Banno, N.; Miyamoto, K. Numerical modelings of superconducting wires for AC loss calculations. Phys. C Supercond. 1998, 310, 16–29. [Google Scholar] [CrossRef]
- Escamez, G.; Sirois, F.; Lahtinen, V.; Stenvall, A.; Badel, A.; Tixador, P.; Ramdane, B.; Meunier, G.; Perrin-Bit, R.; Bruzek, C.-E. 3-D Numerical Modeling of AC Losses in Multifilamentary MgB2Wires. IEEE Trans. Appl. Supercond. 2016, 26, 4701907. [Google Scholar] [CrossRef]
- Shen, B.; Grilli, F.; Coombs, T. Overview of H-Formulation: A Versatile Tool for Modeling Electromagnetics in High-Temperature Superconductor Applications. IEEE Access 2020, 8, 100403–100414. [Google Scholar] [CrossRef]
- Shen, B.; Grilli, F.; Coombs, T. Review of the AC loss computation for HTS using H formulation. Supercond. Sci. Technol. 2020, 33, 033002. [Google Scholar] [CrossRef] [Green Version]
- Bean, C.P. Magnetization of Hard Superconductors. Phys. Rev. Lett. 1962, 8, 250–253. [Google Scholar] [CrossRef]
- HTS MODELLING WORKGROUP. Available online: http://www.htsmodelling.com/ (accessed on 10 January 2022).
- Soomro, W.A.; Guo, Y.; Lu, H.Y.; Zhu, J.G.; Jin, J.X.; Shen, B. Numerical Investigation of AC Loss in HTS Bulks Subjected to Rotating Magnetic Fields. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zou, S.; Zermeno, V.M.R.; Grilli, F. Simulation of Stacks of High-Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization Using Controlled Magnetic Density Distribution Coils. IEEE Trans. Appl. Supercond. 2016, 26, 8200705. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Value |
---|---|---|
Permeability of free space | μ0 | 4π × 10−7 H.m−4 |
Power Factor | n | 25 |
Critical Current Density | Jc0 | 108 A.m−2 |
Characteristic Electric Field | E0 | 10−4 V m−1 |
Kim’s Model Arbitary Parameter | B0 | 0.0041 T |
Kim’s Model Arbitary Parameter | m | 0.5 |
Parameter | Value |
---|---|
Magnetizing Field | 1 T |
Ramp down rate of magnetizing | 0.01 T/s |
Magnetizing time | 100 s |
Time to allow for flux creep (Relaxation time) | 100 s |
Demagnetizing time | 5 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soomro, W.A.; Guo, Y.; Lu, H.; Zhu, J.; Jin, J.; Shen, B. Three-Dimensional Numerical Characterization of High-Temperature Superconductor Bulks Subjected to Rotating Magnetic Fields. Energies 2022, 15, 3186. https://doi.org/10.3390/en15093186
Soomro WA, Guo Y, Lu H, Zhu J, Jin J, Shen B. Three-Dimensional Numerical Characterization of High-Temperature Superconductor Bulks Subjected to Rotating Magnetic Fields. Energies. 2022; 15(9):3186. https://doi.org/10.3390/en15093186
Chicago/Turabian StyleSoomro, Wafa Ali, Youguang Guo, Haiyan Lu, Jianguo Zhu, Jianxun Jin, and Boyang Shen. 2022. "Three-Dimensional Numerical Characterization of High-Temperature Superconductor Bulks Subjected to Rotating Magnetic Fields" Energies 15, no. 9: 3186. https://doi.org/10.3390/en15093186
APA StyleSoomro, W. A., Guo, Y., Lu, H., Zhu, J., Jin, J., & Shen, B. (2022). Three-Dimensional Numerical Characterization of High-Temperature Superconductor Bulks Subjected to Rotating Magnetic Fields. Energies, 15(9), 3186. https://doi.org/10.3390/en15093186