Study of the Blade Shape Impact on the Improvement of Fan Efficiency Based on State-of-the-Art Prototyping Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Designing the Geometric Parameters of the Blade
2.2. State-of-the-Art Prototyping Methods
- 3D scanning of existing rotor components for the purpose of optimizing their geometric form (the first stage of work in an earlier article [9]);
- CFD and FEM (finite element method) numerical simulations to verify the assumptions and further optimization;
- Additive manufacturing techniques to build a prototype for stand tests.
2.3. Testing the New Rotor
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fortuna, S. Wentylatory: Podstawy Teoretyczne, Zagadnienia Konstrukcyjno-Eksploatacyjne i Zastosowanie; Techwent: Kraków, Poland, 1999. [Google Scholar]
- Bleier, F.P. Fan Handbook: Selection, Application and Design; McGraw-Hill Education: New York, NY, USA, 1997; ISBN 9780070059337. [Google Scholar]
- Bieniek, C. Wentylatory Osiowe; WNT: Warszawa, Poland, 1961. [Google Scholar]
- Łazarkiewicz, S. Pompy Sprężarki Wentylatory; PWT: Warszawa, Poland, 1957. [Google Scholar]
- Tuliszka, E. Sprężarki, Dmuchawy i Wentylatory; WNT: Warszawa, Poland, 1969. [Google Scholar]
- Czechowicz, J. Wentylacja Lutniowa w Kopalniach; Wydawnictwo Şląsk: Katowice, Poland, 1977. [Google Scholar]
- Pascu, M.T. Modern Layout and Design Strategy for Axial Fans. Ph.D. Thesis, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany, 2009. [Google Scholar]
- INESI Project Site. Available online: http://inesi.komag.eu/ (accessed on 7 November 2022).
- Drwięga, A.; Szelka, M.; Turewicz, A. Rapid prototyping axial fan blades. Masz. Górnicze 2019, 37, 27–36. [Google Scholar] [CrossRef]
- Eck, B. Ventilatoren; Springer: Berlin, Germany, 1972; ISBN 978-3-662-30211-8. [Google Scholar]
- Bohl, W. Axialventilatoren. In Berechnung und Entwurf von Ventilatoren; Vulkan-Verlag: Essen, Germany, 1955. [Google Scholar]
- Szelka, M.; Drwięga, A.; Tokarczyk, J.; Feifer, J.; Kowalczyk, A.; Woszczyński, M.; Jagoda, J.; Zeleznik, G. Deliverable: D5.3 Report from Field Trials of Low Energy Consumption Ventilation System; Gliwice, Poland, 2020; Unpublished work. [Google Scholar]
- Jacobs, E.N.; Ward, K.E.; Pinkerton, R.M. NACA Report No. 460, "The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel"; NACA: USA, 1933; Available online: http://ftp.demec.ufpr.br/disciplinas/TM045/Report460_1935.pdf (accessed on 1 November 2022).
- Airfoiltools. Available online: http://airfoiltools.com/ (accessed on 7 November 2022).
- Beristain, I.G. Aerodynamic Analysis of Axial Fan Unsteady Simulations; University of the Basque Country: Leioa, Spain, 2012. [Google Scholar]
- Velazquez Salazar, O.E.; Morency, F.; Weiss, J. Predicting Maximum Lift Coefficient for Compound Wings Using Lifting Line Theory. J. Aircr. 2021, 58, 717–732. [Google Scholar] [CrossRef]
- Phillips, W.F.; Hunsaker, D.F.; Joo, J.J. Minimizing Induced Drag with Lift Distribution and Wingspan. J. Aircr. 2019, 56, 431–441. [Google Scholar] [CrossRef]
- Kuczewski, S. Wentylatory; WNT: Warszawa, Poland, 1978. [Google Scholar]
- Arżnikow, N.S. Aerodynamika; PWN: Warszawa, Poland, 1959. [Google Scholar]
- Eckert, B. Srężarki Osiowe i Promieniowe; PWT: Warszawa, Poland, 1959. [Google Scholar]
- Carolus, T. Ventilatoren. Aerodynamischer Entwurf, Konstruktion; BG Teubner Verlag: Stuttgart, Germany, 2003; ISBN 3834824712. [Google Scholar]
- Schlender, F. Ventilatoren im Einsatz; VDI Verlag: Berlin, Germany, 1996; ISBN 978-3-540-62132-4. [Google Scholar]
- Panigrahi, D.C.; Mishra, D.P. CFD simulations for the selection of an appropriate blade profile for improving energy efficiency in axial flow mine ventilation fans. J. Sustain. Min. 2014, 13, 15–21. [Google Scholar] [CrossRef]
- Anderson, J.D. Computational Fluid Dynamics: The Basics with Applications; McGraw-Hill: New York, NY, USA, 1995; ISBN 0071132104. [Google Scholar]
- Carcangiu, C.E. CFD-RANS Study of Horizontal Axis Wind Turbines. Ph.D. Thesis., Department doing genera mechanical, University deg li Studi di Cagliari, Cagliari, Italy, 2008. [Google Scholar]
- Michalak, D.; Herrero, J.A.G. Innovative solutions need an innovative approach—3D printing technology, example of use and conclusion from implementation in an organization. Min. Mach. 2020, 2, 48–57. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2013; ISBN 9781856176330. [Google Scholar]
- Patran Complete FEA Modeling Solution. Available online: https://www.mscsoftware.com/product/patran (accessed on 6 October 2021).
- Dz.U. 2017 poz. 1118. Rozporządzenie Ministra Energii z Dnia 23 Listopada 2016r. w Sprawie Szczegółowych Wymagań Dotyczących Prowadzenia Ruchu Podziemnych Zakładów Górniczych, Rozdział 3 Przewietrzanie za Pomocą Lutniociągów, Pomocniczych Urządzeń Wentylacyjnych lub Przez Dyfuzje. (26. Journal of Laws 2017. Item 1118 Regulation of the Minister of Energy of November 23, 2016. on Aid for the Conduct of Traffic below the Main Mines, Chapter 3 Ventilation by Air Ducts, Auxiliary Ventilation Devices or by Diffusion). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001118 (accessed on 7 November 2022).
- PN-EN ISO 5801:2017-12; Wentylatory przemysłowe. Badanie charakterystyk działania na stanowiskach znormalizowanych.
Lp. | Parameter | Symbol | Value | Unit |
---|---|---|---|---|
1 | Nominal air flow | V | 10.3 | m3/s |
2 | Maximum pressure | ▲Pc | 2600 | Pa |
3 | Rotation speed | n | 2940 | 1/min |
4 | Air density | ρ | 1.2 | kg/m3 |
5 | Power | N | 37 | kW |
6 | Rotor outer diameter | Dz | 0.748 | m |
7 | Hub diameter | Dw | 0.48 | m |
Profile | Lift [N] | Drag [N] | Moment [Nm] | Lift/Drag | |
---|---|---|---|---|---|
1 | NACA 63415 | 6.22 | 0.62 | 0.00 | 10.03 |
2 | NACA 6412 | 13.10 | 0.72 | −0.02 | 18.19 |
3 | Plate | 11.38 | 1.21 | 0.15 | 9.40 |
Velocity [m/s] | Angle [°] | Lift [N] | Drag [N] | Moment [Nm] | Lift/Drag | |
---|---|---|---|---|---|---|
1 | 122 | 0 | 27.34 | 1.45 | −0.04 | 18.85 |
2 | 122 | 5 | 35.23 | 1.72 | −0.44 | 20.48 |
3 | 85 | 0 | 13.10 | 0.72 | −0.02 | 18.19 |
4 | 85 | 5 | 23.07 | 1.06 | −0.38 | 21.76 |
New Blades | After Modification | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Power | [kW] | 27 | 28 | 30 | 33 | 34 | 35 | 35 | 33 |
Pressure | [Pa] | 1451 | 1550 | 1781 | 2234 | 2543 | 2864 | 2971 | 2878 |
Air flow | [m3/min] | 753 | 743 | 716 | 659 | 612 | 547 | 467 | 367 |
Efficiency | [%] | 67.3 | 68.4 | 70.2 | 73.3 | 75.0 | 73.0 | 64.8 | 52.0 |
Old Blades | Before Modification | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Power | [kW] | 29 | 31 | 32 | 32 | 34 | 33 | - | - |
Pressure | [Pa] | 943 | 1441 | 1900 | 2173 | 2284 | 2315 | - | - |
Air flow | [m3/min] | 703 | 664 | 635 | 590 | 566 | 489 | - | - |
Efficiency | [%] | 38.4 | 51.1 | 62.3 | 66.8 | 62.8 | 57.0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szelka, M.; Drwięga, A.; Tokarczyk, J.; Szyguła, M.; Szewerda, K.; Banaś, M.; Kołodziejczyk, K.; Kędzia, K. Study of the Blade Shape Impact on the Improvement of Fan Efficiency Based on State-of-the-Art Prototyping Methods. Energies 2023, 16, 542. https://doi.org/10.3390/en16010542
Szelka M, Drwięga A, Tokarczyk J, Szyguła M, Szewerda K, Banaś M, Kołodziejczyk K, Kędzia K. Study of the Blade Shape Impact on the Improvement of Fan Efficiency Based on State-of-the-Art Prototyping Methods. Energies. 2023; 16(1):542. https://doi.org/10.3390/en16010542
Chicago/Turabian StyleSzelka, Michał, Andrzej Drwięga, Jarosław Tokarczyk, Marek Szyguła, Kamil Szewerda, Marian Banaś, Krzysztof Kołodziejczyk, and Krzysztof Kędzia. 2023. "Study of the Blade Shape Impact on the Improvement of Fan Efficiency Based on State-of-the-Art Prototyping Methods" Energies 16, no. 1: 542. https://doi.org/10.3390/en16010542
APA StyleSzelka, M., Drwięga, A., Tokarczyk, J., Szyguła, M., Szewerda, K., Banaś, M., Kołodziejczyk, K., & Kędzia, K. (2023). Study of the Blade Shape Impact on the Improvement of Fan Efficiency Based on State-of-the-Art Prototyping Methods. Energies, 16(1), 542. https://doi.org/10.3390/en16010542