Quantitative Simulation of Gas Hydrate Formation and Accumulation with 3D Petroleum System Modeling in the Shenhu Area, Northern South China Sea
Abstract
:1. Introduction
2. Geological Background
3. Data and Methods
3.1. Structure Model
3.2. Vertical Gas Migration Pathway
3.3. Lithology and Lithofacies Setting
3.4. Source Rock Setting
3.5. Boundary Conditions
3.6. Simulation and Calibration
4. Results
4.1. GHSZ Distribution and Evolution
4.2. Hydrocarbon Generating History
4.2.1. Maturity Evolution of Source Rocks
4.2.2. Evolution of Transformation Rate of Source Rocks
4.2.3. Hydrocarbon Generation
4.3. History of Oil and Gas Migration and Accumulation
4.4. Gas Hydrate Formation and Distribution
5. Discussion
5.1. Hydrate Gas Source Analysis
5.2. Control of Migration Pathways on Gas Hydrate Formation
5.3. Contribution of Gas Source to Hydrocarbon Generation and Gas Hydrate Accumulation
5.4. Limitations of This Model
6. Conclusions and Way Forward
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kvenvolden, K.A. A primer on the geological occurrence of gas hydrate. Geol. Soc. Spec. Publ. 1998, 137, 9–30. [Google Scholar] [CrossRef]
- Collett, T.S. Energy resource potential of natural gas hydrates. AAPG Bull. 2002, 86, 1971–1992. [Google Scholar]
- Boswell, R.; Hancock, S.; Yamamoto, K.; Collett, T.; Pratap, M.; Lee, S.-R. Natural gas hydrates: Status of potential as an energy resource. Future Energy 2020, 6, 111–131. [Google Scholar]
- Bohrmann, G.; Greinert, J.; Suess, E.; Torres, M. Authigenic carbonates from Cascadia subduction zone and their relation to gas hydrate stability. Geology 1998, 26, 647–650. [Google Scholar] [CrossRef]
- Suess, E.; Torres, M.E.; Bohrmann, G.; Collier, R.W.; Greinert, J.; Linke, P.; Rehder, G.; Trehu, A.; Wallmann, K.; Winckler, G.; et al. Gas hydrate destabilization: Enhanced dewatering, benthic material turnover, and larger methane plumes at the Cascadia convergent margin. Earth Planet. Sci. Lett. 1999, 170, 1–15. [Google Scholar] [CrossRef]
- Elvert, M.; Greinert, J.; Suess, E.; Whiticar, M.J. Carbon isotopes of biomarkers derived from methane-oxidizing at hydrate ridge, Cascadia convergent margin. In Natureal Gas Hydrates: Occurrence, Distribution, and Detection; Paull, C.K., Dillon, W.P., Eds.; American Geophysical Union: Washington, DC, USA, 2001; pp. 115–129. [Google Scholar]
- Greinert, J.; Bohrmann, G.; Suess, E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution and origin of authigenic lithologies. In Natural Gas Hydrate: Ocurrence, Distribution and Detection; Puall, C.K., Dillon, P.W., Eds.; American Geophysical Union: Washington, DC, USA, 2001; Volume 124, pp. 99–113. [Google Scholar]
- Tishchenko, P.; Hensen, C.; Wallmann, K.; Wong, C.S. Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 2005, 219, 37–52. [Google Scholar] [CrossRef]
- Wallmann, K.; Aloisi, G.; Haeckel, M.; Obzhirov, A.; Pavlova, G.; Tishchenko, P. Kinetics of organic matter degradation, microbial methane generation and gas hydrate formation in anoxic marine sediments. Geochim. Cosmochim. Acta 2006, 70, 3905–3927. [Google Scholar] [CrossRef]
- Qian, B.Z.; Zhu, J.F. Gas Hydrate: Huge penitential energy. Nat. Gas Oil 2008, 26, 47–52. [Google Scholar]
- Hustoft, S.; Buenz, S.; Mienert, J.; Chand, S. Gas hydrate reservoir and active methane venting system in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard. Earth Planet. Sci. Lett. 2009, 284, 12–24. [Google Scholar]
- Grassmann, S.; Cramer, B.; Delisle, G.; Hantschel, T.; Messner, J.; Winsemann, J. PT-effects of Pleistocene glacial periods on permafrost, gas hydrate zones and reservoir of the Mittelplate oil field, northern Germany. Mar. Pet. Geol. 2010, 27, 298–306. [Google Scholar] [CrossRef]
- Collett, T.; Lee, M.; Agena, W.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Mar. Pet. Geol. 2011, 28, 279–294. [Google Scholar] [CrossRef]
- Lorenson, T.D.; Collett, T.S. Gas Hydrate Prospecting Using Well Cuttings and Mud-Gas Geochemistry from 35 Wells, North Slope, Alaska; U.S. Geological Survey Scientific Investigations Report 2011-5195; U.S. Geological Survey: Reston, VA, USA, 2011; p. 27. [Google Scholar]
- Derks, J.; Fuchs, T.; Hantschel, T.; Kauerauf, A.; Neumaier, M.; Schenk, O.; Swientek, O.; Tessen, N.; Welte, D.; Wygrala, B. Basin and Petroleum System Modeling. Oilfield Rev. 2009, 21, 14–29. [Google Scholar]
- Hantschel, T.; Kauerauf, A. Fundamentals of Basin and Petroleum Systems Modeling; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Luo, M.; XU, J.H.; Zhou, J.J.; Zhou, Y.H.; Liu, W.Y. 2D petroleum system modeling to reduce exploration well deployment risks: A case study from the Pearl River Mouth Basin, South China sea. AAAPG2019 IOP Conf. Ser. Earth Environ. Sci. 2019, 360, 012046. [Google Scholar] [CrossRef]
- Xu, J.H. Shale Gas Exploration Technology from Schlumberger. Pet. Equip. 2014, 86–88. [Google Scholar]
- Zhang, Y.; Xu, J.H.; Zhang, J.Q. Quantantative simulation on percentage of absorbed gas and free gas in shale—Case study on Longmaxi shale in Youyangdong area. In Proceedings of the 9th China Oil Migration Conference, Hefei, China, September 2019. [Google Scholar]
- Xu, J.H.; Yue, J.P.; Wang, H.; Wygrala, B. IPTC-19282-MS. Innovative Reservoir Classification with Natural Fracture Geometry to Guide Well Stimulation for Unconventional Tight Gas Field. In Proceeding of the International Petroleum Technology Conference, Beijing, China, 26–28 March 2019; pp. 26–28. [Google Scholar]
- Su, P.B.; Liang, J.Q.; Peng, J.; Zhang, W.; Xu, J.H. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea. J. Asian Earth Sci. 2018, 168, 57–76. [Google Scholar] [CrossRef]
- Piñero, E.; Hensen, C.; Haeckel, M.; Rottke, W.; Fuchs, T.; Wallmann, K. 3-D numerical modelling of methane hydrate accumulations using PetroMod. Mar. Pet. Geol. 2016, 71, 288–295. [Google Scholar] [CrossRef]
- Haeckel, M.; Pińero, E.; Rottke, W.; Fuchs, T.; Hensen, C.; Wallmann, K. 3-D numerical modelling of gas hydrate accumulations at the Alaska North Slope. In Proceeding of the 75th EAGE Conference & Exhibition-Workshops, European Association of Geoscientists & Engineers, London, UK, 10–13 June 2013; p. cp–349. [Google Scholar]
- Kroeger, K.F.; Crutchley, G.J.; Hill, M.G.; Pecher, I.A. Potential for gas hydrate formation at the northwest New Zealand shelf margin-New insights from seismic reflection data and petroleum systems modelling. Mar. Pet. Geol. 2017, 83, 215–230. [Google Scholar] [CrossRef]
- Crutchley, G.J.; Kroeger, K.F.; Pecher, I.A.; Mountjoy, J.J.; Gorman, A.R. Gas hydrate formation amid submarine canyon incision: Investigations from New Zealand’s Hikurangi subduction margin. Geochem. Geophys. Geosystems 2017, 18, 4299–4316. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, K.F.; Crutchley, G.J.; Kellett, R.; Barnes, P.M. A 3-D Model of Gas Generation, Migration, and Gas Hydrate Formation at a Young Convergent Margin (Hikurangi Margin, New Zealand). Geochem. Geophys. Geosystems 2019, 20, 5126–5147. [Google Scholar] [CrossRef]
- Fujii, T.; Tin Aung, T.; Wada, N.; Komatsu, Y.; Suzuki, K.; Ukita, T.; Wygrala, B.; Fuchs, T.; Rottke, W.; Egawa, K. Modeling gas hydrate petroleum systems of the Pleistocene turbiditic sedimentary sequences of the Daini-Atsumi area, eastern Nankai Trough, Japan. Interpretation 2016, 4, SA95–SA111. [Google Scholar] [CrossRef]
- Hillman, J.I.; Crutchley, G.J.; Kroeger, K.F. Investigating the role of faults in fluid migration and gas hydrate formation along the southern Hikurangi Margin, New Zealand. Mar. Geophys. Res. 2020, 41, 1–19. [Google Scholar] [CrossRef]
- Higley, D.K.; Lewan, M.; Roberts, L.N.; and Henry, M.E. Petroleum System Modeling Capabilities for Use in Oil and Gas Resource Assessments; US Geological Survey Open-File Report: Reston, VA, USA, 2006; Volume 1024, p. 18. [Google Scholar]
- Al-Ameri, T.K.; Pitman, J.; Naser, M.E.; Zumberge, J.; Al-Haydari, H.A. Programed oil generation of the Zubair Formation, Southern Iraq oil fields: Results from Petromod software modeling and geochemical analysis. Arab. J. Geosci. 2011, 4, 1239–1259. [Google Scholar] [CrossRef]
- Bruns, B.; Di Primio, R.; Berner, U.; Littke, R. Petroleum system evolution in the inverted Lower Saxony Basin, northwest Germany: A 3 D basin modeling study. Geofluids 2013, 13, 246–271. [Google Scholar] [CrossRef]
- Schenk, O.; Magoon, L.B.; Bird, K.J.; Peters, K.E. Petroleum System Modeling of Northern Alaska; AAPG: Tulsa, OK, USA, 2012. [Google Scholar]
- Enmanuel, R.D.; Rolando, D.P.; Zahie, A.; Stoddart, D.; Horsfield, B. Brian Horsfield 3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea): A quantitative assessment of petroleum generation, migration and leakage. Mar. Pet. Geol. 2013, 45, 281–303. [Google Scholar]
- Kroeger, K.F.; Plaza-Faverola, A.; Barnes, P.M.; Pecher, I.A. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation e a model study. Mar. Pet. Geol. 2015, 63, 97e114. [Google Scholar] [CrossRef]
- Kroeger, K.F.; Funnell, R.H.; Nicol, A.; Fohrmann, M.; Bland, K.J.; King, P.R. 3D crustal-scale heat-flow regimes at a developing active margin (Taranaki Basin, New Zealand). Tectonophysics 2013, 591, 175–193. [Google Scholar] [CrossRef]
- Wang, X.J.; Collett, T.S.; Lee, M.W.; Yang, S.X.; Guo, Y.Q.; Wu, S.G. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea. Mar. Geol. 2014, 357, 272–292. [Google Scholar] [CrossRef]
- Zhang, G.X.; Liang, J.Q.; Lu, J.A.; Yang, S.X.; Zhang, M.; Holland, M.; Schultheiss, P.; Su, X.; Sha, Z.B.; Xu, H.N.; et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2015, 67, 356–367. [Google Scholar] [CrossRef]
- Sha, Z.B.; Liang, J.Q.; Su, P.B.; Zhang, G.X.; Lu, J.A.; Wang, J.L. Natural gas hydrate accumulation elements and drilling results analysis in the eastern part of the Pearl River Mouth Basin. Earth Sci. Front. 2015, 22, 125–135. [Google Scholar]
- Zhang, W.; Liang, J.Q.; Wei, J.G.; Lu, J.A.; Su, P.B.; Lin, L.; Huang, W.; Guo, Y.Q.; Deng, W.; Yang, X.L.; et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea. Mar. Pet. Geol. 2020, 114, 104191. [Google Scholar] [CrossRef]
- Li, J.F.; Ye, J.L.; Qin, X.W.; Qiu, H.J.; Wu, N.Y.; Lu, H.L.; Xie, W.W.; Lu, J.A.; Peng, F.; Xu, Z.Q.; et al. The first offshore natural gas hydrate production test in South China Sea. China Geol. 2018, 1, 5–16. [Google Scholar] [CrossRef]
- Ye, J.L.; Qin, X.W.; Xie, W.W.; Lu, H.L.; Ma, B.J.; Qiu, H.J.; Liang, J.Q.; Lu, J.A.; Kuang, Z.G.; Lu, C.; et al. Main progress of the second gas hydrate trial production in the South China Sea. Geol. China 2020, 47, 557–568. (In Chinese) [Google Scholar]
- He, J.X.; Zhong, C.M.; Yao, Y.J.; Yan, P.; Wang, Y.L.; Wan, Z.F.; Guan, J.; Zhang, J.F. The exploration and production test of gas hydrate and its research progress and exploration prospect in the northern South China Sea. Mar. Geol. Front. 2020, 36, 14. [Google Scholar]
- Sun, L.Y.; Zhang, G.X.; Wang, X.J.; Jin, J.P.; He, W.; Zhu, Z.Y. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea. Mar. Geol. Quat. Geol. 2020, 41, 210–221. [Google Scholar]
- Liang, Q.Y.; Xiao, X.; Zhao, J.; Zhang, W.; Li, Y.; Wu, X.M.; Ye, J.L.; Qin, X.W.; Qiu, H.J.; Liang, J.Q.; et al. Geochemistry and sources of hydrate-bound gas in the Shenhu area, northern south China sea: Insights from drilling and gas hydrate production tests. J. Pet. Sci. Eng. 2022, 208, 10945. [Google Scholar] [CrossRef]
- Lai, H.F.; Fang, Y.X.; Kuang, Z.G.; Ren, J.F.; Liang, J.Q.; Lu, J.A.; Wang, G.L.; Xing, C.Z. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: Implications from site GMGS5-W08. Mar. Pet. Geol. 2021, 123, 104774. [Google Scholar] [CrossRef]
- Beaudoin, Y.C.; Dallimore, S.R.; Boswell, R. Frozen Heat: A UNEP Global Outlook on Methane Gas Hydrates, Volume 2; UNEP: Nairobi, Republic of Kenya, 2014. [Google Scholar]
- Boswell, R.; Myshakin, E.; Moridis, G.; Konno, Y.; Collett, T.S.; Reagan, M.; Ajayi, T.; Seol, Y. India National Gas Hydrate Program Expedition 02 summary of scientific results: Numerical simulation of reservoir response to depressurization. Mar. Petrol. Geol. 2019, 108, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Su, P.B.; Liang, J.Q.; Zhang, W.; Liu, F.; Li, T.W.; Wang, F.F.; Wang, X.X. Numerial simulation of gas hydrate migration-accumulation system and trial mining optimization of orebodies in the Shenhu area. Geol. Bull. China 2021, 40, 267–279. (In Chinese) [Google Scholar]
- He, L.; Wang, X.L.; Cai, N.B.; Qu, J.; Zhu, X.; Lin, D.M. Structural and Sedimentary Characteristics of Hydrocarbon-Rich Sags in Lacustrine Sub-Basin of Half Graben Type, Pearl River Mouth Basin, South China Sea. Open J. Yangtze Gas Oil 2019, 4, 194–211. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.Y.; Wei, J.G.; Zheng, J.Y.; Sun, Z.; Zhang, K. A 3D basin modeling study of the factors controlling gas hydrate accumulation in the Shenhu Area of the South China Sea. China Geol. 2022, 5, 218–233. [Google Scholar] [CrossRef]
- Hu, J.; Long, Z.L.; Huang, Y.P.; Zhang, L.Y.; Hu, D.; Wang, Y.B.; Hu, S.B. Tectono-thermal modelling of Baiyun Sag, Pearl River Mouth Basin, since Cenozoic. Chin. J. Geophys. 2021, 64, 1654–1665. [Google Scholar]
- He, J.X.; Yao, Y.J.; Liu, H.L.; Wan, Z.F. Genetic types of natural gas and characteristic of the gas source composition in marginal basins of the northern South China Sea. Geol. China 2008, 5, 1007–1016. [Google Scholar]
- Cui, J.; He, J.X.; Zhou, Y.Z.; Cui, S.S. Origin of nature gas and resource potential of oil and gas in Baiyun Sag‚ Pearl River Mouth Basin. Nat. Gas Geosci. 2009, 20, 125–130. [Google Scholar]
- Chen, C.M. Petroleum geology and conditions for hydrocarbon accumulation in the eastern Pearl River Mouth Basin. China Offshore Oil Gas 2000, 14, 73–83. [Google Scholar]
- Mi, L.J.; Zhang, G.C.; Fu, N. An analysis of hydrocarbon source and accumulation in Panyu low-up lift and north slope of Baiyun Sag, Pearl River Mouth Basin. China Offshore Oil Gas 2006, 3, 161–168. [Google Scholar]
- Mi, L.J.; Zhang, G.C.; Shen, H.L.; Liu, Z.; Guo, R.; Zhong, K.; Tian, J.X. Eocene-Lower Oligocene sedimentation characteristics of Baiyun Sag in the deep-water area of Pearl River Mouth Basin. Acta Pet. Sin. 2008, 1, 29–34. [Google Scholar]
- Zhu, J.Z.; Shi, H.S.; Pang, X.; He, M.; Yang, S.K.; Li, Z.W. Zhuhai Formation source rock evaluation and reservoired hydrocarbon source analysis in the deepwater area of Baiyun sag, Pearl River Mouth basin. China Offshore Oil Gas 2008, 4, 223–227. (In Chinese) [Google Scholar]
- He, J.X.; Lu, Z.Q.; Su, P.B.; Zhang, W.; Feng, J.X. Source Supply System and reservoir forming model prediction of natural gas hydrate in the deep-water area of the northern South China Sea. J. Southwest Pet. Univ. Sci. Technol. Ed. 2016, 38, 8–24. [Google Scholar]
- Su, P.B.; Liang, J.Q.; Sha, Z.B.; Fu, S.Y. Gas Sources Condition of Gas Hydrate Formation in Shenhu Deep Water Sea Zone. J. Southwest Pet. Univ. Sci. Technol. Ed. 2014, 36, 1–8. [Google Scholar]
- Fu, N.; Mi, L.J.; Zhang, G.C. Source rocks and origin of oil and gas in the northern Baiyun Depression of Pearl River Mouth Basin. Acta Pet. Sin. 2007, 28, 32–38. [Google Scholar]
- Su, P.B.; Liang, J.Q.; Sha, Z.B.; Fu, S.Y.; Lei, H.Y.; Gong, Y.H. Dynamic simulation of gas hydrate reservoirs in the Shenhu area, the northern South China Sea. Acta Pet. Sin. 2011, 32, 226–233. [Google Scholar]
- Zhang, G.C.; Yang, H.Z.; Chen, Y.; Ji, M.; Wang, K.; Yang, D.S. The Baiyun sag: A giant rich gas-generation sag in the deep-water area of the Pearl River Mouth basin. Nat. Gas Ind. 2014, 34, 11–25. [Google Scholar]
- Wu, W.Z.; Xia, B.; Jiang, Z.L.; Luo, Z.P. Sedimentary evolution and hydrocarbon accumulation in the Baiyun depression, Zhujiangkou Basin. Sediment. Geol. Tethyan Geol. 2013, 33, 25–33. [Google Scholar]
- Wygrala, B.P. Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy. Ph.D. Thesis, University of Cologne, Köln, Germany, 1989. [Google Scholar]
- Bohrmann, G.; Torres, M.E. Gas Hydrates in Marine Sediments; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zhang, W.; Liang, J.Q.; He, J.X.; Cong, X.R.; Su, P.B. Characteristics of mud diapir and gas chimney and their relationship with reservoir forming for petroleum and natural gas hydrate on northern slope of the South China Sea. Mar. Geol. Front. 2017, 33, 11–23. [Google Scholar]
- Liu, J.; Yang, R.; Zhang, J.H.; Wei, W.; Wu, D.D. Gas hydrate accumulation conditions in the Huaguang Depression of Qiongdongnan Basin and prediction of favorable zones. Mar. Geol. Quat. Geol. 2019, 39, 137–145. [Google Scholar]
- Su, M.; Sha, Z.B.; Zhang, C.M.; Wang, H.B.; Wu, N.Y.; Yang, R.; Liang, J.Q.; Qiao, S.H.; Cong, X.R.; Liu, J. Types, Characteristics and Significances of Migrating Pathways of Gas-bearing Fluids in the Shenhu Area, Northern Continental Slope of the South China Sea. Acta Geol. Sin. 2017, 91, 219–231. [Google Scholar] [CrossRef]
- Konno, Y.; Kato, A.; Yoneda, J.; Oshima, M.; Kida, M.; Jin, Y.; Nagao, J.; Tenma, N. Numerical analysis of gas production potential from a gas-hydrate reservoir at Site NGHP-02-16, the Krishna—Godavari Basin, offshore India—Feasibility of depressurization method for ultra-deepwater environment. Mar. Petrol. Geol. 2019, 108, 731–740. [Google Scholar] [CrossRef]
- Lin, J.S.; Uchida, S.; Myshakin, E.M.; Seol, Y.; Rutqvist, J.; Boswell, R. Assessing the geomechanical stability of interbedded hydrate-bearing sediments under gas production by depressurization at NGHP-02 Site 16. Mar. Petrol. Geol. 2019, 108, 648–659. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Parashar, S.; Muralidhar, K.; Das, M.K. Recovery of methane from a gas hydrate reservoir using depressurization and N2 injection. Spec. Top. Rev. Porous Media 2021, 12, 53–71. [Google Scholar] [CrossRef]
Age (Ma) | HF (mW/m2) | ||
---|---|---|---|
High-PY33 | Middle-LY91 | Low-LY13 | |
50 | 71 | 55 | 45 |
25 | 78 | 58 | 47 |
0 | 73 | 56 | 46 |
Formation | Shenhu | Wenchang | Enping | Zhuhai-Zhujiang | Hanjiang | Yuehai-Q |
---|---|---|---|---|---|---|
Water depth (m) | 0–20 | 10–100 | 10–50 | 0–50 | 20–200 | 200–1300 |
Age (Ma) | 0.0 | 2.6 | 5.3 | 10.0 | 16.0 | 23.0 | 34.0 | 39.0 | 56.5 |
SWIT (°C) | 5.00 | 5.00 | 8.53 | 19.26 | 20.67 | 22.31 | 23.58 | 23.00 | 26.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.; Liang, J.; Qiu, H.; Xu, J.; Ma, F.; Li, T.; Wang, X.; Zhang, J.; Wan, Z.; Wang, F.; et al. Quantitative Simulation of Gas Hydrate Formation and Accumulation with 3D Petroleum System Modeling in the Shenhu Area, Northern South China Sea. Energies 2023, 16, 99. https://doi.org/10.3390/en16010099
Su P, Liang J, Qiu H, Xu J, Ma F, Li T, Wang X, Zhang J, Wan Z, Wang F, et al. Quantitative Simulation of Gas Hydrate Formation and Accumulation with 3D Petroleum System Modeling in the Shenhu Area, Northern South China Sea. Energies. 2023; 16(1):99. https://doi.org/10.3390/en16010099
Chicago/Turabian StyleSu, Pibo, Jinqiang Liang, Haijun Qiu, Jianhua Xu, Fujian Ma, Tingwei Li, Xiaoxue Wang, Jinfeng Zhang, Zhifeng Wan, Feifei Wang, and et al. 2023. "Quantitative Simulation of Gas Hydrate Formation and Accumulation with 3D Petroleum System Modeling in the Shenhu Area, Northern South China Sea" Energies 16, no. 1: 99. https://doi.org/10.3390/en16010099
APA StyleSu, P., Liang, J., Qiu, H., Xu, J., Ma, F., Li, T., Wang, X., Zhang, J., Wan, Z., Wang, F., Lv, Y., & Zhang, W. (2023). Quantitative Simulation of Gas Hydrate Formation and Accumulation with 3D Petroleum System Modeling in the Shenhu Area, Northern South China Sea. Energies, 16(1), 99. https://doi.org/10.3390/en16010099