The Influence of the Intramolecular 2D Interactions on the Physicochemical Properties of Hexasubstituted Benzene Derivatives
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Thermal Properties
3.3. DFT Calculations
3.4. Optical Characterization
3.5. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Yadav, M.K.; Singh, J.; Singh, J.D.; Butcher, R.J. Facile synthesis of mixed O, S or Se bearing hexasubstituted benzenes and their potential as Cu (II) ion probe. Dalton Trans. 2019, 48, 5627–5636. [Google Scholar] [CrossRef] [PubMed]
- Stuzhin, P.A.; Skvortsov, I.A.; Zhabanov, Y.A.; Somov, N.V.; Razgonyaev, O.V.; Nikitin, I.A.; Koifman, O.I. Subphthalocyanine azaanalogues–Boron (III) subporphyrazines with fused pyrazine fragments. Dyes Pigment. 2019, 162, 888–897. [Google Scholar] [CrossRef]
- Yin, G.; Li, Y.; Li, S.; Xu, B.; Yang, Q.; Zhang, Y.; Zhao, J.; Cao, X. Hexaphenylbenzene based push-pull fluorophores displaying intriguing polarity-dependent fluorescence behavior, AIE(E) characteristics and mega-large Stokes shifts. Dyes Pigment. 2022, 198, 110013. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Zhang, F. Molecular fluorophores for deep-tissue bioimaging. ACS Cent. Sci. 2020, 6, 1302–1316. [Google Scholar] [CrossRef]
- Teng, J.M.; Wang, Y.F.; Chen, C.F. Recent progress of narrowband TADF emitters and their applications in OLEDs. J. Mater. Chem. C 2020, 8, 11340–11353. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Jen, A.K.Y. High-performance organic second-and third-order non-linear optical materials for ultrafast information processing. J. Mater. Chem. C 2020, 8, 15009–15026. [Google Scholar] [CrossRef]
- Vij, V.; Bhalla, V.; Kumar, M. Hexaarylbenzene: Evolution of properties and applications of multitalented scaffold. Chem. Rev. 2016, 116, 9565–9627. [Google Scholar] [CrossRef]
- Almenningen, A.; Bastiansen, O.; Skancke, P.N. Electron diffraction studies of hexaphenylbenzene vapour. Acta Chem. Scand. 1958, 12, 1215–1220. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, E.; Maris, T.; Arseneault, P.M.; Maly, K.E.; Wuest, J.D. Structural features in crystals of derivatives of benzene with multiple contiguous phenyl substituents. Cryst. Growth Des. 2010, 10, 648–657. [Google Scholar] [CrossRef]
- Gagnon, E.; Halperin, S.D.; Metivaud, V.; Maly, K.E.; Wuest, J.D. Tampering with molecular cohesion in crystals of hexaphenylbenzenes. J. Org. Chem. 2010, 75, 399–406. [Google Scholar] [CrossRef]
- Kwon, S.M.; Won, J.K.; Jo, J.W.; Kim, J.; Kim, H.J.; Kwon, H.I.; Park, S.K. High-performance and scalable metal-chalcogenide semiconductors and devices via chalco-gel routes. Sci. Adv. 2018, 4, eaap910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popczyk, A.; Cheret, Y.; El-Ghayoury, A.; Sahraoui, B.; Mysliwiec, J. Solvatochromic fluorophores based on thiophene derivatives for highly-precise water, alcohols and dangerous ions detection. Dyes Pigment. 2020, 177, 108300. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, C.; Xie, G.; Van Der Velden, J.; Marras, S.; Luo, Z.; Yang, C. Hexa-substituted benzene derivatives as hole transporting materials for efficient perovskite solar cells. Dyes Pigment. 2019, 163, 267–273. [Google Scholar] [CrossRef]
- Devibala, P.; Balambiga, B.; Noureen, S.; Nagarajan, S. Hexaarylbenzene based high-performance p-channel molecules for electronic applications. RSC Adv. 2021, 11, 11672–11701. [Google Scholar] [CrossRef]
- Krzeszewski, M.; Thorsted, B.; Brewer, J.; Gryko, D.T. Tetraaryl-, pentaaryl-, and hexaaryl-1, 4-dihydropyrrolo [3, 2-b] pyrroles: Synthesis and optical properties. J. Org. Chem. 2014, 79, 3119–3128. [Google Scholar] [CrossRef]
- Jhulki, S.; Moorthy, J.N. Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): Structural diversity and classification. J. Mater. Chem. C 2018, 6, 8280–8325. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Lv, J.; Shao, S.; Wang, L.; Jing, X.; Wang, F. Through-space charge transfer hexaarylbenzene dendrimers with thermally activated delayed fluorescence and aggregation-induced emission for efficient solution-processed OLEDs. Chem. Sci. 2019, 10, 2915–2923. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Mao, X.; Wang, X.; Bai, J.; Zhang, J.; Feng, X.; Yamato, T. Pyrene-based asymmetric hexaarylbenzene derivatives: Synthesis, crystal structures, and photophysical properties. J. Lumin. 2022, 243, 118653. [Google Scholar] [CrossRef]
- Tanaka, Y.; Akita, M. Synthesis and intramolecular electronic interactions of hexaarylbenzene bearing redox-active Cp*(dppe) Fe-C≡C-termini. J. Organomet. Chem. 2018, 878, 30–37. [Google Scholar] [CrossRef]
- Xu, M.; Wang, T.; Qu, Z.W.; Grimme, S.; Stephan, D.W. Reactions of a Dilithiomethane with CO and N2O: An Avenue to an Anionic Ketene and a Hexafunctionalized Benzene. Angew. Chem. 2021, 133, 25485–25489. [Google Scholar] [CrossRef]
- Zheng, H.; Han, Y.; Sun, J.; Yan, C.G. Convenient synthesis of hexasubstituted benzene derivatives via DABCO promoted domino reaction of arylidene malononitrile and dialkyl but-2-ynedioate. Chin. Chem. Lett. 2021, 32, 1683–1686. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nagae, H.; Tsurugi, H.; Mashima, K. Mechanistic understanding of alkyne cyclotrimerization on mononuclear and dinuclear scaffolds: [4 + 2] cycloaddition of the third alkyne onto metallacyclopentadienes and dimetallacyclopentadienes. Dalton Trans. 2016, 45, 17072–17081. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Lu, L.; Liu, X.; Yang, D.; Wang, S.; Gao, Y.; Lei, A. Electrochemical Cobalt-catalyzed Cyclotrimerization of Alkynes to 1, 2, 4-Substituted Arenes. ACS Catalysis 2021, 11, 14892–14897. [Google Scholar] [CrossRef]
- Johnson, M.A.; Martin, M.; Cocq, K.; Ferguson, M.; Jux, N.; Tykwinski, R.R. Acylation of Hexaphenylbenzene for the Synthesis of [5]Cumulenes. Eur. J. Org. Chem. 2022, 2022, e202101467. [Google Scholar] [CrossRef]
- Nisa, K.; Khatri, V.; Kumar, S.; Arora, S.; Ahmad, S.; Dandia, A.; Chauhan, S.M. Synthesis and redox properties of superbenzene porphyrin conjugates. Inorg. Chem. 2020, 59, 16168–16177. [Google Scholar] [CrossRef]
- Jassas, R.S.; Mughal, E.U.; Sadiq, A.; Alsantali, R.I.; Al-Rooqi, M.M.; Naeem, N.; Ahmed, S.A. Scholl reaction as a powerful tool for the synthesis of nanographenes: A systematic review. RSC Adv. 2021, 11, 32158–32202. [Google Scholar] [CrossRef]
- Ponugoti, N.; Venkatakrishnan, P. Rearrangements in Scholl Reaction. Chem. Eur. J. 2021, 28, e202103530. [Google Scholar] [CrossRef]
- Krompiec, S.; Kurpanik-Wójcik, A.; Matussek, M.; Gołek, B.; Mieszczanin, A.; Fijołek, A. Diels–Alder Cycloaddition with CO, CO2, SO2, or N2 Extrusion: A Powerful Tool for Material Chemistry. Materials 2021, 15, 172. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Li, X.; Zhao, M.; Wei, Q.; Song, P. One- and two-photon absorption properties of quadrupolar A–π–D–π–A dyes with donors of varying strengths. Spectrochim. Acta A 2020, 230, 118015. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Niu, L.; Liu, C.; Xiao, Y.; Tang, Y.; Chen, Y. Carbazole-thiophene based fluorescent probe for selective detection of Cu2+ and its live cell imaging. Spectrochim. Acta A 2022, 278, 121257. [Google Scholar] [CrossRef]
- Krompiec, S.; Filapek, M.; Grudzka-Flak, I.; Slodek, A.; Kula, S.; Malecki, J.G.; Malarz, J.; Szafraniec-Gorol, G.; Penkala, M.; Schab-Balcerzak, E.; et al. Multifaceted Strategy for the Synthesis of Diverse 2,2'-Bithiophene Derivatives. Molecules 2015, 20, 4565–4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kula, S.; Szlapa, A.; Malecki, J.G.; Maroń, A.; Matussek, M.; Schab-Balcerzak, E.; Siwy, M.; Domanski, M.; Sojka, M.; Danikiewicz, W.; et al. Synthesis and photophysical properties of novel multisubstituted benzene and naphthalene derivatives with high 2D-π-conjugation. Opt. Mater. 2015, 47, 118–128. [Google Scholar] [CrossRef]
- Batsyts, S.; Hübner, E.G.; Namyslo, J.C.; Gjikajb, M.; Schmidt, A. Synthesis and characterization of propeller-shaped mono- to hexacationic quinolinium-substituted benzenes. Org. Biomol. Chem. 2019, 17, 4102–4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, S.; Bhalla, V.; Vij, V.; Kumar, M. Fluorescent aggregates of hetero-oligophenylene derivative as “no quenching” probe for detection of picric acid at femtogram level. J. Mater. Chem. C 2014, 2, 3936–3941. [Google Scholar] [CrossRef]
- Steel, P.J.; Webb, N.C. Diels—Alder Synthesis of Rigid 60° Angular Bridging Ligands and X-ray Crystal Structures of their Silver Nitrate Complexes. Eur. J. Inorg. Chem. 2002, 9, 2257–2260. [Google Scholar] [CrossRef]
- Martin, C.J.; Gil, B.; Perera, S.D.; Draper, S.M. Oxidative Bond Formation in Dithienyl Polyphenylenes: Optical and Electrochemical Consequences. Eur. J. Org. Chem. 2011, 2011, 3491–3499. [Google Scholar] [CrossRef]
- Roberts, D.J.; Nolan, D.; Ó Máille, G.M.; Watson, G.W.; Singh, A.; Ledoux-Rak, I.; Draper, S.M. The synthesis and characterisation of novel ferrocenyl polyphenylenes. Dalton Trans. 2012, 41, 8850–8860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01.; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Guo, X.; Zhang, J. An effective strategy for simply varying relative position of two carbazole groups in the thermally activated delayed fluorescence emitters to achieve deep-blue emission. Spectrochim. Acta A 2020, 226, 117564. [Google Scholar] [CrossRef] [PubMed]
- Filapek, M.; Matussek, M.; Szlapa, A.; Kula, S.; Pajak, M. The influence of experimental conditions and intermolecular interaction on the band gap determination. Case study of perylene diimide and carbazole-fluorene derivatives. Electrochim. Acta 2016, 216, 449–456. [Google Scholar] [CrossRef]
- Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42, 8895–8999. [Google Scholar] [CrossRef] [PubMed]
- Krompiec, S.; Filapek, M.; Grudzka, I.; Kula, S.; Słodek, A.; Skorka, Ł.; Danikiewicz, W.; Ledwon, P.; Lapkowski, M. An ambipolar behavior of novel ethynyl-bridged polythiophenes—A comprehensive study. Synth. Met. 2013, 165, 7–16. [Google Scholar] [CrossRef]
- Turkoglu, G.; Ozturk, T. Electropolymerization, spectroelectrochemistry and electrochromic properties of cross-conjugated and conjugated selenophenothiophenes with thiophene bridge. Synth. Met. 2021, 278, 116836. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; Pan, Y.; Yan, S.; Dai, Y.; Liu, J.; Yu, Y.; Qu, X.; Song, Q.; Ouyang, M.; et al. Electrochromic Properties of Polymers/Copolymers via Electrochemical Polymerization Based on Star-Shaped Thiophene Derivatives with Different Central Cores. J. Electrochem. Soc. 2017, 164, E84. [Google Scholar] [CrossRef]
- Goksu, K.; Hizalan, G.; Udum, Y.A.; Hacioglu, S.O.; Cevher, S.C.; Toppare, A.L.; Cirpan, A. Syntheses and Characterization of Benzotriazole, Thienopyrroledione, and Benzodithiophene Containing Conjugated Random Terpolymers for Organic Solar Cells. J. Electrochem. Soc. 2019, 166, H849–H859. [Google Scholar] [CrossRef]
- Yue, H.; Guo, X.; Du, Y.; Zhang, Y.; Du, H.; Zhao, J.; Zhang, J. Synthesis and characterization of donor–acceptor type quinoxaline-based polymers and the corresponding electrochromic devices with satisfactory open circuit memory. Synth Met. 2021, 271, 116619. [Google Scholar] [CrossRef]
- Ma, Y.; Du, Y.; Li, C.; Zhang, Y.; Du, H.; Zhao, J.; Zhang, J.; Xie, Y. Synthesis and characterization of D-A type electrochromic polymers based on planar monomers: Cyclopenta[2,1-b;3,4-b′]dithiophene and tris (thienothiophene) as electron donors, diketopyrrolopyrrole as electron acceptor. Synth. Met. 2021, 278, 116839. [Google Scholar] [CrossRef]
- Filapek, M.; Hellwig, H.; Gancarz, P.; Szłapa-Kula, A. Influence of Various Doping Agents on Organic Semiconductors’ Physicochemical Properties. J. Electrochem. Soc. 2021, 168, 046508. [Google Scholar] [CrossRef]
- Malacrida, C.; Scapinello, L.; Cirilli, R.; Grecchi, S.; Penoni, A.; Benincori, T.; Ludwigs, S. In Situ Electrochemical Investigations of Inherently Chiral 2,2’-Biindole Architectures with Oligothiophene Terminals. ChemElectroChem. 2021, 8, 3250–3261. [Google Scholar] [CrossRef]
- Krawczyk, P.; Kula, S.; Seklecka, K.; Łaczkowski, K.Z. Synthesis, electrochemical, optical and biological properties of new carbazole derivatives. Spectrochim. Acta A 2022, 267, 120497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, W.; Fang, M.; Yin, F.; Li, C. Synthesis, photophysical and electrochemical properties of two novel carbazole-based dye molecules. Spectrochim. Acta A 2015, 135, 379. [Google Scholar] [CrossRef]
Code | T5 1 [°C] | T10 1 [°C] | Tmax 2 [°C] |
---|---|---|---|
M1 | 437 | 473 | 495; 571 |
M2 | 400 | 417 | 469 |
M3 | 343 | 363 | 404; 596 |
Code | E1red [V] | E1ox [V] | E2ox [V] | HOMO1 (CV) | LUMO 2 (CV) | Eg(CV) 3 [eV] | λonset [nm] | Eg(opt) 4 | HOMO (DFT) | LUMO (DFT) | Eg(DFT) [eV] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | −2.23 | 0.95 | −6.05 | −2.87 | 3.18 | 360 | 3.44 | −5.86 | −1.45 | 4.41 | ||
M2 | −2.1 | 0.62 | 0.81 | −5.72 | −3.00 | 2.72 | 366 | 3.39 | −5.54 | −1.33 | 4.21 | |
M3 | −2.39 | 0.7 | −5.8 | −2.71 | 3.09 | 480 | 2.58 | −5.65 | −1.78 | 3.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlapa-Kula, A.; Kula, S.; Filipek, P.; Krompiec, S.; Filapek, M. The Influence of the Intramolecular 2D Interactions on the Physicochemical Properties of Hexasubstituted Benzene Derivatives. Energies 2023, 16, 480. https://doi.org/10.3390/en16010480
Szlapa-Kula A, Kula S, Filipek P, Krompiec S, Filapek M. The Influence of the Intramolecular 2D Interactions on the Physicochemical Properties of Hexasubstituted Benzene Derivatives. Energies. 2023; 16(1):480. https://doi.org/10.3390/en16010480
Chicago/Turabian StyleSzlapa-Kula, Agata, Sławomir Kula, Patrycja Filipek, Stanisław Krompiec, and Michał Filapek. 2023. "The Influence of the Intramolecular 2D Interactions on the Physicochemical Properties of Hexasubstituted Benzene Derivatives" Energies 16, no. 1: 480. https://doi.org/10.3390/en16010480
APA StyleSzlapa-Kula, A., Kula, S., Filipek, P., Krompiec, S., & Filapek, M. (2023). The Influence of the Intramolecular 2D Interactions on the Physicochemical Properties of Hexasubstituted Benzene Derivatives. Energies, 16(1), 480. https://doi.org/10.3390/en16010480