Multi Objective Optimization of Permanent Magnet Synchronous Motor Based on Taguchi Method and PSO Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. Finite Element Model of IPMSM
2.2. Optimization Parameter Pre-Selection
2.3. Taguchi Method Optimization
2.4. Particle Swarm Optimization (PSO)
3. Finite Element Simulation Experiment
3.1. Implementation of Taguchi Method
3.2. Implementation of Objective Function Fitting
3.3. Implementation of PSO
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, L.-K.; Wang, S.-H.; Tsai, M.-C. Demagnetization Fault Diagnosis of a PMSM Using Auto-Encoder and K-Means Clustering. Energies 2020, 13, 4467. [Google Scholar] [CrossRef]
- Ullah, Z.; Lodhi, B.A.; Hur, J. Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer Learning-Based VGG. Energies 2020, 13, 3834. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, Z.Q. Analysis of electromagnetic performance of Halbach PM brushless machines having mixed grade and unequal height of magnets. IEEE Trans. Magn. 2013, 49, 1461–1469. [Google Scholar] [CrossRef]
- Duan, S.; Zhou, L.; Wang, J. Flux weakening mechanism of interior permanent magnet synchronous machines with segmented permanent magnets. IEEE Trans. Appl. Supercond. 2014, 24, 5001053. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Meng, G.; Shou, S.; Cao, Q. Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape. IEEE Trans. Ind. Electron. 2015, 62, 3438–3447. [Google Scholar] [CrossRef]
- Ni, Y.-Y.; Cui, Z.-S. Magnetic field analysis and optimization of slotless permanent magnet machines with combined magnetization. Electr. Mach. Control 2020, 24, 79–87. [Google Scholar]
- Zhang, B.-Y.; Jia, Y.-Q.; Li, K.; Feng, G.-H. Study on magnetic pole structure of surface mounted PMSM. Electr. Mach. Control. 2014, 18, 43–48. [Google Scholar]
- Qi, X.; Wu, X. Optimization Method of Eccentricity Cutting Technology for Surface-mounted Permanent Magnet Motor. Large Electr. Mach. Hydraul. Turbine 2019, 6, 25–29. [Google Scholar]
- Kim, H.J.; Kim, D.Y.; Hong, J.P. Structure of concentrated flux-type interior permanent-magnet synchronous motors using ferrite permanent magnets. IEEE Trans. Magn. 2014, 50, 8206704. [Google Scholar] [CrossRef]
- Onsal, M.; Cumhur, B.; Demir, Y.; Yolacan, E.; Aydin, M. Rotor design optimization of a new flux-assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications. IEEE Trans. Magn. 2018, 54, 8206005. [Google Scholar] [CrossRef]
- Zhu, H.; Shen, S.; Wang, X. Multiobjective Optimization Design of Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Motor. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 5489–5498. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Lei, G.; Guo, Y.; Zhu, J. Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans. Ind. Electron. 2021, 68, 139–148. [Google Scholar] [CrossRef]
- Karimpour, S.R.; Besmi, M.R.; Mirimani, S.M. Optimal design and verification of interior permanent magnet synchronous generator based on FEA and Taguchi method. Int. Trans. Electr. Energy Syst. 2020, 30, e12597. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Quan, L.; Han, X.; He, X. Parameter Sensitivity Optimization Design and Performance Analysis of Double-Salient Permanent-Magnet Double-Stator Machine. Trans. China Electrotech. Soc. 2017, 32, 160–168. [Google Scholar]
- Hasanien, H.M.; Abd-Rabou, A.S.; Sakr, S.M. Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms. IEEE Trans. Energy Convers. 2010, 25, 598–605. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.W.; Song, J.Y.; Kim, D.W.; Kim, Y.J.; Jung, S.Y. Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine. IEEE Trans. Magn. 2017, 53, 7206804. [Google Scholar] [CrossRef]
- Sasaki, H.; Igarashi, H. Topology optimization of IPM motor with aid of deep learning. Int. J. Appl. Electromagn. Mech. 2019, 59, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, B.-Y.; Feng, G.-H. Multi-objective optimization of low speed high torque direct drive PMSM based on hybrid particle swarm optimization. J. Mech. Electr. Eng. 2018, 35, 1214–1219. [Google Scholar]
- Duan, Y.; Ionel, D.M. A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. IEEE Trans. Ind. Appl. 2013, 49, 1268–1275. [Google Scholar] [CrossRef]
- Pan, Z.; Fang, S. Combined random forest and NSGA-II for optimal design of permanent magnet arc motor. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 1800–1812. [Google Scholar] [CrossRef]
- Zhu, X.; Shu, Z.; Quan, L.; Xiang, Z.; Pan, X. Multi-objective optimization of an outer-rotor V-shaped permanent magnet flux switching motor based on multi-level design method. IEEE Trans. Magn. 2016, 52, 8205508. [Google Scholar] [CrossRef]
- Xia, J.; Yu, B.; Huang, W. Optimization of the Structure to Reduce the Cogging Torque in PM Motors. Electr. Eng. 2009, 12, 23–25. [Google Scholar]
- Wang, Q.-J.; Zhou, J.; Qian, Z.; Li, G.-L.; Chen, X.; Jiang, H.; Cheng, Y. Optimizing symmetry to reduce the cogging torque of the V-type interior permanent magnet machines. Electr. Mach. Control. 2020, 24, 55–62. [Google Scholar]
- Guo, H.; Qian, H. Robust Design for Reducing Torque Ripple in Permanent Magnet Synchronous Motor. CSEE 2012, 32, 88–95. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Rated power (W) | 1800 | Rotor inner diameter(mm) | 48 |
Rated speed (rpm) | 1500 | PM thickness(mm) | 5 |
Stator outer diameter (mm) | 210 | PM width (mm) | 36 |
Stator inner diameter (mm) | 142 | Number of poles | 8 |
Axial length (mm) | 110 |
Structural Parameters | Value Range (mm) | Structural Parameters | Value Range (mm) |
---|---|---|---|
PM thickness | 3~5 | Fixed radius of PM | 134~138 |
PM width | 34~38 | Magnetic bridge width | 3.5~5 |
Magnetic bridge width | 4~8 | Magnetic bridge spacing | 0.5~2 |
Radial length of magnetic bridge | 3~4 | Distance between PM slot and axial surface | 30~33 |
Optimization Variables | /mm | /mm | /mm | /mm | ||||
---|---|---|---|---|---|---|---|---|
1 | 5 | 30 | 3.5 | 35 | 3.5 | 135 | 3.4 | 0.5 |
2 | 6 | 31 | 4.5 | 36 | 4.0 | 136 | 3.6 | 1.0 |
3 | 7 | 32 | 4.5 | 37 | 4.5 | 137 | 3.8 | 1.5 |
4 | 8 | 33 | 5.0 | 38 | 5.0 | 138 | 4.0 | 2.0 |
Experiment No. | /N·m | /N·m | /W | ||||
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 8.86 | 1 | 49.79 |
2 | 1 | 2 | 2 | 2 | 8.19 | 1.17 | 49.21 |
3 | 1 | 3 | 3 | 3 | 7.54 | 1.37 | 48.72 |
4 | 1 | 4 | 4 | 4 | 6.7 | 1.41 | 48.24 |
5 | 2 | 1 | 2 | 3 | 10.51 | 1.17 | 52.33 |
6 | 2 | 2 | 1 | 4 | 9.49 | 0.92 | 51.27 |
7 | 2 | 3 | 4 | 1 | 12.61 | 1.7 | 55.86 |
8 | 2 | 4 | 3 | 2 | 11.82 | 1.41 | 54.09 |
9 | 3 | 1 | 3 | 4 | 12.19 | 1.95 | 56.37 |
10 | 3 | 2 | 4 | 3 | 13.06 | 2.77 | 58.82 |
11 | 3 | 3 | 1 | 2 | 14.09 | 2.1 | 58.48 |
12 | 3 | 4 | 2 | 1 | 14.91 | 2.95 | 60.88 |
13 | 4 | 1 | 4 | 2 | 16.08 | 7.28 | 69.57 |
14 | 4 | 2 | 3 | 1 | 17 | 7.41 | 70.72 |
15 | 4 | 3 | 2 | 4 | 14.73 | 3.65 | 64.29 |
16 | 4 | 4 | 1 | 3 | 15.8 | 4.3 | 65.68 |
Parameter | Raw Data | Value Range | Taguchi Optimization | PSO Optimization |
---|---|---|---|---|
PM thickness | 5 | 3~5 | 4.5 | 4.3 |
PM width | 36 | 34~38 | 36 | 37 |
Magnetic bridge width | 6 | 4~8 | 7 | 4.8 |
Radial length of magnetic bridge | 3 | 3~4 | 3.6 | 4 |
Fixed radius of PM | 136 | 134~138 | 136 | 136.2 |
Magnetic bridge width | 4 | 3.5~5 | 4 | 3.8 |
Magnetic bridge spacing | 1 | 0.5~2 | 1 | 0.9 |
Distance between PM slot and axial surface | 30.75 | 30~33 | 33 | 33 |
Parameter | Raw Data | Taguchi Method | Taguchi Method–PSO | ||
---|---|---|---|---|---|
Optimized Data | Optimization Rate | Optimized Data | Optimization Rate | ||
Torque ripple (N m) | 1.64 | 1.41 | 14% | 0.89 | 45.7% |
Core loss (W) | 54.46 | 54.09 | 0.68% | 54.22 | 0.44% |
Winding copper loss (W) | 17.91 | 15.73 | 12.17% | 13.45 | 24.9% |
Magnet Volume (m3) | 1.17 × 10−5 | 1.053 × 10−5 | 10% | 1.0342 × 10−5 | 11.7% |
Efficiency (%) | 93.49 | 93.67 | 0.19 | 93.78 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhao, P.; Hao, Y.; Zeng, D.; Hu, Y.; Zhang, B.; Yang, H. Multi Objective Optimization of Permanent Magnet Synchronous Motor Based on Taguchi Method and PSO Algorithm. Energies 2023, 16, 267. https://doi.org/10.3390/en16010267
Yu Y, Zhao P, Hao Y, Zeng D, Hu Y, Zhang B, Yang H. Multi Objective Optimization of Permanent Magnet Synchronous Motor Based on Taguchi Method and PSO Algorithm. Energies. 2023; 16(1):267. https://doi.org/10.3390/en16010267
Chicago/Turabian StyleYu, Yinquan, Pan Zhao, Yong Hao, Dequan Zeng, Yiming Hu, Bo Zhang, and Hui Yang. 2023. "Multi Objective Optimization of Permanent Magnet Synchronous Motor Based on Taguchi Method and PSO Algorithm" Energies 16, no. 1: 267. https://doi.org/10.3390/en16010267
APA StyleYu, Y., Zhao, P., Hao, Y., Zeng, D., Hu, Y., Zhang, B., & Yang, H. (2023). Multi Objective Optimization of Permanent Magnet Synchronous Motor Based on Taguchi Method and PSO Algorithm. Energies, 16(1), 267. https://doi.org/10.3390/en16010267