Failure Analysis of Novel BOSS Structures for Type IV Hydrogen Storage Vessels
Abstract
:1. Introduction
2. Novel BOSS Structures
2.1. Design Parameters
2.2. Structure Design
3. Finite Element Analysis
3.1. Finite Element Modeling
3.2. Material Properties
3.3. Loads, Boundary and Contact Conditions
3.4. Finite Element Model Verification
4. Results and Discussions
4.1. Strength Verification
4.2. Fatigue Failure Analysis
4.3. Seal Failure Analysis
5. Conclusions
- (1)
- The S31603 and 6061-T6 BOSS models had equivalent stress values less than 1.5 times their allowable stress values of 113 MPa and 103 MPa, respectively, meeting the strength requirements.
- (2)
- Models using S31603 material can achieve 30,000 fatigue cycles, and its maximum contact stresses on their contact surfaces were higher than the reference seal medium pressure of 58 MPa, surpassing the performance of those using the 6061-T6 material. Therefore, S31603 material is recommended for use in the BOSS structure.
- (3)
- After passing the strength and fatigue verification, the model using S31603 material, which was designed with a stop-rotation platform featuring a 65° tilt angle and two sealing grooves, had the lowest mean square deviation of contact stress of 13.47 MPa, indicating optimum sealing performance.
- (4)
- The vertical angle between the stop-rotation platform and the axial outer surface had a negative effect on the BOSS structure, greatly increasing the equivalent stress and the equivalent alternating stress amplitude, while the number of grooves had little effect on the BOSS structure.
Author Contributions
Funding
Conflicts of Interest
References
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Ren, J.; Toniolo, S. Hydrogen for better sustainability. Int. J. Hydrogen Energy 2020, 45, 34293. [Google Scholar] [CrossRef]
- Itaoka, K.; Saito, A.; Sasaki, K. Public perception on hydrogen infrastructure in Japan: Influence of rollout of commercial fuel cell vehicles. Int. J. Hydrogen Energy 2017, 42, 7290–7296. [Google Scholar] [CrossRef]
- San Marchi, C.; Hecht, E.S.; Ekoto, I.W.; Groth, K.M.; LaFleur, C.; Somerday, B.P.; Mukundan, R.; Rockward, T.; Keller, J.; James, C.W. Overview of the DOE hydrogen safety, codes and standards program, part 3: Advances in research and development to enhance the scientific basis for hydrogen regulations, codes and standards. Int. J. Hydrogen Energy 2017, 42, 7263–7274. [Google Scholar] [CrossRef]
- Ren, X.; Dong, L.; Xu, D.; Hu, B. Challenges towards hydrogen economy in China. Int. J. Hydrogen Energy 2020, 45, 34326–34345. [Google Scholar] [CrossRef]
- Azeem, M.; Ya, H.H.; Alam, M.A.; Kumar, M.; Stabla, P.; Smolnicki, M.; Gemi, L.; Khan, R.; Ahmed, T.; Ma, Q.; et al. Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review. J. Energy Storage 2022, 49, 103468. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Pan, Z.-b.; Liu, J.; Ma, L.-h.; Zhou, J.-y.; Su, Y.-f. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel. Int. J. Hydrogen Energy 2022, 47, 38862–38883. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Barhoumi, E.M.; Ben Belgacem, I.; Mansir, I.B.; Aliyu, M.; Emori, W.; Uzoma, P.C.; Beitelmal, W.H.; Akyüz, E.; Radwan, A.B.; et al. A focused review of the hydrogen storage tank embrittlement mechanism process. Int. J. Hydrogen Energy 2023, 48, 12935–12948. [Google Scholar] [CrossRef]
- Li, H.; Cao, X.; Liu, Y.; Shao, Y.; Nan, Z.; Teng, L.; Peng, W.; Bian, J. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges. Energy Rep. 2022, 8, 6258–6269. [Google Scholar] [CrossRef]
- Yang, F.; Wang, T.; Deng, X.; Dang, J.; Huang, Z.; Hu, S.; Li, Y.; Ouyang, M. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. Int. J. Hydrogen Energy 2021, 46, 31467–31488. [Google Scholar] [CrossRef]
- West, M.; Al-Douri, A.; Hartmann, K.; Buttner, W.; Groth, K.M. Critical review and analysis of hydrogen safety data collection tools. Int. J. Hydrogen Energy 2022, 47, 17845–17858. [Google Scholar] [CrossRef]
- Coskun, T.; Sahin, O.S. Effects of geodesic dome trajectories on the specific strength of composite overwrapped pressure vessels: FE modelling. Int. J. Hydrogen Energy 2023, 48, 13669–13681. [Google Scholar] [CrossRef]
- Park, G.; Jang, H.; Kim, C. Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4). J. Mech. Sci. Technol. 2021, 35, 3507–3517. [Google Scholar] [CrossRef]
- Roh, H.S.; Hua, T.Q.; Ahluwalia, R.K. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles. Int. J. Hydrog. Energy 2013, 38, 12795–12802. [Google Scholar] [CrossRef]
- Leh, D.; Magneville, B.; Saffré, P.; Francescato, P.; Arrieux, R.; Villalonga, S. Optimisation of 700 bar type IV hydrogen pressure vessel considering composite damage and dome multi-sequencing. Int. J. Hydrogen Energy 2015, 40, 13215–13230. [Google Scholar] [CrossRef]
- Yamashita, A.; Kondo, M.; Goto, S.; Ogami, N. Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai”; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Yin, Z.; Su, T.; He, M. Gas Packaging Container Based on ANSYS Finite Element Analysis and Structural Optimization Design. J. Phys. Conf. Ser. 2019, 1187, 032089. [Google Scholar] [CrossRef]
- Nimdum, P.; Patamaprohm, B.; Renard, J.; Villalonga, S. Experimental method and numerical simulation demonstrate non-linear axial behaviour in composite filament wound pressure vessel due to thermal expansion effect. Int. J. Hydrogen Energy 2015, 40, 13231–13241. [Google Scholar] [CrossRef]
- Sharma, P.; Neogi, S. Performance-based design and manufacturing of filament wound Type-4 cylinders for compressed gas storage. Compos. Struct. 2023, 309, 116710. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; She, X.; Luo, Y.; Sun, Q.; Teng, L. Numerical study on the behavior and design of a novel multistage hydrogen pressure-reducing valve. Int. J. Hydrogen Energy 2022, 47, 14646–14657. [Google Scholar] [CrossRef]
- Wu, E.; Zhao, Y.; Zhao, B.; Xu, W. Fatigue life prediction and verification of high-pressure hydrogen storage vessel. Int. J. Hydrogen Energy 2021, 46, 30412–30422. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, G.; Xiao, S.; Hua, Z.; Gu, C. Study on fretting behavior of rubber O-ring seal in high-pressure gaseous hydrogen. Int. J. Hydrogen Energy 2019, 44, 22569–22575. [Google Scholar] [CrossRef]
- Zhou, C.; Zheng, J.; Gu, C.; Zhao, Y.; Liu, P. Sealing performance analysis of rubber O-ring in high-pressure gaseous hydrogen based on finite element method. Int. J. Hydrogen Energy 2017, 42, 11996–12004. [Google Scholar] [CrossRef]
- ISO-11119; Gas Cylinders of Composite Construction Specification and Test Methods—Part 2: Fully Wrapped Fibre Reinforced Composite Gas Cylinders with Load-sharing Metal Liners. ISO: London, UK, 2002.
- ISO-11114; Gas Cylinders—Compatibility of Cylinder and Valve Materials with Gas Contents—Part 3: Autogenous Ignition Test for Non-Metallic Materials in Oxygen Atmosphere. ISO: London, UK, 2010.
- ISO-6362; Wrought Aluminium and Aluminium Alloys—Extruded Rods/Bars, Tubes and Profiles—Part 1: Technical Conditions for Inspection and Delivery. ISO: London, UK, 2012.
- ASTM-B247; Standard Specification for Aluminum and Aluminum-Alloy Die Forgings, Hand Forgings, and Rolled Ring Forgings. U.S. Department Of Defense: Washington, DC, USA, 2009.
- ASTM-A479; Standard Specification for Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels. U.S. Department Of Defense: Washington, DC, USA, 2019.
- ASTM-A965; Standard Specification for Steel Forgings, Austenitic, for Pressure and High Temperature Parts. U.S. Department Of Defense: Washington, DC, USA, 2017.
- ASME BPVC.VIII.3-2015; ASME Boiler and Pressure Vessel Code. ASME: New York, NY, USA, 2010.
- Ramirez, J.P.B.; Halm, D.; Grandidier, J.-C.; Villalonga, S.; Nony, F. 700 bar type IV high pressure hydrogen storage vessel burst—Simulation and experimental validation. Int. J. Hydrogen Energy 2015, 40, 13183–13192. [Google Scholar] [CrossRef]
Material | Modulus of Elasticity (MPa) | Poisson’s Ratio | Allowable Stress (MPa) | Coefficient of Thermal Expansion (°C) |
---|---|---|---|---|
S31603 | 193,000 | 0.31 | 113 | 1.04 × 10−5 |
6061-T6 | 68,900 | 0.33 | 107 | 2.34 × 10−5 |
Parameter | Dimension Value (mm) |
---|---|
Outer diameter of the vessel head | Ø114.3 (Pipe thread 4.5-8UN-2A) |
Inner diameter of the vessel head | Ø60 (Pipe thread 2.5-8UN-2B) |
Depth of outer thread | 70 |
Depth of inner thread | 80 |
Parameter | Model A | Model B | Model C | Model D |
---|---|---|---|---|
Number of sealing groove | 2 | 3 | 2 | 3 |
The angle of inclination of the stop-rotation platform | 65° | 90° | 65° | 90° |
Name | Material | Young’s Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|
BOSS structure | S31603 | 193,000 | 0.31 |
6061-T6 | 68,900 | 0.33 | |
carbon fiber layer | T-700 | 120,000 | 0.31 |
plastic inner liner | Polyamide | 1080 | 0.4 |
Name | Material | Model A | Model B | Model C | Model D |
---|---|---|---|---|---|
maximum Mises stress (MPa) | S31603 | 265.98 | 266.25 | 368.91 | 367.60 |
6061-T6 | 217.52 | 217.13 | 325.53 | 324.73 |
Model | Material | Path | Path Stress Classification | Equivalent Stress | Stress Control Value | Assessment Result |
---|---|---|---|---|---|---|
Model A | austenitic stainless steel S31603 | N1 | PL | 38.18 | 1.5 Sm = 169.5 | Pass |
PL + Pb | 40.50 | 1.5 Sm = 169.5 | Pass | |||
N2 | PL | 90.55 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 148.26 | 1.5 Sm = 169.5 | Pass | |||
N3 | PL | 22.48 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 100.44 | 1.5 Sm = 169.5 | Pass | |||
aluminum alloy 6061-T6 | N1 | PL | 35.90 | 1.5 Sm = 160.5 | Pass | |
PL + Pb | 37.63 | 1.5 Sm = 160.5 | Pass | |||
N2 | PL | 76.75 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 113.48 | 1.5 Sm = 160.5 | Pass | |||
N3 | PL | 24.99 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 60.79 | 1.5 Sm = 160.5 | Pass | |||
Model B | austenitic stainless steel S31603 | N1 | PL | 38.45 | 1.5 Sm = 169.5 | Pass |
PL + Pb | 40.06 | 1.5 Sm = 169.5 | Pass | |||
N2 | PL | 94.48 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 149.25 | 1.5 Sm = 169.5 | Pass | |||
N3 | PL | 24.27 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 93.71 | 1.5 Sm = 169.5 | Pass | |||
aluminum alloy 6061-T6 | N1 | PL | 36.35 | 1.5 Sm = 160.5 | Pass | |
PL + Pb | 41.20 | 1.5 Sm = 160.5 | Pass | |||
N2 | PL | 79.24 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 112.04 | 1.5 Sm = 160.5 | Pass | |||
N3 | PL | 33.08 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 60.53 | 1.5 Sm = 160.5 | Pass | |||
Model C | austenitic stainless steel S31603 | N1 | PL | 91.31 | 1.5 Sm = 169.5 | Pass |
PL + Pb | 113.89 | 1.5 Sm = 169.5 | Pass | |||
N2 | PL | 78.84 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 91.97 | 1.5 Sm = 169.5 | Pass | |||
N3 | PL | 60.92 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 67.71 | 1.5 Sm = 169.5 | Pass | |||
aluminum alloy 6061-T6 | N1 | PL | 79.98 | 1.5 Sm = 160.5 | Pass | |
PL + Pb | 97.85 | 1.5 Sm = 160.5 | Pass | |||
N2 | PL | 74.65 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 93.59 | 1.5 Sm = 160.5 | Pass | |||
N3 | PL | 50.35 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 58.98 | 1.5 Sm = 160.5 | Pass | |||
Model D | austenitic stainless steel S31603 | N1 | PL | 91.28 | 1.5 Sm = 169.5 | Pass |
PL + Pb | 113.65 | 1.5 Sm = 169.5 | Pass | |||
N2 | PL | 81.85 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 94.42 | 1.5 Sm = 169.5 | Pass | |||
N3 | PL | 61.23 | 1.5 Sm = 169.5 | Pass | ||
PL + Pb | 67.47 | 1.5 Sm = 169.5 | Pass | |||
aluminum alloy 6061-T6 | N1 | PL | 79.98 | 1.5 Sm = 160.5 | Pass | |
PL + Pb | 97.61 | 1.5 Sm = 160.5 | Pass | |||
N2 | PL | 76.54 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 84.35 | 1.5 Sm = 160.5 | Pass | |||
N3 | PL | 50.75 | 1.5 Sm = 160.5 | Pass | ||
PL + Pb | 58.57 | 1.5 Sm = 160.5 | Pass |
Model | Material | Stress Range (MPa) | Equivalent Alternating Stress Amplitude (MPa) | Fatigue Life (/Number) | Allowable Stress Amplitude (MPa) | Assessment Result |
---|---|---|---|---|---|---|
Model A | S31603 | 265.98 | 137.81 | 30,000 | 406 | Pass |
6061-T6 | 217.52 | 108.91 | 30,000 | 68 | Fail | |
Model B | S31603 | 266.25 | 137.95 | 30,000 | 406 | Pass |
6061-T6 | 217.13 | 108.72 | 30,000 | 68 | Fail | |
Model C | S31603 | 368.91 | 191.15 | 30,000 | 406 | Pass |
6061-T6 | 325.53 | 163.00 | 30,000 | 68 | Fail | |
Model D | S31603 | 367.60 | 190.46 | 30,000 | 406 | Pass |
6061-T6 | 324.73 | 162.60 | 30,000 | 68 | Fail |
Model | Maximum Contact Stress | Mean Contact Stress | Mean Squared Deviation of Contact Stress | Sealing Medium Pressure | Assessment Result |
---|---|---|---|---|---|
Model A | 79.27 | 52.5 | 13.47 | 58 | Pass |
Model B | 79.38 | 51.18 | 14.57 | 58 | Pass |
Model C | 78.35 | 50.31 | 15.64 | 58 | Pass |
Model D | 78.47 | 49.14 | 16.28 | 58 | Pass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Li, Y.; Cao, W.; Li, Y.; Gao, Z. Failure Analysis of Novel BOSS Structures for Type IV Hydrogen Storage Vessels. Energies 2023, 16, 4005. https://doi.org/10.3390/en16104005
Zhu J, Li Y, Cao W, Li Y, Gao Z. Failure Analysis of Novel BOSS Structures for Type IV Hydrogen Storage Vessels. Energies. 2023; 16(10):4005. https://doi.org/10.3390/en16104005
Chicago/Turabian StyleZhu, Jiqi, Yan Li, Wenhong Cao, Yuebing Li, and Zengliang Gao. 2023. "Failure Analysis of Novel BOSS Structures for Type IV Hydrogen Storage Vessels" Energies 16, no. 10: 4005. https://doi.org/10.3390/en16104005
APA StyleZhu, J., Li, Y., Cao, W., Li, Y., & Gao, Z. (2023). Failure Analysis of Novel BOSS Structures for Type IV Hydrogen Storage Vessels. Energies, 16(10), 4005. https://doi.org/10.3390/en16104005