On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Monitoring of Household Appliance Profiles
2.2. Case Study
2.3. Simulation Model
2.4. Key Performance Indicators
3. Results
3.1. Consumption Profiles of Household Appliances
3.2. Time Base Effect on RER Index
3.3. Time Base Effect on LCF and SCF Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASHP | Air source heat pump |
bas | Base control strategy |
BS | Buffer storage |
COP | Coefficient of performance (-) |
CR | Capacity ratio (-) |
DHW | Domestic hot water |
enh | Enhanced control strategy |
HP | Heat pump |
HVAC | Heating, ventilation, and air conditioning |
LCF | Load cover factor (-) |
MF | Single family building |
nZEB | Nearly zero energy building |
Probability density function | |
PV | Photovoltaic |
RBC | Rule base control strategy |
RER | Renewable energy ratio (-) |
SC | Self-consumption (kWh) |
SCF | Supply cover factor (-) |
SH | Space heating |
tb | Temporal base |
Tair | Air dry bulb temperature (°C) |
Tdesign | Design temperature (°C) |
TES | Thermal energy storage |
U | Thermal transmittance (Wm−2K−1) |
W | Consumption (kWh) |
References
- International Energy Agency (IEA). Tracking Buildings 2021; Tracking Report; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/tracking-buildings-2021 (accessed on 30 March 2022).
- European Commissione (EU). EU energy in Figures—Statistical Pocketbook 2021; European Commission: Luxembourg, 2021. [Google Scholar]
- D’Agostino, D.; Parker, D. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe. Data Brief 2018, 17, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- REPowerEU Plan. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: REPowerEU Plan; European Commission: Luxembourg, 2022. [Google Scholar]
- European Parliament (EU). Renewable Energy Directive (RED II), Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; European Parliament: Luxembourg, 2018. [Google Scholar]
- Decreto Legislativo 8 Novembre 2021, n. 199. Attuazione Della Direttiva (UE) 2018/2001 del Parlamento Europeo e del Consiglio, dell’11 Dicembre 2018, Sulla Promozione Dell’uso Dell’energia da Fonti Rinnovabili; Presidente della Repubblica: Roma, Italy, 2021.
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic self-consumption in buildings: A review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.; Madani, H. On heat pumps in smart grids: A review. Renew. Sustain. Energy Rev. 2017, 70, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Pinamonti, M.; Prada, A.; Baggio, P. Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation. Energies 2020, 13, 6282. [Google Scholar] [CrossRef]
- Savolainen, R.; Lahdelma, R. Optimization of renewable energy for buildings with energy storages and 15-minute power balance. Energy 2022, 243, 123046. [Google Scholar] [CrossRef]
- Amato, A.; Bilardo, M.; Fabrizio, E.; Serra, V.; Spertino, F. Energy Evaluation of a PV-Based Test Facility for Assessing Future Self-Sufficient Buildings. Energies 2021, 14, 329. [Google Scholar] [CrossRef]
- Kotarela, F.; Kyritsis, A.; Papanikolaou, N. On the Implementation of the Nearly Zero Energy Building Concept for Jointly Acting Renewables Self-Consumers in Mediterranean Climate Conditions. Energies 2020, 13, 1032. [Google Scholar] [CrossRef] [Green Version]
- Franzoi, N.; Prada, A.; Verones, S.; Baggio, P. Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates. Energies 2021, 14, 4165. [Google Scholar] [CrossRef]
- Cirone, D.; Bruno, R.; Bevilacqua, P.; Perrella, S.; Arcuri, N. Techno-Economic Analysis of an Energy Community Based on PV and Electric Storage Systems in a Small Mountain Locality of South Italy: A Case Study. Sustainability 2022, 14, 13877. [Google Scholar] [CrossRef]
- Musall, E.; Voss, K. Renewable Energy Ratio in Net Zero Energy Building. REHVA J. 2014, 51, 14–18. [Google Scholar]
- Kurnitski, J. Technical definition for nearly zero energy buildings. REHVA J. 2014, 50, 22–28. [Google Scholar]
- Tostado-Veliz, M.; Kamel, S.; Aymen, F.; Jurado, F. A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems. Energy 2022, 253, 124146. [Google Scholar] [CrossRef]
- Huber, P.; Ott, M.; Friedli, M.; Rumsch, A.; Paice, A. Residential Power Traces for Five Houses: The iHomeLab RAPT Dataset. Data 2020, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Cuerdo-Vilches, T.; Angel Navas-Martin, M.; Oteiza, I. Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid. Sustainability 2021, 13, 5949. [Google Scholar] [CrossRef]
- Analisi Tecnico-Economica di Interventi di Riqualificazione Energetica Del Parco Edilizio Residenziale Italiano. Available online: https://www.rse-web.it/rapporti/analisi-tecnico-economica-di-interventi-di-riqualificazione-energetica-del-parco-edilizio-residenziale-italiano-315557/ (accessed on 1 July 2022).
- Besagni, G.; Premoli Vilà, L.; Borgarello, M. Italian Household load profiles: A monitoring campaign. Buildings 2020, 10, 217. [Google Scholar] [CrossRef]
- EN 50470; Electricity Metering Equipment (a.c.). Comité Européen de Normalisation: Bruxelles, Belgium, 2008.
- EN/IEC 62053; Electricity Metering Equipment—Particular Requirements. Comité Européen de Normalisation: Bruxelles, Belgium, 2020.
- Decreto del Presidente Della Repubblica 412/93; Regolamento Recante Norme per la Progettazione, L’installazione, L’esercizio e la Manutenzione Degli Impianti Termici Degli Edifici ai Fini del Contenimento dei Consumi di Energia. Presidente della Repubblica: Roma, Italy, 1993.
- UNI 10349-1; Riscaldamento e Raffrescamento Degli Edifici—Dati Climatici—Parte 1: Medie Mensili per la Valutazione Della Prestazione Termo-Energetica Dell’edificio e Metodi per Ripartire L’irradianza Solare Nella Frazione Diretta e Diffusa e per Calcolare L’irradianza Solare su di una Superficie Inclinata. Ente Nazionale Italiano di Unificazione: Roma, Italy, 2016.
- Decreto del Presidente Della Provincia 13 luglio 2009, n. 11-13/Leg; Disposizioni Regolamentari in Materia di Edilizia Sostenibile in Attuazione del Titolo IV Della Legge Provinciale 4 Marzo 2008, n.1 (Pianificazione Urbanistica e Governo del Territorio). Provincia Autonoma: Trento, Italy, 2009.
- Bee, E.; Prada, A.; Baggio, P. Variable-speed air-to-water heat pumps for residential buildings: Evaluation of the performance in northern Italian climate. In Proceedings of the 12th Rehva World Congress (CLIMA2016), Aalborg, Denmark, 22–25 May 2016. [Google Scholar]
- UNI TS 11300-5; Prestazioni Energetiche Degli Edifici—Parte 5: Calcolo Dell’energia Primaria e Della Quota di Energia da Fonti Rinnovabili. Ente Nazionale Italiano di Unificazione: Roma, Italy, 2016.
Household | Nominal Power [W] | EU Label (Directive 2010/30/EU) | Rated Consumption (kWh y−1) | Program | Code |
---|---|---|---|---|---|
Induction Hob | 3700 | n.a. | n.a. | Breakfast | T1 |
First Course | T2 | ||||
Second Course | T3 | ||||
Oven | 2780 | A | 0.89 per Cycle | Cooking 180 °C | T4 |
Heating food 180 °C | T5 | ||||
Washing machine | 2200 | A+++ | 169 | 40 °C and 800 rpm spinning | T6 |
Dishwasher | 2200 | A++ | 262 | Eco 50 °C | T7 |
Auto 40–60 °C | T8 | ||||
High 70 °C | T9 | ||||
Base load | n.a. | A+ | 297 | Refrigerator | T10 |
n.a. | A++ | 207 | Freezer | ||
n.a. | n.a. | n.a. | modem and TV standby | ||
Dryer machine | 700 | A+++ | 176 | Cottons | T11 |
Municipality | Climatic Zone | Lat | Alt | Tdesign | Tair |
---|---|---|---|---|---|
Trento | E | 46.04 N | 194 m a.s.l. | −12 °C | 12.9 °C |
Geometrical Characteristics | Value | Unit |
---|---|---|
Floor | 2 | / |
Apartments | 1 | / |
Net floor area | 104.6 | m2 |
Gross floor area | 87.99 | m2 |
Net Volume | 527.91 | m2 |
Glazing area to North | 8.4 | m2 |
Glazing area to South | 8.4 | m2 |
Glazing area to East/West | 8.4 | m2 |
Height/1 floor | 3 | m |
Thermal Properties | Value | Unit |
---|---|---|
Ufloor | 0.37 | Wm−2K−1 |
Uwall | 0.18 | Wm−2K−1 |
Uroof | 0.23 | Wm−2K−1 |
Uwindow | 0.80 | Wm−2K−1 |
Source/Carrier | fP,ren | fP,TOT |
---|---|---|
PV | 1 | 1 |
HP source | 1 | 1 |
Electricity from Grid | 0.47 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Povolato, M.; Prada, A.; Verones, S.; Baggio, P. On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location. Energies 2023, 16, 384. https://doi.org/10.3390/en16010384
Povolato M, Prada A, Verones S, Baggio P. On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location. Energies. 2023; 16(1):384. https://doi.org/10.3390/en16010384
Chicago/Turabian StylePovolato, Margherita, Alessandro Prada, Sara Verones, and Paolo Baggio. 2023. "On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location" Energies 16, no. 1: 384. https://doi.org/10.3390/en16010384
APA StylePovolato, M., Prada, A., Verones, S., & Baggio, P. (2023). On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location. Energies, 16(1), 384. https://doi.org/10.3390/en16010384