Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems
Abstract
:1. Introduction
2. Features of PV Modules and Systems
2.1. Tilt Angle and Orientation
2.2. Glazing Surface Characteristics
2.3. Height of Solar Panel
3. Dust Particle Properties
3.1. Particle Size
3.2. Composition of Dust Particles
4. Environmental Effects
4.1. Wind Velocity and Direction
4.2. Moisture, Dew and Rainfall
5. Conclusions
- The deposition of dust particles on the surfaces of solar panels affects their performance by reducing the solar radiation reaching the cells and shortening their average lifespan.
- The size and structure of the dust particles deposited on PV panel surfaces and other environmental factors like wind and temperature affect the PV system’s efficiency.
- Even though the frequency of dust storms and precipitation are significant natural factors, there is no established schedule for the removal of dust deposited on the surfaces of PV modules.
- Hydrophobic and hydrophilic surfaces are more beneficial passive techniques than traditional power-consuming and water-intensive cleaning technologies.
- Advanced cleaning technologies like electrostatic and ultrasonic methods could provide better benefits than fluid jet cleaning methodologies.
- Automated detection of dust and other contaminants on panel surfaces and deploying appropriate cleaning techniques on time could be very beneficial for sustaining the performance of PV systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luderer, G.; Madeddu, S.; Merfort, L.; Ueckerdt, F.; Pehl, M.; Pietzcker, R.; Rottoli, M.; Schreyer, F.; Bauer, N.; Baumstark, L.; et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 2022, 7, 32–42. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Bidokhti, A.; Fakhrzad, M.; Sadegheih, A.; Zare Mehrjerdi, Y. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy 2022, 238, 121602. [Google Scholar] [CrossRef]
- Cherry, W.R. The generation of pollution-free electrical power from solar energy. J. Eng. Gas Turbine Power 1972, 94, 78–82. [Google Scholar] [CrossRef]
- Hammond, A.L. Photovoltaics: The semiconductor revolution comes to solar. Science 1977, 197, 445–447. [Google Scholar] [CrossRef]
- Anbazhagan, G.; Navamani, D.; Anbazhagan, L.; Muthusamy, S.; Pandiyan, S.; Panchal, H.; Ramachandran, M.; Sundararajan, S.C.M.; Sadasivuni, K.K. Performance investigation of 140 kW grid connected solar PV system installed in southern region of India–A detailed case study and analysis. Energy Sources Recovery Util. Environ. Eff. 2021. [Google Scholar] [CrossRef]
- Senthil, R. Recent innovations in solar energy education and research towards sustainable energy development. Acta Innov. 2022, 42, 27–49. [Google Scholar] [CrossRef]
- Ufa, R.A.; Malkova, Y.Y.; Rudnik, V.E.; Andreev, M.V.; Borisov, V.A. A review on distributed generation impacts on electric power system. Int. J. Hydrogen Energy 2022, 47, 20347–20361. [Google Scholar] [CrossRef]
- Makki, A.; Omer, S.; Sabir, H. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew. Sust. Energy Rev. 2015, 41, 658–684. [Google Scholar] [CrossRef]
- Nema, P.; Nema, R.K.; Rangnekar, S. A current and future state of art development of hybrid energy system using wind and PV-solar: A review. Renew. Sust. Energy Rev. 2009, 13, 2096–2103. [Google Scholar] [CrossRef]
- Okil, M.; Salem, M.S.; Abdolkader, T.M.; Shaker, A. From crystalline to low-cost silicon-based solar cells: A review. Silicon 2022, 14, 1895–1911. [Google Scholar] [CrossRef]
- Jayapal, V.; Rangasamy, S.; Venkidusamy, S.; Venkatesan, R.; Mayandi, J.; Pearce, J.M. The use of urea as an N-doping 3D hierarchical preserving agent for titanium dioxide nanostructures tailored for dye-sensitized solar cells. Int. J. Energy Res. 2022, 46, 9533–9548. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, H.; Qiao, T.; Hou, G.; Liu, H.; Xu, J.; Zhu, J.; Zhou, L. Tamm plasmon enabled narrowband thermal emitter for solar thermophotovoltaics. Sol. Energy Mat. Sol. Cells 2022, 238, 111589. [Google Scholar] [CrossRef]
- Miao, R.; Li, P.; Zhang, W.; Feng, X.; Qian, L.; Fang, J.; Song, W.; Wang, W. Highly foldable perovskite solar cells using embedded Polyimide/Silver nanowires conductive substrates. Adv. Mater. Interfaces 2022, 9, 2101669. [Google Scholar] [CrossRef]
- Sánchez, S.; Cacovich, S.; Vidon, G.; Guillemoles, J.; Eickemeyer, F.; Zakeeruddin, S.M.; Schawe, J.E.K.; Löffler, J.F.; Cayron, C.; Schouwink, P.; et al. Thermally controlled growth of photoactive FAPbI3 films for highly stable perovskite solar cells. Energy Environ. Sci. 2022, 15, 3862–3876. [Google Scholar] [CrossRef]
- Yun, M.J.; Sim, Y.H.; Lee, D.Y.; Cha, S.I. Automated shape-transformable self-solar-tracking tessellated crystalline Si solar cells using in-situ shape-memory-alloy actuation. Sci. Rep. 2022, 12, 1597. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Ling, X.; Sun, J.; Jiang, X.; Wang, Y.; Xue, D.; Huang, L.; Chi, L.; Yuan, J.; et al. Homojunction perovskite quantum dot solar cells with over 1 µm-thick photoactive layer. Adv. Mater. 2022, 34, 2105977. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, H.; Xiao, Y.; Yang, P. A pathway for ZnO p-type transformation and its performance in solar cells. Sol. Energy 2022, 231, 889–896. [Google Scholar] [CrossRef]
- Chauhan, P.; Gupta, C.P.; Tripathy, M. High speed fault detection and localization scheme for low voltage DC microgrid. Int. J. Electr. Power Energy Syst. 2023, 146, 108712. [Google Scholar] [CrossRef]
- Pinthurat, W.; Hredzak, B.; Konstantinou, G.; Fletcher, J. Techniques for compensation of unbalanced conditions in LV distribution networks with integrated renewable generation: An overview. Electr. Power Syst. Res. 2023, 214, 108932. [Google Scholar] [CrossRef]
- Costa, S.C.S.; Diniz, A.S.A.C.; Kazmerski, L.L. Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015. Renew. Sust. Energy Rev. 2016, 63, 33–61. [Google Scholar] [CrossRef]
- Izam, N.S.M.N.; Itam, Z.; Sing, W.L.; Syamsir, A. Sustainable development perspectives of solar energy technologies with focus on solar Photovoltaic—A review. Energies 2022, 15, 2790. [Google Scholar] [CrossRef]
- Khan, F.A.; Pal, N.; Saeed, S.H. Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies. Renew. Sust. Energy Rev. 2018, 92, 937–947. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q. Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Sci. Total Environ. 2022, 822, 153645. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Mithulananthan, N.; Bansal, R.C.; Ramachandaramurthy, V.K. A review of key power system stability challenges for large-scale PV integration. Renew. Sust. Energy Rev. 2015, 41, 1423–1436. [Google Scholar] [CrossRef]
- Fernando, T.L.D.; Ray, S.; Simpson, C.M.; Gommans, L.; Morrison, S. Remediation of fouling on painted steel roofing via solar energy assisted photocatalytic self-cleaning technology: Recent developments and future perspectives. Adv. Eng. Mater. 2022, 24, 2101486. [Google Scholar] [CrossRef]
- Abraim, M.; Salihi, M.; El Alani, O.; Hanrieder, N.; Ghennioui, H.; Ghennioui, A.; El Ydrissi, M.; Azouzoute, A. Techno-economic assessment of soiling losses in CSP and PV solar power plants: A case study for the semi-arid climate of Morocco. Energy Conver. Manag. 2022, 270, 116285. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Bahaj, A.S.; Blunden, L.S.; Wu, Y. Dust removal from solar PV modules by automated cleaning systems. Energies 2019, 12, 2923. [Google Scholar] [CrossRef] [Green Version]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Al-Badi, R.; Fayad, M.A.; Gholami, A. Dust impact on photovoltaic/thermal system in harsh weather conditions. Sol. Energy 2022, 245, 308–321. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sust. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Montesinos, J.; Martínez, F.R.; Polo, J.; Martín-Chivelet, N.; Batlles, F.J. Economic effect of dust particles on photovoltaic plant production. Energies 2020, 13, 6376. [Google Scholar] [CrossRef]
- Tamoor, M.; Hussain, M.I.; Bhatti, A.R.; Miran, S.; Arif, W.; Kiren, T.; Lee, G.H. Investigation of dust pollutants and the impact of suspended particulate matter on the performance of photovoltaic systems. Front. Energy Res. 2022, 10, 1633. [Google Scholar] [CrossRef]
- Younis, A.; Onsa, M.A. Brief summary of cleaning operations and their effect on the photovoltaic performance in Africa and the middle east. Energy Rep. 2022, 8, 2334–2347. [Google Scholar] [CrossRef]
- Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Alghoul, M.A.; Alawadhi, H. Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: An experimental study. Environ. Dev. Sustain. 2018, 20, 155–174. [Google Scholar] [CrossRef]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems. Energy Sustain. Dev. 2022, 66, 165–176. [Google Scholar] [CrossRef]
- Adak, D.; Bhattacharyya, R.; Barshilia, H.C. A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices. Renew. Sust. Energy Rev. 2022, 159, 112145. [Google Scholar] [CrossRef]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Kettle, J. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sust. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Alami, A.H.; Rabaia, M.K.H.; Sayed, E.T.; Ramadan, M.; Abdelkareem, M.A.; Alasad, S.; Olabi, A. Management of potential challenges of PV technology proliferation. Sustain. Energy Technol. Assess. 2022, 51, 101942. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Bhattacharjee, A.; Ghosh, A.; Chanchangi, Y.N.; Chakraborty, C.; Mallick, T.K.; Goel, S. Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems. Energy 2022, 239, 122213. [Google Scholar] [CrossRef]
- Hasan, K.; Yousuf, S.B.; Tushar, M.S.H.K.; Das, B.K.; Das, P.; Islam, M.S. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Sci. Eng. 2022, 10, 656–675. [Google Scholar] [CrossRef]
- Hao, D.; Qi, L.; Tairab, A.M.; Ahmed, A.; Azam, A.; Luo, D.; Yan, J. Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renew. Energy 2022, 188, 678–697. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K. Effect of dust and cleaning methods on mono and polycrystalline solar photovoltaic performance: An indoor experimental study. Sol. Energy 2022, 236, 626–643. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dust; Methuen and Co., Ltd.: London, UK, 1965. [Google Scholar]
- Shobe, C.M. How impervious are solar arrays? on the need for geomorphic assessment of energy transition technologies. Earth Surf. Process. Landf. 2022, 47, 3219–3223. [Google Scholar] [CrossRef]
- Biryukov, S.A. Particle resuspension in the high gradient alternating electric field. J. Aerosol Sci. 1996, 27, S213–S214. [Google Scholar] [CrossRef]
- Said, S.A.M. Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors. Appl. Energy 1990, 37, 73–84. [Google Scholar] [CrossRef]
- Salim, A.; Huraib, F.S.; Eugenio, N.N. PV power-study of system options and optimization. In EC Photovoltaic Solar Conference; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1988; Volume 8, pp. 688–692. [Google Scholar]
- Hassan, A.H.; Rahoma, U.A.; Elminir, H.K.; Fathy, A.M. Effect of airborne dust concentration on the performance of PV modules. J. Astron. Soc. Egypt 2005, 13, 24–38. [Google Scholar]
- Sayigh, A.A.M.; Al-Jandal, S.; Ahmed, H. Dust Effect on Solar Flat Surfaces Devices in Kuwait. In Proceedings of the Workshop on the Physics of Non-Conventional Energy Sources and Materials Science for Energy, Triest, Italy, 2–20 September 1985; pp. 353–367. [Google Scholar]
- El-Shobokshy, M.S.; Hussein, F.M. Effect of dust with different physical properties on the performance of photovoltaic cells. Sol. Energy 1993, 51, 505–511. [Google Scholar] [CrossRef]
- Rudnicka, M.; Klugmann-radziemska, E. Soiling effect mitigation obtained by applying transparent thin-films on solar panels: Comparison of different types of coatings. Materials 2021, 14, 964. [Google Scholar] [CrossRef]
- Goossens, D.; Van Kerschaever, E. Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy 1999, 66, 277–289. [Google Scholar] [CrossRef]
- Hottel, H.; Woertz, B. Performance of flat-plate solar-heat collectors. ASME (Am. Soc. Mech. Eng.) 1942, 64, 91–104. [Google Scholar] [CrossRef]
- Wang, P.; Yan, X.; Zeng, J.; Luo, C.; Wang, C. Antireflective superhydrophobic coatings with excellent durable and Self-cleaning properties for solar cells. Appl. Surf. Sci. 2022, 602, 154408. [Google Scholar] [CrossRef]
- Michalsky, J.J.; Perez, R.; Stewart, R.; LeBaron, B.A.; Harrison, L. Design and development of a rotating shadow band radiometer solar radiation/daylight network. Sol. Energy 1988, 41, 577–581. [Google Scholar] [CrossRef]
- Elminir, H.K.; Ghitas, A.E.; Hamid, R.H.; El-Hussainy, F.; Beheary, M.M.; Abdel-Moneim, K.M. Effect of dust on the transparent cover of solar collectors. Energy Convers. Manag. 2006, 47, 3192–3203. [Google Scholar] [CrossRef]
- Mustafa, R.J.; Gomaa, M.R.; Al-Dhaifallah, M.; Rezk, H. Environmental impacts on the performance of solar photovoltaic systems. Sustainability 2020, 12, 608. [Google Scholar] [CrossRef] [Green Version]
- Semaoui, S.; Arab, A.H.; Boudjelthia, E.K.; Bacha, S.; Zeraia, H. Dust Effect on Optical Transmittance of Photovoltaic Module Glazing in a Desert Region. Energy Proc. 2015, 74, 1347–1357. [Google Scholar] [CrossRef] [Green Version]
- El-Nashar, A.M. The effect of dust accumulation on the performance of evacuated tube collectors. Sol. Energy 1994, 53, 105–115. [Google Scholar] [CrossRef]
- Hegazy, A.A. Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renew. Energy 2001, 22, 525–540. [Google Scholar] [CrossRef]
- Garg, H.P. Effect of dirt on transparent covers in flat-plate solar energy collectors. Sol. Energy 1974, 15, 299–302. [Google Scholar] [CrossRef]
- Nahar, N.M.; Gupta, J.P. Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India. Solar Wind Technol. 1990, 7, 237–243. [Google Scholar] [CrossRef]
- Mastekbayeva, G.A.; Kumar, S. Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate. Sol. Energy 2000, 68, 135–141. [Google Scholar] [CrossRef]
- Quang, T.N.; He, C.; Morawska, L.; Knibbs, L.D.; Falk, M. Vertical particle concentration profiles around urban office buildings. Atmos. Chem. Phys. 2012, 12, 5017–5030. [Google Scholar] [CrossRef] [Green Version]
- McGowan, H.A.; Clark, A. A vertical profile of PM10 dust concentrations measured during a regional dust event identified by MODIS Terra, western Queensland, Australia. J. Geophys. Res. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Cano, J.; John, J.J.; Tatapudi, S.; TamizhMani, G. Effect of tilt angle on soiling of photovoltaic modules. In Proceedings of the IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 3174–3176. [Google Scholar] [CrossRef]
- Beattie, N.S.; Moir, R.S.; Chacko, C.; Buffoni, G.; Roberts, S.H.; Pearsall, N.M. Understanding the effects of sand and dust accumulation on photovoltaic modules. Renew. Energy 2012, 48, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Cadle, R.D. Particle Size. Theory and Industrial Applications; Reinhold Publishing Corporation: New York, NY, USA; Chapman Hall Ltd.: London, UK, 1965. [Google Scholar]
- Goossens, D.; Offer, Z.Y. Comparisons of day-time and night-time dust accumulation in a desert region. J. Arid Environ. 1995, 31, 253–281. [Google Scholar] [CrossRef]
- Offer, Z.I.; Goossens, D. Airborne dust in the Northern Negev Desert (January–December 1987): General occurrence and dust concentration measurements. J. Arid Environ. 1990, 18, 1–19. [Google Scholar] [CrossRef]
- Goossens, D. Aeolian dust ripples: Their occurrence, morphometrical characteristics, dynamics and origin. Catena 1991, 18, 379–407. [Google Scholar] [CrossRef]
- Adıguzel, E.; Ozer, E.; Akgundogdu, A.; Ersoy Yılmaz, A. Prediction of dust particle size effect on efficiency of photovoltaic modules with ANFIS: An experimental study in Aegean region, Turkey. Sol. Energy 2019, 177, 690–702. [Google Scholar] [CrossRef]
- Kalderon-Asael, B.; Erel, Y.; Sandler, A.; Dayan, U. Mineralogical and chemical characterization of suspended atmospheric particles over the east Mediterranean based on synoptic-scale circulation patterns. Atmos. Environ. 2009, 43, 3963–3970. [Google Scholar] [CrossRef]
- Styszko, K.; Jaszczur, M.; Teneta, J.; Hassan, Q.; Burzyńska, P.; Marcinek, E.; Łopian, N.; Samek, L. An analysis of the dust deposition on solar photovoltaic modules. Environ. Sci. Pollut. Res. 2019, 26, 8393–8401. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.C.; Gao, S.; Wee, B.S.; Asa-Awuku, A.; Thio, B.J.R. Adhesion of Dust Particles to Common Indoor Surfaces in an Air-Conditioned Environment. Aerosol Sci. Technol. 2014, 48, 541–551. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Concentration and Exposure-Response Measurement of Fine and Ultra Fine Particulate Matter for Use in Epidemiological Studies; Schwela, D., Moawska, L., Kotzias, D., Eds.; World Health Organization: Geneva, Switzerland, 2002; Available online: https://apps.who.int/iris/handle/10665/67338 (accessed on 20 November 2022).
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian dust transported one full circuit around the globe. Nat. Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Neff, J.C.; Ballantyne, A.P.; Farmer, G.L.; Mahowald, N.M.; Conroy, J.L.; Landry, C.C.; Overpeck, J.T.; Painter, T.H.; Lawrence, C.R.; Reynolds, R.L. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 2008, 1, 189–195. [Google Scholar] [CrossRef]
- Hai, J.; Lin, L.; Ke, S. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 2011, 45, 4299–4304. [Google Scholar] [CrossRef]
- Verma, L.K.; Sakhuja, M.; Son, J.; Danner, A.J.; Yang, H.; Zeng, H.C.; Bhatia, C.S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energy 2011, 36, 2489–2493. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W. Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system. Appl. Energy 2018, 220, 514–526. [Google Scholar] [CrossRef]
- Mazumder, M.; Horenstein, M.N.; Stark, J.W.; Girouard, P.; Sumner, R.; Henderson, B.; Sadder, O.; Hidetaka, I.; Biris, A.S.; Sharma, R. Characterization of electrodynamic screen performance for dust removal from solar panels and solar hydrogen generators. IEEE Trans. Ind. Appl. 2013, 49, 1793–1800. [Google Scholar] [CrossRef]
- Niknia, I.; Yaghoubi, M.; Hessami, R. A novel experimental method to find dust deposition effect on the performance of parabolic trough solar collectors. Int. J. Environ. Stud. 2012, 69, 233–252. [Google Scholar] [CrossRef]
- Sakhuja, M.; Son, J.; Yang, H.; Bhatia, C.S.; Danner, A.J. Outdoor performance and durability testing of antireflecting and self-cleaning glass for photovoltaic applications. Sol. Energy 2014, 110, 231–238. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Sayyah, A.; Horenstein, M.N.; Mazumder, M.K. Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 2014, 107, 576–604. [Google Scholar] [CrossRef]
- Sueto, T.; Ota, Y.; Nishioka, K. Suppression of dust adhesion on a concentrator photovoltaic module using an anti-soiling photocatalytic coating. Sol. Energy 2013, 97, 414–417. [Google Scholar] [CrossRef]
- Khonkar, H.; Alyahya, A.; Aljuwaied, M.; Halawani, M.; Al Saferan, A.; Al-khaldi, F.; Alhadlaq, F.; Wacaser, B.A. Importance of cleaning concentrated photovoltaic arrays in a desert environment. Sol. Energy 2014, 110, 268–275. [Google Scholar] [CrossRef]
- Appels, R.; Lefevre, B.; Herteleer, B.; Goverde, H.; Beerten, A.; Paesen, R.; De Medts, K.; Driesen, J.; Poortmans, J. Effect of soiling on photovoltaic modules. Sol. Energy 2013, 96, 283–291. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A. Experimental analysis of solar intensity on PV in hot and humid weather conditions. Int. J. Sci. Eng. Res. 2016, 7, 91–96. [Google Scholar]
- Rounis, E.D.; Athienitis, A.K. Stathopoulos, Multiple-inlet building integrated Photovoltaic/Thermal system modelling under varying wind and temperature conditions. Sol. Energy 2016, 139, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Al-Nimr, M.A.; Al-Ammari, W.A. A novel hybrid PV-distillation system. Sol. Energy 2016, 135, 874–883. [Google Scholar] [CrossRef]
- O’Hara, S.L.; Clarke, M.L.; Elatrash, M.S. Field measurements of desert dust deposition in libya. Atmos. Environ. 2006, 40, 3881–3897. [Google Scholar] [CrossRef]
- Kohli, R.; Mittal, K.L. Methods for Removal of Particle Contaminants. In Developments in Surface Contamination and Cleaning; William Andrew Publishing: Norwich, UK, 2011; Volume 3. [Google Scholar] [CrossRef]
- Hacke, P.; Burton, P.; Hendrickson, A.; Glick, S.; Terwilliger, K. Effects of photovoltaic module soiling on glass surface resistance and potential-induced degradation. In Proceedings of the IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Carlson, D.E.; Romero, R.; Willing, F.; Meakin, D.; Gonzalez, L.; Murphy, R.; Moutinho, H.R.; Al-Jassim, M. Corrosion effects in thin-film photovoltaic modules. Prog. Photovolt. Res. Appl. 2003, 11, 377–386. [Google Scholar] [CrossRef]
- Quintana, M.A.; King, D.L.; McMahon, T.J.; Osterwald, C.R. Commonly observed degradation in field-aged photovoltaic modules. In Proceedings of the Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002; pp. 1436–1439. [Google Scholar] [CrossRef]
- Jorgensen, G.J.; Terwilliger, K.M.; DelCueto, J.A.; Glick, S.H.; Kempe, M.D.; Pankow, J.W.; Pern, F.J.; McMahon, T.J. Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Sol. Energy Mater. Sol. Cells 2006, 90, 2739–2775. [Google Scholar] [CrossRef]
- Kempe, M.D. Control of moisture ingress into photovoltaic modules. In Proceedings of the Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 503–506. [Google Scholar] [CrossRef] [Green Version]
- Munoz, M.A.; Alonso-García, M.C.; Vela, N.; Chenlo, F. Early degradation of silicon PV modules and guaranty conditions. Sol. Energy 2011, 85, 2264–2274. [Google Scholar] [CrossRef]
- Wohlgemuth, J.H.; Kurtz, S. Reliability testing beyond qualification as a key component in photovoltaic’s progress toward grid parity. In Proceedings of the 2011 International Reliability Physics Symposium, Monterey, CA, USA, 10–14 April 2011. [Google Scholar] [CrossRef] [Green Version]
- Kimber, A.; Mitchell, L.; Nogradi, S.; Wenger, H. The Effect of Soiling on Large Grid-Connected Photovoltaic Systems in California and the Southwest Region of the United States. In Proceedings of the Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006. [Google Scholar] [CrossRef]
- Gooré Bi, E.; Monette, F.; Gasperi, J. Analysis of the influence of rainfall variables on urban effluents concentrations and fluxes in wet weather. J. Hydrol. 2015, 523, 320–332. [Google Scholar] [CrossRef]
- Bethea, R.M.; Barriger, M.T.; Williams, P.F.; Chin, S. Environmental effects on solar concentrator mirrors. Sol. Energy 1981, 27, 497–511. [Google Scholar] [CrossRef]
- Aslam, A.; Ahmed, N.; Qureshi, S.A.; Assadi, M.; Ahmed, N. Advances in solar PV systems; A comprehensive review of PV performance, influencing factors, and mitigation techniques. Energies 2022, 15, 7595. [Google Scholar] [CrossRef]
- Caron, J.R.; Littmann, B. Direct monitoring of energy lost due to soiling on first solar modules in California. IEEE J. Photovolt. 2013, 3, 336–340. [Google Scholar] [CrossRef]
- El-houari, H.; Allouhi, A.; Buker, M.S.; Kousksou, T.; Jamil, A.; El Amrani, B. Off-grid PV-based hybrid renewable energy systems for electricity generation in remote areas. In Advanced Technologies for Solar Photovoltaics Energy Systems; Springer: Cham, Switaerland, 2021; pp. 483–513. [Google Scholar] [CrossRef]
- Elsherbiny, L.; Al-Alili, A.; Alhassan, S. Short term photovoltaic power forecasting. Presented at the ASME 2021 15th International Conference on Energy Sustainability, ES 2021. Virtual Conference, 16–18 June 2021. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Seshadri, A.K.; Sparks, N.J.; Toumi, R. The role of wind-solar hybrid plants in mitigating renewable energy-droughts. Renew. Energy 2022, 194, 926–937. [Google Scholar] [CrossRef]
- Jánosi, I.M.; Medjdoub, K.; Vincze, M. Combined wind-solar electricity production potential over north-western Africa. Renew. Sust. Energy Rev. 2021, 151, 111558. [Google Scholar] [CrossRef]
- Poddar, V.S.; Ranawade, V.A.; Dhokey, N.B. Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance. Renew. Energy 2022, 182, 817–826. [Google Scholar] [CrossRef]
- Moghaddam, H.A.; Shorabeh, S.N. Designing and implementing a location-based model to identify areas suitable for multi-renewable energy development for supplying electricity to agricultural wells. Renew. Energy 2022, 200, 1251–1264. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Alhuyi Nazari, M. Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind) by a new approach. J. Energy Storage 2022, 53, 104983. [Google Scholar] [CrossRef]
- Jamei, M.; Ali, M.; Malik, A.; Karbasi, M.; Sharma, E.; Yaseen, Z.M. Air quality monitoring based on chemical and meteorological drivers: Application of a novel data filtering-based hybridized deep learning model. J. Clean. Prod 2022, 374, 134011. [Google Scholar] [CrossRef]
- Abualigah, L.; Zitar, R.A.; Almotairi, K.H.; Hussein, A.M.; Elaziz, M.A.; Nikoo, M.R.; Gandomi, A.H. Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: A survey of advanced machine learning and deep learning techniques. Energies 2022, 15, 578. [Google Scholar] [CrossRef]
- Babaremu, K.; Olumba, N.; Chris-Okoro, I.; Chuckwuma, K.; Jen, T.; Oladijo, O.; Akinlabi, E. Overview of Solar–Wind hybrid products: Prominent challenges and possible solutions. Energies 2022, 15, 6014. [Google Scholar] [CrossRef]
- Khan, T.; Yu, M.; Waseem, M. Review on recent optimization strategies for hybrid renewable energy system with hydrogen technologies: State of the art, trends and future directions. Int. J. Hydrogen Energy 2022, 47, 25155–25201. [Google Scholar] [CrossRef]
- Sutikno, T.; Arsadiando, W.; Wangsupphaphol, A.; Yudhana, A.; Facta, M. A review of recent advances on hybrid energy storage system for solar photovoltaics power generation. IEEE Access 2022, 10, 42346–42364. [Google Scholar] [CrossRef]
- Zhou, Y. Advances of machine learning in multi-energy district communities–mechanisms, applications and perspectives. Energy AI 2022, 10, 100187. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Gholami, A. A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software. Energy Sources Recovery Util. Environ. Eff. 2022, 44, 6709–6736. [Google Scholar] [CrossRef]
- Benallal, A.; Cheggaga, N. Impact of dust events on the optimization of photovoltaic-wind hybrid system in desert. Wind Eng. 2021, 45, 1506–1516. [Google Scholar] [CrossRef]
- Fatih Güven, A.; Mahmoud Samy, M. Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches. Energy Convers. Manag. 2022, 269, 116058. [Google Scholar] [CrossRef]
- Geleta, D.K.; Manshahia, M.S.; Vasant, P.; Banik, A. Grey wolf optimizer for optimal sizing of hybrid wind and solar renewable energy system. Comput. Intell. 2022, 38, 1133–1162. [Google Scholar] [CrossRef]
- Hamza Zafar, M.; Mujeeb Khan, N.; Mansoor, M.; Feroz Mirza, A.; Kumayl Raza Moosavi, S.; Sanfilippo, F. Adaptive ML-based technique for renewable energy system power forecasting in hybrid PV-wind farms power conversion systems. Energy Conver. Manag. 2022, 258, 115564. [Google Scholar] [CrossRef]
- Mirza, A.F.; Szczepankowski, P.; Luszcz, J. Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique. Sustain. Energy Technol. Assess. 2022, 53, 102482. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, Q.; Liu, S.; Zhao, L. Distribution strategy optimization of standalone hybrid WT/PV system based on different solar and wind resources for rural applications. Energies 2022, 15, 5307. [Google Scholar] [CrossRef]
- Ali, M.; Kotb, H.; Kareem AboRas, M.; Nabil Abbasy, H. Frequency regulation of hybrid multi-area power system using wild horse optimizer based new combined fuzzy fractional-order PI and TID controllers. Alex. Eng. J. 2022, 61, 12187–12210. [Google Scholar] [CrossRef]
- Ampah, J.D.; Jin, C.; Agyekum, E.B.; Afrane, S.; Geng, Z.; Adun, H.; Yusuf, A.A.; Liu, H.; Bamisile, O. Performance analysis and socio-enviro-economic feasibility study of a new hybrid energy system-based decarbonization approach for coal mine sites. Sci. Total Environ. 2023, 854, 158820. [Google Scholar] [CrossRef] [PubMed]
- Avvari, R.K.; Kumar, D.M.V. A novel hybrid multi-objective evolutionary algorithm for optimal power flow in wind, PV, and PEV systems. J. Oper. Autom. Power Eng. 2023, 11, 130–143. [Google Scholar] [CrossRef]
- El-Sattar, H.A.; Kamel, S.; Hassan, M.H.; Jurado, F. An effective optimization strategy for design of standalone hybrid renewable energy systems. Energy 2022, 260, 124901. [Google Scholar] [CrossRef]
- Hossein Jahangir, M.; Bazdar, E.; Kargarzadeh, A. Techno-economic and environmental assessment of low carbon hybrid renewable electric systems for urban energy planning: Tehran-Iran. City Environ. Interact. 2022, 16, 100085. [Google Scholar] [CrossRef]
- Jiang, B.; Lei, H.; Li, W.; Wang, R. A novel multi-objective evolutionary algorithm for hybrid renewable energy system design. Swarm Evol. Comput. 2022, 75, 101186. [Google Scholar] [CrossRef]
- Kumar, S.; Koteswara Rao, S. Optimum capacity of hybrid renewable energy system suitable for fulfilling yearly load demand for a community building located at Vaddeswaram, Andhra Pradesh. Energy Build. 2022, 277, 112570. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, V.; Naresh, R. Leader Harris Hawks algorithm based optimal controller for automatic generation control in PV-hydro-wind integrated power network. Electr. Power Syst. Res. 2023, 214, 108924. [Google Scholar] [CrossRef]
- Pombo, D.V.; Rincón, M.J.; Bacher, P.; Bindner, H.W.; Spataru, S.V.; Sørensen, P.E. Assessing stacked physics-informed machine learning models for co-located wind–solar power forecasting. Sustain. Energy Grids Netw. 2022, 32, 100943. [Google Scholar] [CrossRef]
- Tan, Y.; Guan, L. Hybrid optimization for collaborative bidding strategy of renewable resources aggregator in day-ahead market considering competitors’ strategies. Int. J. Electr. Power Energy Syst. 2023, 145, 108681. [Google Scholar] [CrossRef]
- Micheli, L.; Caballero, J.A.; Fernandez, E.F.; Smestad, G.P.; Nofuentes, G.; Mallick, T.K.; Almonacid, F. Correlating photovoltaic soiling losses to waveband and single-value transmittance measurements. Energy 2019, 180, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Oh, S. Corrigendum Analytic and Monte-Carlo studies of the effect of dust accumulation on photovoltaics. Sol. Energy 2019, 188, 1243–1247. [Google Scholar] [CrossRef]
- Pan, A.; Lu, H.; Zhang, L. Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings. Energy 2019, 181, 645–653. [Google Scholar] [CrossRef]
- Shapsough, S.; Dhaouadi, R.; Zualkernan, I. Using Linear Regression and Back Propagation Neural Networks to Predict Performance of Soiled PV Modules. Procedia Comput. Sci. 2019, 155, 463–470. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. The effect of dust with different morphologies on the performance degradation of photovoltaic modules. Sustain. Energy Technol. Assess. 2019, 31, 347–354. [Google Scholar] [CrossRef]
- Trigo-González, M.; Batlles, F.J.; Alonso-Montesinos, J.; Ferrada, P.; del Sagrado, J.; Martínez-Durbán, M.; Cortés, M.; Portillo, C.; Marzo, A. Hourly PV production estimation by means of an exportable multiple linear regression model. Renew. Energy 2019, 135, 303–312. [Google Scholar] [CrossRef]
- Ullah, A.; Imran, H.; Maqsood, Z.; Butt, N.Z. Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan. Renew. Energy 2019, 139, 830–843. [Google Scholar] [CrossRef]
- Vaishak, S.; Bhale, P.V. Effect of dust deposition on performance characteristics of a refrigerant based photovoltaic/thermal system. Sustain. Energy Technol. Assess. 2019, 36, 100548. [Google Scholar] [CrossRef]
- Zhou, L.; Schwede, D.B.; Wyat Appel, K.; Mangiante, M.J.; Wong, D.; Napelenok, S.L.; Whung, P.-Y.; Zhang, B. The impact of air pollutant deposition on solar energy system efficiency: An approach to estimate PV soiling effects with the Community Multiscale Air Quality (CMAQ) model. Sci. Total Environ. 2019, 651, 456–465. [Google Scholar] [CrossRef]
- Alnasser, T.M.A.; Mahdy, A.M.J.; Abass, K.I.; Chaichan, M.T.; Kazem, H.A. Impact of dust ingredient on photovoltaic performance: An experimental study. Sol. Energy 2020, 195, 651–659. [Google Scholar] [CrossRef]
- Conceição, R.; Vázquez, I.; Fialho, L.; García, D. Soiling and rainfall effect on PV technology in rural Southern Europe. Renew. Energy 2020, 156, 743–747. [Google Scholar] [CrossRef]
- Ullah, A.; Amin, A.; Haider, T.; Saleem, M.; Butt, N.Z. Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan. Renew. Energy 2020, 150, 456–468. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, S.; Wang, Z.; Ming, T.; Zhao, X.; Ma, R.; Wu, Y. The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator. Renew. Energy 2020, 152, 529–539. [Google Scholar] [CrossRef]
- Alagoz, S.; Apak, Y. Removal of spoiling materials from solar panel surfaces by applying surface acoustic waves. J. Clean. Prod 2020, 253, 119992. [Google Scholar] [CrossRef]
- Shi, C.; Yu, B.; Liu, D.; Wu, Y.; Li, P.; Chen, G.; Wang, G. Effect of high-velocity sand and dust on the performance of crystalline silicon photovoltaic modules. Sol. Energy 2020, 206, 390–395. [Google Scholar] [CrossRef]
- Dida, M.; Boughali, S.; Bechki, D.; Bouguettaia, H. Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment. Renew. Sustain. Energy Rev. 2020, 124, 109787. [Google Scholar] [CrossRef]
- Xu, L.; Li, S.; Jiang, J.; Liu, T.; Wu, H.; Wang, J.; Li, X. The influence of dust deposition on the temperature of soiling photovoltaic glass under lighting and windy conditions. Sol. Energy 2020, 199, 491–496. [Google Scholar] [CrossRef]
- Lu, H.; Cai, R.; Zhang, L.; Lu, L.; Zhang, L. Experimental investigation on deposition reduction of different types of dust on solar PV cells by self-cleaning coatings. Sol. Energy 2020, 206, 365–373. [Google Scholar] [CrossRef]
- Muñoz-García, M.-Á.; Fouris, T.; Pilat, E. Analysis of the soiling effect under different conditions on different photovoltaic glasses and cells using an indoor soiling chamber. Renew. Energy 2021, 163, 1560–1568. [Google Scholar] [CrossRef]
- Wu, Y.; Du, J.; Liu, G.; Ma, D.; Jia, F.; Klemeš, J.J.; Wang, J. A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating. Renew. Energy 2022, 185, 1034–1061. [Google Scholar] [CrossRef]
- Liu, X.; Yue, S.; Lu, L.; Li, J. Investigation of the Dust Scaling Behaviour on Solar Photovoltaic Panels. J. Clean. Prod 2021, 295, 126391. [Google Scholar] [CrossRef]
- Drame, M.S.; Diop, D.; Talla, K.; Diallo, M.; Ngom, B.D.; Nebon, B. Structural and physicochemical properties of dust collected on PV panels surfaces and their potential influence on these solar modules efficiency in Dakar, Senegal, West Africa. Sci. Afr. 2021, 12, e00810. [Google Scholar] [CrossRef]
- Lasfar, S.; Haidara, F.; Mayouf, C.; Abdellahi, F.M.; Elghorba, M.; Wahid, A.; Kane, C.S.E. Study of the influence of dust deposits on photovoltaic solar panels: Case of Nouakchott. Energy Sustain. Dev. 2021, 63, 7–15. [Google Scholar] [CrossRef]
- Ali Sadat, S.; Faraji, J.; Nazififard, M.; Ketabi, A. The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment. Sustain. Energy Techno. Assess. 2021, 47, 101542. [Google Scholar] [CrossRef]
- Kennedy, J.; Lo, A.; Rajamani, H.-S.; Lutfi, S. Solar and sand: Dust deposit mitigation in the desert for PV arrays. Sustain. Energy Grids Netw. 2021, 28, 100531. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Martínez, G.M.; Spiga, A.; Vicente-Retortillo, A.; Newman, C.E.; Murdoch, N.; Forget, F.; Millour, E.; Pierron, T. Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planet. Space Sci. 2021, 207, 105337. [Google Scholar] [CrossRef]
- Zhao, W.; Lv, Y.; Zhou, Q.; Yan, W. Collision-adhesion mechanism of particles and dust deposition simulation on solar PV modules. Renew. Energy 2021, 176, 169–182. [Google Scholar] [CrossRef]
- Zhao, W.; Lv, Y.; Zhou, Q.; Yan, W. Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance. Energy 2021, 233, 121240. [Google Scholar] [CrossRef]
- Wasim, J.; Bing, G.; Benjamin, F.; Brahim, A. Dust potency in the context of solar photovoltaic (PV) soiling loss. Sol. Energy 2021, 220, 1040–1052. [Google Scholar] [CrossRef]
- Rached, D.; Aman, A.O.; Ahmad, A.A.; Muhammad, T.; Rawan, Z. A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates. Renew. Energy 2021, 171, 133–140. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Gavagsaz Ghoachani, R. A single-diode model for photovoltaic panels in variable environmental conditions: Investigating dust impacts with experimental evaluation. Sustain. Energy Technol. Assess. 2021, 47, 101392. [Google Scholar] [CrossRef]
- Costa, S.C.S.; Kazmerski, L.L.; Diniz, A.S.A.C. Estimate of Soiling Rates Based on Soiling Monitoring Station and PV System Data: Case Study for Equatorial-Climate Brazil. IEEE J. Photovolt. 2021, 11, 461–468. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Gandhi, O.; Rodríguez-Gallegos, C.D.; Quan, H.; Srinivasan, D. Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss. IEEE Trans Sustain. Energy 2021, 12, 2436–2444. [Google Scholar] [CrossRef]
- Ovrum, O.; Marchetti, J.M.; Kelesoglu, S.; Marstein, E.S. Comparative Analysis of Site-Specific Soiling Losses on PV Power Production. IEEE J. Photovolt. 2021, 11, 158–163. [Google Scholar] [CrossRef]
- Micheli, L.; Theristis, M.; Livera, A.; Stein, J.S.; Georghiou, G.E.; Muller, M.; Almonacid, F.; Fernandez, E.F. Improved PV Soiling Extraction Through the Detection of Cleanings and Change Points. IEEE J. Photovolt. 2021, 11, 519–526. [Google Scholar] [CrossRef]
- Doll, B.; Forberich, K.; Hepp, J.; Langner, S.; Buerhop-Lutz, C.; Hauch, J.A.; Brabec, C.J.; Peters, I.M. Luminescence Analysis of PV-Module Soiling in Germany. IEEE J. Photovolt. 2022, 12, 81–87. [Google Scholar] [CrossRef]
- Ehsan, R.M.; Simon, S.P.; Sundareswaran, K.; Kumar, K.A.; Sriharsha, T. Effect of soiling on photovoltaic modules and its mitigation using hydrophobic nanocoatings. IEEE J. Photovolt. 2021, 11, 742–749. [Google Scholar] [CrossRef]
- Tariq, M.; Ansari, M.K.; Rahman, F.; Rahman, M.A.; Ashraf, I. Effect of Soiling on the Performance of Solar PV Modules: A Case Study of Aligarh. Smart Sci. 2021, 9, 121–132. [Google Scholar] [CrossRef]
- Salamah, T.; Ramahi, A.; Alamara, K.; Juaidi, A.; Abdallah, R.; Abdelkareem, M.A.; Amer, E.-C.; Olabi, A.G. Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Sci. Total Environ. 2022, 827, 154050. [Google Scholar] [CrossRef]
- Dahlioui, D.; Laarabi, B.; Barhdadi, A. Review on dew water effect on soiling of solar panels: Towards its enhancement or mitigation. Sustain. Energy Technol. Assess. 2022, 49, 101774. [Google Scholar] [CrossRef]
- Prasad, A.A.; Nishant, N.; Kay, M. Dust cycle and soiling issues affecting solar energy reductions in Australia using multiple datasets. Appl. Energy 2022, 310, 118626. [Google Scholar] [CrossRef]
- Juaidi, A.; Muhammad, H.H.; Abdallah, R.; Abdalhaq, R.; Albatayneh, A.; Kawa, F. Experimental validation of dust impact on-grid connected PV system performance in Palestine: An energy nexus perspective. Energy Nexus 2022, 6, 100082. [Google Scholar] [CrossRef]
- Raillani, B.; Chaatouf, D.; Salhi, M.; Amraqui, S.; Mezrhab, A. Effect of wind barrier height on the dust deposition rate of a ground-mounted photovoltaic panel. Sustain. Energy Technol. Assess. 2022, 52, 102035. [Google Scholar] [CrossRef]
- Fan, S.; Wang, X.; Cao, S.; Wang, Y.; Zhang, Y.; Liu, B. A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels. Energy 2022, 252, 123927. [Google Scholar] [CrossRef]
- Yazdani, H.; Yaghoubi, M. Dust deposition effect on photovoltaic modules performance and optimization of cleaning period: A combined experimental–numerical study. Sustain. Energy Technol. Assess. 2022, 51, 101946. [Google Scholar] [CrossRef]
- Zhao, N.; Yan, S.; Zhang, N.; Zhao, X. Impacts of seasonal dust accumulation on a point-focused Fresnel high-concentration photovoltaic/thermal system. Renew. Energy 2022, 191, 732–746. [Google Scholar] [CrossRef]
- Laarabi, B.; Sankarkumar, S.; Rajasekar, N.; El Baqqal, Y.; Barhdadi, A. Modeling investigation of soiling effect on solar photovoltaic systems: New findings. Sustain. Energy Technol. Assess. 2022, 52, 102126. [Google Scholar] [CrossRef]
- Raillani, B.; Ouali, H.A.L.; Amraqui, S.; Moussaoui, M.A.; Mezrhab, A. Techno-economic impact of optical soiling losses on solar tower and linear Fresnel reflector power plants: Experimental and numerical investigation. Int. J. Green Energy 2022, 19, 1665–1674. [Google Scholar] [CrossRef]
- Kazem, H.A.; Al-Waeli, A.H.A.; Chaichan, M.T.; Sopian, K. Modeling and experimental validation of dust impact on solar cell performance. Energy Sources Recovery Util. Environ. Eff. 2022. [Google Scholar] [CrossRef]
- Mahnoor, B.; Noman, M.; Rehan, M.S.; Khan, A.D. Power loss due to soiling on photovoltaic module with and without anti-soiling coating at different angle of incidence. Int. J. Green Energy 2021, 18, 1658–1666. [Google Scholar] [CrossRef]
- Hariri, N.G.; Almadani, I.K.; Osman, I.S. A State-of-the-Art Self-Cleaning System Using Thermomechanical Effect in Shape Memory Alloy for Smart Photovoltaic Applications. Materials 2022, 15, 5704. [Google Scholar] [CrossRef] [PubMed]
- Elminshawy, N.; Elminshawy, A.; Osama, A.; Bassyouni, M.; Arıcı, M. Experimental performance analysis of enhanced concentrated photovoltaic utilizing various mass flow rates of Al2O3-nanofluid: Energy, exergy, and exergoeconomic study. Sustain. Energy Technol. Assess. 2022, 53, 102723. [Google Scholar] [CrossRef]
- Özbaş, E. A novel design of passive cooler for PV with PCM and two-phase closed thermosyphons. Sol. Energy 2022, 245, 19–24. [Google Scholar] [CrossRef]
- Dhanalakshmi, S.; Chakravartula, V.; Narayanamoorthi, R.; Kumar, R.; Dooly, G.; Duraibabu, D.B.; Senthil, R. Thermal management of solar photovoltaic panels using a fibre Bragg grating sensor-based temperature monitoring. Case Stud. Therm. Eng. 2022, 31, 101834. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E.; Rudnicka, M. The analysis of working parameters decrease in photovoltaic modules as a result of dust deposition. Energies 2020, 13, 4138. [Google Scholar] [CrossRef]
- Sivakumar, B.; Navakrishnan, S.; Cibi, M.R.; Senthil, R. Experimental study on the electrical performance of a solar photovoltaic panel by water immersion. Environ. Sci. Pollut. Res. 2021, 28, 42981–42989. [Google Scholar] [CrossRef]
- Rehman, S.; Mohandes, M.A.; Hussein, A.E.; Alhems, L.M.; Al-Shaikhi, A. Cleaning of Photovoltaic Panels Utilizing the Downward Thrust of a Drone. Energies 2022, 15, 8159. [Google Scholar] [CrossRef]
- Al Garni, H.Z. The Impact of Soiling on PV Module Performance in Saudi Arabia. Energies 2022, 15, 8033. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K. A review of dust accumulation and cleaning methods for solar photovoltaic systems. J. Clean. Prod. 2020, 276, 123187. [Google Scholar] [CrossRef]
- Navakrishnan, S.; Vengadesan, E.; Senthil, R.; Dhanalakshmi, S. An experimental study on simultaneous electricity and heat production from solar PV with thermal energy storage. Energy Convers. Manag. 2021, 245, 114614. [Google Scholar] [CrossRef]
- Ali, H.M.; Zafar, M.A.; Bashir, M.A.; Nasir, M.A.; Ali, M.; Siddiqui, A.M. Effect of dust deposition on the performance of photovoltaic modules in city of Taxila, Pakistan. Therm. Sci. 2017, 21, 915–923. [Google Scholar] [CrossRef]
- Sajjad, U.; Amer, M.; Ali, H.M.; Dahiya, A.; Abbas, N. Cost effective cooling of photovoltaic modules to improve efficiency. Case Stud. Therm. Eng. 2019, 14, 100420. [Google Scholar] [CrossRef]
- Bashir, M.A.; Ali, H.M.; Amber, K.P.; Bashir, M.W.; Ali, H.; Imran, S.; Kamran, M.S. Performance investigation of photovoltaic modules by back surface water cooling. Therm. Sci. 2018, 22 Pt A, 2401–2411. [Google Scholar] [CrossRef] [Green Version]
- Muneeshwaran, M.; Sajjad, U.; Ahmed, T.; Amer, M.; Ali, H.M.; Wang, C.-C. Performance improvement of photovoltaic modules via temperature homogeneity improvement. Energy 2020, 203, 117816. [Google Scholar] [CrossRef]
- Abdallah, R.; Juaidi, A.; Abdel-Fattah, S.; Qadi, M.; Shadid, M.; Albatayneh, A.; Çamur, H.; García-Cruz, A.; Manzano-Agugliaro, F. The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine. Energies 2022, 15, 4232. [Google Scholar] [CrossRef]
- Dhanalakshmi, S.; Nandini, P.; Rakshit, S.; Rawat, P.; Narayanamoorthi, R.; Kumar, R.; Senthil, R. Fiber Bragg grating sensor-based temperature monitoring of solar photovoltaic panels using machine learning algorithms. Opt. Fiber Technol. 2022, 69, 102831. [Google Scholar] [CrossRef]
- Hossain, M.I.; Ali, A.; Bermudez Benito, V.; Figgis, B.; Aïssa, B. Anti-Soiling Coatings for Enhancement of PV Panel Performance in Desert Environment: A Critical Review and Market Overview. Materials 2022, 15, 7139. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Q.; Hu, J. A linear piezoelectric actuator based solar panel cleaning system. Energy 2013, 60, 401–406. [Google Scholar] [CrossRef]
- Hanifi, H.; Jaeckel, B.; Pander, M.; Dassler, D.; Kumar, S.; Schneider, J. Techno-Economic Assessment of Half-Cell Modules for Desert Climates: An Overview on Power, Performance, Durability and Costs. Energies 2022, 15, 3219. [Google Scholar] [CrossRef]
- Lu, H.; Zheng, C. Comparison of Dust Deposition Reduction Performance by Super-Hydrophobic and Super-Hydrophilic Coatings for Solar PV Cells. Coatings 2022, 12, 502. [Google Scholar] [CrossRef]
- Zaihidee, F.M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev. 2016, 65, 1267–1278. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Sundaram, S.; Mallick, T.K. Dust and PV performance in Nigeria: A review. Renew. Sustain. Energy Rev. 2020, 121, 109704. [Google Scholar] [CrossRef]
- Aïssa, B.; Isaifan, R.J.; Madhavan, V.E.; Abdallah, A.A. Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance. Sci. Rep. 2016, 6, 31467. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Batra, A.; Pachauri, R. An experimental study on effect of dust on power loss in solar photovoltaic module. Renewables 2017, 4, 9. [Google Scholar] [CrossRef]
- Liu, X.; Yue, S.; Li, J.; Lu, L. Study of a dust deposition mechanism dominated by electrostatic force on a solar photovoltaic module. Sci. Total Environ. 2021, 754, 142241. [Google Scholar] [CrossRef]
- Shenouda, R.; Abd-Elhady, M.S.; Kandil, H.A. A review of dust accumulation on PV panels in the MENA and the Far East regions. J. Eng. Appl. Sci. 2022, 69, 8. [Google Scholar] [CrossRef]
- Benli, H.; Gürtürk, M.; Ertürk, N.K. Analysis of cleaning process losses in photovoltaic cells. Environ. Prog. Energy 2022, 41, e13805. [Google Scholar] [CrossRef]
- Lange, K.; Pfau, C.; Grunwald, E.; Schak, M.; Matthes, E.; Grob, S.; Turek, M.; Hagendorf, C.; Ilse, K. Abrasion testing of antireflective coatings under various conditions. Sol. Energy Mater. Sol. Cells 2022, 240, 111732. [Google Scholar] [CrossRef]
- Subarnan, G.M.; Damodaran, M.; Madhu, K. A Review on Investigation of PV Solar Panel Surface Defects and MPPT Techniques. Recent Adv. Electr. Electron. Eng. 2022, 15, 607–620. [Google Scholar] [CrossRef]
- Lakshmi, K.R.C.; Ramadas, G. Dust Deposition’s effect on solar photovoltaic module performance: An experimental study in India’s tropical region. J. Renew. Mater. 2022, 10, 2133–2153. [Google Scholar] [CrossRef]
- Rekioua, D.; Matagne, E. Optimization of photovoltaic power systems: Modelization, Simulation and Control. Green Energy and Technol. 2012, 102. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under united arab emirates weather conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E. Shading, dusting and incorrect positioning of photovoltaic modules as important factors in performance reduction. Energies 2020, 13, 1992. [Google Scholar] [CrossRef] [Green Version]
- Pezeshki, Z.; Zekry, A. State-of-the-Art and Prospective of Solar Cells. In Fundamentals of Solar Cell Design; Wiley: Hoboken, NJ, USA, 2023; pp. 393–460. [Google Scholar]
- Rekioua, D. Hybrid Renewable Energy Systems Overview. Green Energy and Technol. 2020, 1–37. [Google Scholar] [CrossRef]
Ref. | Remarks |
---|---|
[136] | The PV panel soiling ratio was predicted using broadband or single–wavelength transmittance. The visible band’s average transmittance corresponded to absorbance better than the ultraviolet or near-infrared wavelengths. |
[137] | Simulation studies showed how dust collection influences sunlight transmittance and PV performance. |
[138] | Different self-cleaning coatings on solar cell cover glass were explored experimentally. |
[139] | The PV output under soiling circumstances was estimated by obtaining real-time sensor output from the site location in Sharjah. |
[140] | Different dust morphologies affect the PV performance. |
[141] | Soiling, raindrops and other global weather factors impacted PV production. A model for calculating hourly PV production using the performance ratio factor was presented for various climatological settings in Chile. |
[142] | Using existing solar radiation data from National Renewable Energy Laboratory, the proposed model suggested the best PV tilt angle for Lahore and other locations in Pakistan. The soiling and the tilt angle of PV panels at the sites were studied. |
[143] | The dust on a refrigerant-based PV/T system was investigated in Surat, India, for varying dust characteristics. |
[144] | Simulation studies were conducted in three different US sites and concluded that PM2.5 was over-estimated while PM10 was under-estimated. |
[145] | Sand, cement, and gypsum were noted to be poorly transported and stored in Iran, resulting in significant amounts flying into the air. |
[146] | Soiling rates and the fluctuation in soiling ratio over time were computed for the driest season of the year, with values ranging from 0.07 to 0.14 percent each day, in Southern Europe. The relationship between precipitation, the primary natural cleaning agent, and soiling recovery indicated that light rainfall value of approximately 2.2 mm had a 50% chance of reducing the soiling ratio. |
[147] | The PV power losses from soiling on the PV panels in Lahore, Pakistan, were analyzed. The study also provided suggestions for improving the efficiency of the panel performances. |
[148] | The effect of dust accumulation on the reflector of a parabolic solar thermal power plant in China was analyzed. |
[149] | The surface of PV panels could be easily damaged if / when subjected to harsh mechanical cleaning procedures. To keep the PV panel surface clean and free of dirt, sensitive and electronically regulated self-cleaning processes are required. |
[150] | Samples taken from sand and dust collected on 330 solar modules made by 53 manufacturers from various countries were tested. |
[151] | When working outside of controlled laboratory conditions, the efficiency of PV modules was found to be significantly decreased. Lower performance and daily energy losses due to dust collection on PV modules were investigated. |
[152] | Higher wind speeds lowered the maximum PV temperature and dust deposition drastically. |
[153] | The self-cleaning coated panels effectively improved the panel’s performance by reducing dust build-up. |
[154] | The soiling process in a desert climate was simulated using optical and electrical techniques. |
[155] | Dust accumulation severely impacted the visible light transmittance of glass, significantly reducing the PV system’s efficiency. Due to micro-nano structures and low surface energy, a superhydrophobic coating could reduce the surface adhesion rate of dust. Most coatings of planar modules had poor durability. The durability of coatings must be enhanced. |
[156] | Industrial materials and urban pollutants, such as sandstone, lime, and dolomite, were found to be the primary sources of dust on PV panels. |
[157] | The analysis revealed that the African dust studied was a mixture of various chemical compounds, with SiO2-type quartz accounting for approximately 73.8% and calcite (CaCO3) 13.6% of the total deposition. Diffuse reflectance spectroscopy demonstrated that these particles reflected more than 70% of the irradiation reaching the PV panels. |
[158] | In a climate characterized by arid conditions, dust accumulation was noted to be one of the primary concerns as it caused significant degradation of PV efficiency. Dust deposition decreased the power output of PV systems by 21.57% when compared to clean PV panels. |
[159] | The impact of dust samples gathered from Iran’s desert region on the power efficiency of the PV system was investigated. |
[160] | An indoor laboratory experiment was performed to determine the influence of dust deposition density on PV performance. |
[161] | The PV panels’ performance and impact of panel soiling were examined using robotic vehicles, Mars landers and rovers. |
[162] | A collision-adhesion model was used to examine the interaction between particles and the performance of PV modules. |
[163] | Dust collection significantly impacted the efficiency of PV transmittance. With increasing wind speed, dust accumulation was reduced initially but subsequently increased. |
[164] | Dust composition and environmental variables influenced soiling loss per unit area of PV surfaces over the years. |
[165] | Dust on PV modules reduces the solar radiation received, lowering the efficiency of PV systems. |
[166] | A single-diode equivalent electrical circuit was used to simulate and forecast the electrical behavior of a PV system. |
[167] | Soiling, or the accumulation of particulate matter on the surfaces of PV modules, reduced the total solar energy harnessed by the system. Because of the impact on energy production and associated maintenance costs, evaluating environmental factors was found to be essential in developing a PV installation. |
[168] | The power loss due to soil deposition on PV panel surfaces was estimated using a probabilistic quantification with soiling image analysis. |
[169] | Three natural dust samples were analyzed for structural, chemical, and optical attributes, including their undesirable impact on energy transmission from a plant. |
[170] | Sudden climate changes, including sandstorms or long spells of rain, were observed to induce alterations in energy output rates of a PV system. |
[171] | A luminescence image was utilized to detect and categorize soiling and quantify the losses. |
[172] | A hydrophobic nano coating’s function in reducing energy losses was investigated. The transmission loss reduced significantly when dust deposition was reduced. The effect of dust composition and accumulation densities on PV power output was examined. |
[173] | Solar PV panels were exposed to dust circulating in the external surroundings, which was a serious cause of performance detriment. The selected study location was an area with severe air pollution and low rainfall during the dry winter months due to its unpredictable environmental conditions. |
[174] | The electrical characteristics, dust life cycle, and cleaning techniques were found to be associated with the performance of PV systems installed in various climatic zones around the globe. |
[175] | In regions with high soiling rates, dust storms, water scarcity, and high solar energy potential, soiling was a significant obstacle to solar power generation. In high humidity conditions, dew condensation on the solar panels significantly affected the cementation of dust particles. |
[176] | The impact of dust collection and soiling on the PV panel’s performance was investigated in Australia. |
[177] | The grid-connected PV system’s performance impacted the collection of dust and soiling effects. |
[178] | The soiling mitigation of a ground-mounted solar panel soiling was statistically explored. Gravity was seen to influence the behavior of dust particles greatly. |
[179,180] | The effect of dust density on energy efficiency was examined to estimate the influence of dust particle accumulation on PV performance. |
[181] | Accumulation of dust on the solar collector was noted to result in a significant reduction in system efficiency. Changes in the thermoelectric and exergy behavior under varying dust levels were analyzed, and the impact of dust density on overall PV system efficiency was evaluated. In the conducted natural dust deposition experiments, the effect of seasonal silt accumulation on the efficiency of a PV system was investigated. |
[182] | Soiling on PV modules reduced the solar irradiance of the modules, diminished their performance significantly, and resulted in substantial economic losses. Soiling was noted to be a complex phenomenon that varies with location, time, and measurements. |
[183] | Optical losses caused by dust deposits on the mirrors of the solar panels were analyzed. |
[184] | The model of a one-diode solar cell is improved by including the study of dust impact in the simulation of solar cell performance to test the suggested model. Three primary components of dust were used in varying proportions. |
[185] | The electrical performance of modules with and without anti-soiling coating was analyzed at various incidence angles and soiling layers. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vedulla, G.; Geetha, A.; Senthil, R. Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems. Energies 2023, 16, 109. https://doi.org/10.3390/en16010109
Vedulla G, Geetha A, Senthil R. Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems. Energies. 2023; 16(1):109. https://doi.org/10.3390/en16010109
Chicago/Turabian StyleVedulla, Gowtham, Anbazhagan Geetha, and Ramalingam Senthil. 2023. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems" Energies 16, no. 1: 109. https://doi.org/10.3390/en16010109
APA StyleVedulla, G., Geetha, A., & Senthil, R. (2023). Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems. Energies, 16(1), 109. https://doi.org/10.3390/en16010109