A Review of Electrochemical Reduction of Sodium Metaborate
Abstract
:1. Introduction
2. Analytical Methods of Detection of NaBH4
2.1. Non-Iodometric Detection
2.2. Iodometry
- (a)
- the presence of high concentrations of OH− enhances the reduction ability of the S2O32−. This effect shows that eight-times less S2O32− is required to reduce the I2 into I− compared to Equation (2). This accounts for the erroneously higher values of the BH4− obtained from this method.
- (b)
- in addition, the BO2− product can also be oxidized into the tetraborate anion B4O72− [27]:
3. Electroanalytical Behaviour of NaBH4
4. Electrolysis of BO2− into BH4−
5. Conclusions and Future Outlook
- (a)
- the metaborate anion BO2− is a negative ion which is repelled by the cathode surface. In addition, in the large presence of the OH− ions, the HER in alkaline solutions (Equation (5)) is thermodynamically more favourable than the electro-reduction of the BO2− anion.
- (b)
- the BH4− is stabilized in alkaline solutions with pH of more than 12. Attempts to reduce the BO2− into BH4− require the presence of OH− in concentrated solutions. However, in concentrated alkaline solutions with the presence of large amounts of OH−, the effect of the HER becomes more prominent.
- (c)
- the presence of dissolved oxygen promotes the oxygen reduction reaction (OER, Equations (6)–(8). In addition, the presence of dissolved carbon dioxide (CO2) also promotes the electroreduction of CO2. In all the papers reviewed, there were no mention of eliminating dissolved O2 and CO2 by nitrogen or argon gas bubbling prior to the electroreduction of BO2−. The analytical detection of BH4− using iodometric titraton must be abandoned altogether as it gives erroneously high concentrations, as high as eight times higher than the actual concentration of BH4− in the samples. More accurate methods of detection, such as based on the hydrolysis of the BH4− to release H2, and electrochemical methods of detection should be given priority.
Author Contributions
Funding
Conflicts of Interest
References
- Schlesinger, H.; Brown, H.C.; Finholt, A. The preparation of sodium borohydride by the high temperature reaction of sodium hydride with borate esters. J. Am. Chem. Soc. 1953, 75, 205–209. [Google Scholar] [CrossRef]
- Demirci, Ü.B. Sodium borohydride for the near-future energy: A “rough diamond’’ for Turkey. Turk. J. Chem. 2018, 42, 193–220. [Google Scholar] [CrossRef]
- Kojima, Y.; Haga, T. Recycling process of sodium metaborate to sodium borohydride. Int. J. Hydrogen Energy 2003, 28, 989–993. [Google Scholar] [CrossRef]
- Li, Z.; Liu, B.; Zhu, J.; Morigasaki, N.; Suda, S. NaBH4 formation mechanism by reaction of sodium borate with Mg and H2. J. Alloys Compd. 2007, 437, 311–316. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, Z.P.; Zhu, J.K.; Morigasaki, N.; Suda, S. Sodium borohydride synthesis by reaction of Na2O contained sodium borate with al and hydrogen. Energy Fuels 2007, 21, 1707–1711. [Google Scholar] [CrossRef]
- Eom, K.; Cho, E.; Kim, M.; Oh, S.; Nam, S.-W.; Kwon, H. Thermochemical production of sodium borohydride from sodium metaborate in a scaled-up reactor. Int. J. Hydrogen Energy 2013, 38, 2804–2809. [Google Scholar] [CrossRef]
- Figen, A.K.; Pişkin, S. Microwave assisted green chemistry approach of sodium metaborate dihydrate (NabO2·2H2O) synthesis and use as raw material for sodium borohydride (NaBH4) thermochemical production. Int. J. Hydrogen Energy 2013, 38, 3702–3709. [Google Scholar] [CrossRef]
- Ou, T.; Panizza, M.; Barbucci, A. Thermochemical recycling of hydrolyzed NaBH4. Part II: Systematical study of parameters dependencies. Int. J. Hydrogen Energy 2013, 38, 15940–15945. [Google Scholar] [CrossRef]
- Hsueh, C.-L.; Liu, C.-H.; Chen, B.-H.; Chen, C.-Y.; Kuo, Y.-C.; Hwang, K.-J.; Ku, J.-R. Regeneration of spent-NaBH4 back to NaBH4 by using high-energy ball milling. Int. J. Hydrogen Energy 2009, 34, 1717–1725. [Google Scholar] [CrossRef]
- Kong, L.; Cui, X.; Jin, H.; Wu, J.; Du, H.; Xiong, T. Mechanochemical synthesis of sodium borohydride by recycling sodium metaborate. Energy Fuels 2009, 23, 5049–5054. [Google Scholar] [CrossRef]
- Liu, C.-H.; Kuo, Y.-C.; Chen, B.-H.; Hsueh, C.-L.; Hwang, K.-J.; Ku, J.-R.; Tsau, F.; Jeng, M.-S. Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling process. Int. J. Hydrogen Energy 2010, 35, 4027–4040. [Google Scholar] [CrossRef]
- Çakanyıldırım, Ç.; Gürü, M. Processing of NaBH4 from NaBO2 with MgH2 by ball milling and usage as hydrogen carrier. Renew. Energy 2010, 35, 1895–1899. [Google Scholar] [CrossRef]
- Chen, W.; Ouyang, L.; Liu, J.; Yao, X.; Wang, H.; Liu, Z.; Zhu, M. Hydrolysis and regeneration of sodium borohydride (NaBH4)—A combination of hydrogen production and storage. J. Power Sources 2017, 359, 400–407. [Google Scholar] [CrossRef]
- Lang, C.; Jia, Y.; Liu, J.; Wang, H.; Ouyang, L.; Zhu, M.; Yao, X. NaBH4 regeneration from NABO2 by high-energy ball milling and its plausible mechanism. Int. J. Hydrogen Energy 2017, 42, 13127–13135. [Google Scholar] [CrossRef]
- Zhong, H.; Ouyang, L.Z.; Ye, J.S.; Liu, J.W.; Wang, H.; Yao, X.D.; Zhu, M. An one-step approach towards hydrogen production and storage through regeneration of NaBH4. Energy Storage Mater. 2017, 7, 222–228. [Google Scholar] [CrossRef]
- Zhong, H.; Ouyang, L.; Zeng, M.; Liu, J.; Wang, H.; Shao, H.; Felderhoff, M.; Zhu, M. Realizing facile regeneration of spent NaBH4 with Mg–Al alloy. J. Mater. Chem. A 2019, 7, 10723–10728. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Ouyang, L.; Wang, H.; Liu, J.; Shao, H.; Zhu, M. Regulation of high-efficient regeneration of sodium borohydride by magnesium-aluminum alloy. Int. J. Hydrogen Energy 2019, 44, 29108–29115. [Google Scholar] [CrossRef]
- Le, T.T.; Pistidda, C.; Puszkiel, J.; Milanese, C.; Garroni, S.; Emmler, T.; Capurso, G.; Gizer, G.; Klassen, T.; Dornheim, M. Efficient synthesis of alkali borohydrides from mechanochemical reduction of borates using magnesium–aluminum-based waste. Metals 2019, 9, 1061. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ouyang, L.; Zhong, H.; Liu, J.; Wang, H.; Shao, H.; Huang, Z.; Zhu, M. Closing the loop for hydrogen storage: Facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 2020, 132, 8701–8707. [Google Scholar] [CrossRef]
- Nunes, H.X.; Silva, D.L.; Rangel, C.M.; Pinto, A.M. Rehydrogenation of sodium borates to close the NaBH4-H2 cycle: A review. Energies 2021, 14, 3567. [Google Scholar] [CrossRef]
- Šljukić, B.; Santos, D.M.; Sequeira, C.A.; Banks, C.E. Analytical monitoring of sodium borohydride. Anal. Methods 2013, 5, 829–839. [Google Scholar] [CrossRef]
- Santos, D.; Sequeira, C. On the electrosynthesis of sodium borohydride. Int. J. Hydrogen Energy 2010, 35, 9851–9861. [Google Scholar] [CrossRef]
- Çelikkan, H.; Şahin, M.; Aksu, M.L.; Veziroğlu, T.N. The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions. Int. J. Hydrogen Energy 2007, 32, 588–593. [Google Scholar] [CrossRef]
- Amendola, S.; Onnerud, P.; Kelly, M.T.; Binder, M. Inexpensive, in situ monitoring of borohydride concentrations. Talanta 1999, 49, 267–270. [Google Scholar] [CrossRef]
- Elamin, B.; Means, G.E. Spectrophotometric determination of sodium borohydride with 2,4,6-trinitrobenzenesulfonic acid. Anal. Chim. Acta. 1979, 107, 405–409. [Google Scholar] [CrossRef]
- Gyenge, E.; Oloman, C. Electrosynthesis attempts of tetrahydridoborates. J. Appl. Electrochem. 1998, 28, 1147–1151. [Google Scholar] [CrossRef]
- Park, E.H.; Jeong, S.U.; Jung, U.H.; Kim, S.H.; Lee, J.; Nam, S.W.; Lim, T.H.; Park, Y.J.; Yu, Y.H. Recycling of sodium metaborate to borax. Int. J. Hydrogen Energy 2007, 32, 2982–2987. [Google Scholar] [CrossRef]
- Mirkin, M.V.; Bard, A.J. Voltammetric method for the determination of borohydride concentration in alkaline aqueous solutions. Anal. Chem. 1991, 63, 532–533. [Google Scholar] [CrossRef]
- Mirkin, M.V.; Yang, H.; Bard, A.J. Borohydride oxidation at a gold electrode. J. Electrochem. Soc. 1992, 139, 2212. [Google Scholar] [CrossRef]
- Sanlı, E.; Çelikkan, H.; Uysal, B.Z.; Aksu, M.L. Anodic behavior of Ag metal electrode in direct borohydride fuel cells. Int. J. Hydrogen Energy 2006, 31, 1920–1924. [Google Scholar] [CrossRef]
- Sanli, E.; Uysal, B.Z.; Aksu, M.L. The oxidation of NaBH4 on electrochemicaly treated silver electrodes. Int. J. Hydrogen Energy 2008, 33, 2097–2104. [Google Scholar] [CrossRef]
- Santos, D.; Sequeira, C. Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim. Acta 2010, 55, 6775–6781. [Google Scholar] [CrossRef]
- Chatenet, M.; Molina-Concha, M.; Diard, J.-P. First insights into the borohydride oxidation reaction mechanism on gold by electrochemical impedance spectroscopy. Electrochim. Acta 2009, 54, 1687–1693. [Google Scholar] [CrossRef]
- Gyenge, E. Electrooxidation of borohydride on platinum and gold electrodes: Implications for direct borohydride fuel cells. Electrochim. Acta 2004, 49, 965–978. [Google Scholar] [CrossRef]
- Gyenge, E.; Atwan, M.; Northwood, D. Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application for direct borohydride fuel cell anodes. J. Electrochem. Soc. 2005, 153, A150–A158. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, Z.P.; Suda, S. Electrocatalysts for the anodic oxidation of borohydrides. Electrochim. Acta 2004, 49, 3097–3105. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, Z.P.; Suda, S. Anodic oxidation of alkali borohydrides catalyzed by nickel. J. Electrochem. Soc. 2003, 150, A398. [Google Scholar] [CrossRef]
- Okinaka, Y. An electrochemical study of electroless gold-deposition reaction. J. Electrochem. Soc. 1973, 120, 739. [Google Scholar] [CrossRef]
- Dong, H.; Feng, R.; Ai, X.; Cao, Y.; Yang, H.; Cha, C. Electrooxidation mechanisms and discharge characteristics of borohydride on different catalytic metal surfaces. J. Phys. Chem. B 2005, 109, 10896–10901. [Google Scholar] [CrossRef]
- Colominas, S.; McLafferty, J.; Macdonald, D.D. Electrochemical studies of sodium borohydride in alkaline aqueous solutions using a gold electrode. Electrochim. Acta 2009, 54, 3575–3579. [Google Scholar] [CrossRef]
- Chatenet, M.; Micoud, F.; Roche, I.; Chainet, E. Kinetics of borohydride oxidation and oxygen reduction in sodium hydroxide electrolyte: Part 1. BH4 electrooxidation on Au and Ag catalysts. Electrochim. Acta 2006, 51, 5459–5467. [Google Scholar] [CrossRef]
- Gardiner, J.A.; Collat, J.W. Polarography of the tetrahydroborate ion. The effect of hydrolysis on the system. Inorg. Chem. 1965, 4, 1208–1212. [Google Scholar] [CrossRef]
- Wang, K.; Lu, J.; Zhuang, L. Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical au electrodes. J. Electroanal. Chem. 2005, 585, 191–196. [Google Scholar] [CrossRef]
- Chatenet, M.; Molina-Concha, M.; El-Kissi, N.; Parrour, G.; Diard, J.-P. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions. Electrochim. Acta 2009, 54, 4426–4435. [Google Scholar] [CrossRef]
- Gardiner, J.A.; Collat, J.W. Kinetics of the stepwise hydrolysis of tetrahydroborate ion. J. Am. Chem. Soc. 1965, 87, 1692–1700. [Google Scholar] [CrossRef]
- Pecsok, R.L. Polarographic studies on the oxidation and hydrolysis of sodium borohydride1. J. Am. Chem. Soc. 1953, 75, 2862–2864. [Google Scholar] [CrossRef]
- Cheng, H.; Scott, K. Determination of kinetic parameters for borohydride oxidation on a rotating au disk electrode. Electrochim. Acta 2006, 51, 3429–3433. [Google Scholar] [CrossRef]
- Atwan, M.H.; Macdonald, C.L.; Northwood, D.O.; Gyenge, E.L. Colloidal au and au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance. J. Power Sources 2006, 158, 36–44. [Google Scholar] [CrossRef]
- Cooper, H. Electrolytic Process for the Production of Alkali Metal Borohydrides. U.S. Patent 3734842, 22 May 1973. [Google Scholar]
- Sharifian, H.; Dutcher, J.S. Production of Quaternary Ammonium and Quaternary Phosphonium Borohydrides. U.S. Patent 3734842, 27 February 1990. [Google Scholar]
- Hale, C.H.; Sharifian, H. Production of Metal Borohydrides and Organic Onium Borohydrides. U.S. Patent 4931154, 5 June 1990. [Google Scholar]
- McLafferty, J.; Colominas, S.; Macdonald, D. Attempts to cathodically reduce boron oxides to borohydride in aqueous solution. Electrochim. Acta 2010, 56, 108–114. [Google Scholar] [CrossRef]
- Amendola, S. Electroconversion Cell. U.S. Patent 6,497,973 B1, 24 December 2002. [Google Scholar]
- Kawai, M.; Ito, M. Japanese Patent 2003-247088, 2003.
- Wang, J.; Sun, Y.; Liang, Z. Preliminary study on electrochemical reduction of sodium metaborate to produce sodium borohydride. J. Taiyuan Univ. Tech. 2006, 37, 539. [Google Scholar]
- Sanli, A.E.; Kayacan, İ.; Uysal, B.Z.; Aksu, M.L. Recovery of borohydride from metaborate solution using a silver catalyst for application of direct rechargable borohydride/peroxide fuel cells. J. Power Sources 2010, 195, 2604–2607. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, T.; Jia, J. A novel desulphurization process of coal water slurry via sodium metaborate electroreduction in the alkaline system. Fuel 2012, 96, 250–256. [Google Scholar] [CrossRef]
- Zhu, Q.-Y.; Zhu, C.-G.; Wang, F.-W.; Wei, Y.-J. Preparation of sodium borohydride by copper electrolysis. Asian J. Chem. 2013, 25, 7749–7752. [Google Scholar] [CrossRef]
- Shu, C.; Sun, T.; Jia, J.; Lou, Z. A novel desulfurization process of gasoline via sodium metaborate electroreduction with pulse voltage using a boron-doped diamond thin film electrode. Fuel 2013, 113, 187–195. [Google Scholar] [CrossRef]
- Shu, C.; Lai, F.; Zhu, F.; Luo, D. Optimal extractive and reductive desulfurization process using sodium borohydride in situ generated via sodium metaborate electroreduction in ionic liquid. Chem. Eng. Process.-Process Intensif. 2020, 150, 107869. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basirun, W.J.; Shah, S.T.; Shalauddin, M.; Akhter, S.; Jamaludin, N.S.; Hayyan, A. A Review of Electrochemical Reduction of Sodium Metaborate. Energies 2023, 16, 15. https://doi.org/10.3390/en16010015
Basirun WJ, Shah ST, Shalauddin M, Akhter S, Jamaludin NS, Hayyan A. A Review of Electrochemical Reduction of Sodium Metaborate. Energies. 2023; 16(1):15. https://doi.org/10.3390/en16010015
Chicago/Turabian StyleBasirun, Wan Jefrey, Syed Tawab Shah, Md. Shalauddin, Shamima Akhter, Nazzatush Shimar Jamaludin, and Adeeb Hayyan. 2023. "A Review of Electrochemical Reduction of Sodium Metaborate" Energies 16, no. 1: 15. https://doi.org/10.3390/en16010015
APA StyleBasirun, W. J., Shah, S. T., Shalauddin, M., Akhter, S., Jamaludin, N. S., & Hayyan, A. (2023). A Review of Electrochemical Reduction of Sodium Metaborate. Energies, 16(1), 15. https://doi.org/10.3390/en16010015