Enhancing Tidal Wave Predictions for the Estuary of the Nakdong River Using a Fixed-Lag Smoother
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Tidal Wave Simulation Using TASK2K and Regression without DA
3.2. Fixed-Lag Smoother
3.3. Configuration of the DA Experiments
4. Results
4.1. Comparison of Tidal Wave Predictions
4.2. DA Experiments for Improved Tidal Wave Predictions
4.2.1. DA experiment 1: Impact of the Order of the Polynomial
4.2.2. DA Experiment 2: Impact of the DA Windows
4.2.3. DA Experiment 3: Impact of the Lead Time Length
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darwin, G.H. On an Apparatus for Facilitating the Reduction of Tidal Observations. In Proceedings of the Royal Society of London, London, UK, 7 December 1893; Volume 52, pp. 345–389. [Google Scholar]
- Doodson, A.T. The Harmonic Development of the Tide-Generating Potential. In Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, London, UK, 3 March 1921; Volume 100, pp. 305–329. [Google Scholar]
- Cartwright, D.E.; Tayler, R.J. New Computations of the Tide-Generating Potential. Geophys. J. Int. 1971, 23, 45–73. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Liu, L.; Wang, G. Short-Term Tidal Level Prediction Using Normal Time-Frequency Transform. Ocean. Eng. 2018, 156, 489–499. [Google Scholar] [CrossRef]
- El-Diasty, M.; Al-Harbi, S.; Pagiatakis, S. Hybrid Harmonic Analysis and Wavelet Network Model for Sea Water Level Prediction. Appl. Ocean Res. 2018, 70, 14–21. [Google Scholar] [CrossRef]
- Flinchem, E.P.; Jay, D.A. An Introduction to Wavelet Transform Tidal Analysis Methods. Estuar. Coast. Shelf Sci. 2000, 51, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Lai, V.; Malek, M.A.; Abdullah, S.; Latif, S.D.; Ahmed, A.N. Time-Series Prediction of Sea Level Change in the East Coast of Peninsular Malaysia from the Supervised Learning Approach. Int. J. Des. Nat. Ecodyn. 2020, 15, 409–415. [Google Scholar] [CrossRef]
- Lee, T.-L. Back-Propagation Neural Network for Long-Term Tidal Predictions. Ocean Eng. 2004, 31, 225–238. [Google Scholar] [CrossRef]
- Pashova, L.; Popova, S. Daily Sea Level Forecast at Tide Gauge Burgas, Bulgaria Using Artificial Neural Networks. J. Sea Res. 2011, 66, 154–161. [Google Scholar] [CrossRef]
- Salim, A.M.; Dwarakish, G.S.; Kv, L.; Thomas, J.; Devi, G.; Rajeesh, R. Weekly Prediction of Tides Using Neural Networks. Procedia Eng. 2015, 116, 678–682. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-P.; Lee, T.-L. Back-Propagation Neural Network in Tidal-Level Forecasting. J. Waterw. Port. Coast. Ocean Eng. 1999, 125, 195–202. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, H. A Tidal Level Prediction Approach Based on BP Neural Network and Cubic B-Spline Curve with Knot Insertion Algorithm. Math. Probl. Eng. 2018, 2018, 9835079. [Google Scholar] [CrossRef]
- Yin, J.-C.; Wang, N.-N.; Hu, J.-Q. A Hybrid Real-Time Tidal Prediction Mechanism Based on Harmonic Method and Variable Structure Neural Network. Eng. Appl. Artif. Intell. 2015, 41, 223–231. [Google Scholar] [CrossRef]
- Noh, S.J.; Weerts, A.; Rakovec, O.; Lee, H.; Seo, D.-J. Assimilation of Streamflow Observations. In Handbook of Hydrometeorological Ensemble Forecasting; Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H.L., Schaake, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–36. ISBN 978-3-642-40457-3. [Google Scholar]
- Gelb, A. Applied Optimal Estimation; MIT Press: Cambridge, MA, USA, 1974; ISBN 978-0-262-57048-0. [Google Scholar]
- Heemink, A.W. Application of Kalman Filtering to Tidal Flow Prediction. IFAC Proc. Vol. 1985, 18, 35–40. [Google Scholar] [CrossRef]
- Mok, K.M.; Lai, U.H.; Hoi, K.I. Development of an Adaptive Kalman Filter-Based Storm Tide Forecasting Model. J. Hydrodyn. 2016, 28, 1029–1036. [Google Scholar] [CrossRef]
- Slobbe, D.C.; Sumihar, J.; Frederikse, T.; Verlaan, M.; Klees, R.; Zijl, F.; Farahani, H.H.; Broekman, R. A Kalman Filter Approach to Realize the Lowest Astronomical Tide Surface. Mar. Geod. 2018, 41, 44–67. [Google Scholar] [CrossRef] [Green Version]
- Yen, P.-H.; Jan, C.-D.; Lee, Y.-P.; Lee, H.-F. Application of Kalman Filter to Short-Term Tide Level Prediction. J. Waterw. Port. Coast. Ocean Eng. 1996, 122, 226–231. [Google Scholar] [CrossRef]
- Liu, Y.; Weerts, A.H.; Clark, M.; Hendricks Franssen, H.-J.; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A.I.J.M.; et al. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities. Hydrol. Earth Syst. Sci. 2012, 16, 3863–3887. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, J.; Wang, H.; Wu, Y. Post-Processing of Hydrological Model Simulations Using the Convolutional Neural Network and Support Vector Regression. Hydrol. Res. 2022, 53, 605–621. [Google Scholar] [CrossRef]
- Yang, J.; Cho, K.R. Geomorphological Development of Embayment Area at the estuary of Nakdong River. J. Korean Assoc. Reg. Geogr. 2011, 17, 649–665. [Google Scholar]
- Lee, H.J.; Jo, M.G.; Chun, S.J.; Han, J.K. Nakdong River Estuary Salinity Prediction Using Machine Learning Methods. J. Korean Inst. Smart Media 2022, 11, 31–38. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, S.; Hur, Y.T.; Kim, Y.; Kim, H.Y. Development of seawater inflow equations considering density difference between seawater and freshwater at the Nakdong River estuary. J. Korea Water Resour. Assoc. 2022, 55, 383–392. [Google Scholar]
- Surakhi, O.; Zaidan, M.A.; Fung, P.L.; Hossein Motlagh, N.; Serhan, S.; AlKhanafseh, M.; Ghoniem, R.M.; Hussein, T. Time-Lag Selection for Time-Series Forecasting Using Neural Network and Heuristic Algorithm. Electronics 2021, 10, 2518. [Google Scholar] [CrossRef]
Experiments | Polynomial Order | Size of DA Window for Past Timesteps | Size of DA Window for Future Timesteps | Prediction Lead Time |
---|---|---|---|---|
DA experiment 1 | Ⅹ | Ⅹ | Ⅹ | |
DA experiment 2-1 | Ⅹ | Ⅹ | Ⅹ | |
DA experiment 2-2 | Ⅹ | Ⅹ | Ⅹ | |
DA experiment 3 | Ⅹ | Ⅹ | Ⅹ |
Evaluation Index | Evaluation Range | RMSE of Predicted Water Surface Elevation (m) | |||
---|---|---|---|---|---|
Open Loop (Tidal_Cal_Orig) | Calibrated (Tidal_Cal_Re) | DA Analysis (DA) | 1 h Lead Forecast by DA (DA_1 h) | ||
RMSE (m) (percentile improvement compared to open loop) | All data | 0.108 (-) | 0.071 (34.3% improved) | 0.039 (63.9% improved) | 0.060 (44.4% improved) |
Data above 90% and below 10% quantiles | 0.129 (-) | 0.077 (40.3% improved) | 0.041 (68.2% improved) | 0.065 (49.6% improved) |
Case | DA Window Past Step | DA Window Future Step | Lead Time Step | Polynomial Order |
---|---|---|---|---|
DA_Past_2 h | 12 | 72 | 12 | 8 |
DA_Past_6 h | 36 | 72 | 12 | 8 |
DA_Past_10 h | 60 | 72 | 12 | 8 |
DA_Past_14 h | 84 | 72 | 12 | 8 |
Case | DA Window Past Step | DA Window Future Step | Lead Time Step | Polynomial Order |
---|---|---|---|---|
DA_future_2 h | 60 | 12 | 12 | 8 |
DA_future_6 h | 60 | 36 | 12 | 8 |
DA_future_10 h | 60 | 60 | 12 | 8 |
DA_future_14 h | 60 | 84 | 12 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Kim, B.; Lee, G.; Noh, S.J. Enhancing Tidal Wave Predictions for the Estuary of the Nakdong River Using a Fixed-Lag Smoother. Energies 2023, 16, 237. https://doi.org/10.3390/en16010237
Choi H, Kim B, Lee G, Noh SJ. Enhancing Tidal Wave Predictions for the Estuary of the Nakdong River Using a Fixed-Lag Smoother. Energies. 2023; 16(1):237. https://doi.org/10.3390/en16010237
Chicago/Turabian StyleChoi, Hyeonjin, Bomi Kim, Garim Lee, and Seong Jin Noh. 2023. "Enhancing Tidal Wave Predictions for the Estuary of the Nakdong River Using a Fixed-Lag Smoother" Energies 16, no. 1: 237. https://doi.org/10.3390/en16010237
APA StyleChoi, H., Kim, B., Lee, G., & Noh, S. J. (2023). Enhancing Tidal Wave Predictions for the Estuary of the Nakdong River Using a Fixed-Lag Smoother. Energies, 16(1), 237. https://doi.org/10.3390/en16010237